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Abstract. The estimation method of computational complexity of sensor data 
acquisition and processing algorithm based on neural networks is considered 
in this paper. An application of this method allows to propose a three-level 
structure of distributed sensor network with improved accuracy. 

 
1 Introduction 
 
The problem of accuracy improvement of sensor data acquisition and processing [1] 
is relevant in distributed sensor networks (DSN) [2]. Thus, sensor drift is the 
predominant compound of common error [3]. Using structure-algorithmic methods of 
accuracy improvement [4], for example testing and calibration, requires the 
interruption of data acquisition process that limits the usage of these methods. A 
prediction method [3] does not have this lack and allows correcting sensors instability 
during the system’s operation. However, the specific features of sensor drift don’t 
provide necessary prediction accuracy in the usage non-adaptive mathematical 
models. Therefore, it is expedient to combine testing or calibration methods with a 
prediction method [5]. The authors propose to use artificial neural networks (NN) for 
sensor drift prediction and accuracy improvement of sensor data acquisition and 
processing in DSN [6]. However, the use of neural networks requires the 
corresponding computational resources. Therefore, it is necessary to evaluate 
computational complexity of sensor data acquisition and processing algorithm based 
on neural networks in order to develop DSN hardware structure. 
 
2 Sensor Data Acquisition and Processing Algorithm Based on 
Neural Networks  
 
Sensor data acquisition and processing algorithm based on neural networks uses three 
kinds of neural networks: (i) integrating "historical" data NN, (ii) approximating NN 
and (iii) predicting NN. These neural networks were mainly considered in other 
previous publications of the same team of authors [7-9].  

The model of heterogeneous neural network (Fig. 1) is used as predicting NN 
(PNN), which consists of N  input neurons, M  neurons of the hidden layer with the 
logistic activation function and one output neuron with the linear activation function 
[7]. The output neuron value 
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where 3jw  is the synapse from j -neuron of hidden layer to output neuron; oT  is the 
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the output value of j -neuron of hidden layer in t  moment of time; ijw  is the synapse 
from i -input neuron to j -
neuron of the hidden layer; ix  
is the i -element of input vector 
p ; kjw  is the synapse from k -

neuron of the hidden layer to 
j -neuron of the same layer; 

)1( −thk  is the output value of 
k -neuron of hidden layer in 
the previous moment of time 

1−t ; jw3  is the synapse from 
output neuron to j -neuron of 
the hidden layer; )1( −ty  is the 
value of output neuron in the 
previous moment of time 1−t ; 

jT  is the threshold of j -
neuron of the hidden layer.  

The back propagation error algorithm [7, 9] is used for PNN training. The sum-
squared error )(tE p  for each training vector p  and common training error )(tE  is 
calculated as  
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where )(ty p  is current and pd  is desired PNN output value for training iteration t  

for each training vector p , the error of output neuron is ppp dtytb −= )()(3 .  
The adaptive learning rate [7, 9] for output neuron with linear activation function 
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and for neurons of the hidden layer with the logistic activation function  
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The synapses and neuron’s thresholds are changed during the training process 
taking into account (3) and (4) 

 

Fig. 1. Structure of Predicting Neural Network 
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The training process of PNN according to the expressions (1-10) is executed while 
the common training error )(tE  does not become less than the required value. 

The experimental researches (by simulation modeling) of the proposed algorithms 
have been done using generalized mathematical models of sensors drift "with 
acceleration" (Fig. 2). The data from 0-30 calibrations with step 5 on each curve are 
used for NN training. The prediction interval is 30-60 calibrations with step 1. The 
average and the maximum percentage prediction errors do not exceed 14% and 27% 
(Fig. 3) for sensors drift "with acceleration" using integrating "historical" data NN, 
approximating NN and predicting NN. It allows the improvement of sensor data 
acquisition and processing accuracy in 3-5 times with a simultaneous increase of 
interesting interval in 6-12 times [6, 9]. 
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Fig. 2. Sensor drift "with acceleration" 

30 35 40 45 50 55 60 
5 

10 

15 

20 

25 

30 

Maximum error 

Average error 

Calibration points, convertional values 

Pe
rc

en
ta

ge
 e

rro
r o

f p
re

di
ct

io
n,

 %
 

Fig. 3. Prediction results of sensor drift 
 

3 An Approach to Estimation of Computational Complexity of 
Algorithm 
 
Using the proposed NN-based algorithms of sensor data acquisition and processing 
defines the corresponding requirements to DSN structure and the necessary 
computing components. The analysis of time parameters of sensors and known DSN 
structures [1, 10] allows defining three scales of real time, which is necessary to 
consider during the analysis of computational productivity of the DSN components: 
• The required scanning period for the majority of sensors is not less than 50 µs. 

Therefore, the data acquisition frequency is 2⋅104 Hz; 
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• The necessary period of sensor drift correction factor calculation is not less than 
20 min. Therefore the frequency is 8.3⋅10-4 Hz; 

• The necessary period of replacement of the sensor drift mathematical model is 
not less than 20 hours. Therefore, the frequency is 1.4⋅10-5 Hz.  

All the above procedures should run in the correspondent real time scale.  
Let us consider a technique of computational complexity (and the necessary 

productivity of computing components) estimation for the algorithm of sensor drift 
mathematical model replacement using the PNN structure. 

In a general case, productivity P  of the computing 
device [11] 

NRFKP /⋅⋅= ,  (11) 
where K  is the number of input data channels, F  is 
the frequency of the data entrance on the any of K  
input channels, )(NRR =  is the computational 
complexity of the algorithm (number of 
addition/multiplication operations (float-point 
operations) per second) and N  is the number of input 
data elements. Furthermore, the analysis of 
computational complexity will be provided for the 
situation, when only one value from input arrays (one 
value from each appropriate data array) goes to the 
computing device on one input channel in order to 
simplify the calculation of operations.  

The productivity of the necessary computing com-
ponents for the algorithm of sensor drift mathematical 
model replacement according to Fig. 4 and (11) 

5105.2/ ⋅=⋅⋅= NRFKP DRFMODELDRFMODEL  op/sec, 

where K =1; F =1.4⋅10-5 Hz is the frequency of the 
mathematical model of correction factor replacement; 
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operations - is the computational complexity of 
algorithm (3.2⋅105 is the number of required iterations; 
15 is the number of training vectors; 1741=yR  
operations is the computational complexity of PNN 
output value calculation according to (1); 124=rateR  
operations is the computational complexity of sum-
squared error calculation (2) and the adaptive learning 
rate for neurons of output (3) and hidden (4) layers; 

1793=synR  operations is the computational complexity of the synapses and the 
thresholds modification for all layers according to (5-10)); N =1. 

The estimation of computational complexity of algorithms is necessary in order to 
choose the optimum DSN structure, which executes NN-based algorithms in order to 
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Fig. 4. General algorithm of 
sensor drift mathematical 
model replacement 
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improve the accuracy of sensor data acquisition and processing. The preliminary 
analysis has shown that the data acquisition algorithm (А), the algorithm of correction 
factor of sensor drift mathematical model replacement (B), the algorithms of PNN 
training set formation using additional approximating NN (C) [7, 9] and the use of a 
set of integrating “historical” data neural networks (D) [6, 8] are required the largest 
computational recourses. The results of productivity sP  estimation for the above 
algorithms for single data acquisition channel of DSN are presented in Table 1. 
 
4 Experimental Researches for DSN Structure Design 
 
A personal computer (PC) is the main computing DSN component [10, 12]. 
Therefore, it is necessary to evaluate productivity of modern PCs on the basis of 
different processors using the proposed approach. The fragment of PNN calculation 
routine according to (1-10) is used as the test routine for the estimation of 
computational complexity and productivity of the algorithm. The computational 
complexity of the test routine 

9
1

6 107.3)(101 ⋅=++⋅⋅= synrateyTEST RRRR  operations,   

where 1·106 is the iteration number of the test routine, yR , rateR , synR  are operations 
according to (12). The productivity of the tested PCs TESTTESTTEST tRP /= , where 

TESTt  is the execution time of the test routine in seconds (Table 2).  

   Table 1. Computational complexity          Table 2. Productivity estimation  
     for single data acquisition channel           of modern PCs 
Algorithm sP , op sR , op/s  PC TESTt , s TESTP , op/s 

A 27 5.4·105  Intel Pentium  412 8.9⋅106 
B 1.8·1010 2.5·105  AMD Pro 282 1.3⋅107 
C 8.6·108 1.2·104  Intel Celeron 69 5.4⋅107 
D 1.3·1010 1.8·105  Intel P-III 52 7.1⋅107 

The productivity analysis of modern PCs (see Table 2) has shown that a single PC 
doesn’t provide the fulfillment of all the considered above NN-based algorithms in 
real time scale for a multi-channel DSN, especially when it is together with user 
interaction. The known data acquisition modules [12, 13] fulfill sensor signal 
processing using only permanent algorithms stored into ROM. Therefore, it is 
expedient to add the third (middle) level of sensor signal processing [1] into a two-
level structure of known DSN. This level should fulfill the algorithms of the current 
error correction. The elements of the middle level should execute the algorithms, 
which change during the DSN operation. For this purpose, they should provide a 
remote reprogramming mode that allows them to be recognized as intelligent nodes 
[14]. 
 
5 Conclusions  
 
The proposed approach for a computational complexity estimation of neural network 
based algorithms and an appropriate productivity of necessary computing components 
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allows to propose three-level DSN structure with the improved accuracy and 
effectiveness of sensor data processing in 3-5 times. 
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