
International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Application 
1-4 July 2001, Foros, Ukraine 

0-7803-7164-X/01/$10 © 2001 IEEE                   21 

The New Method of Historical Sensor Data Integration Using 
Neural Networks 

 
V.Turchenko1, V.Kochan1, A.Sachenko1, Th.Laopoulos2 

 
1 Laboratory of Automated Systems and Networks, Ternopil Academy of National Economy, 

3 Peremoga Square, Ternopil, 46004, Ukraine, E-mail: vtu@tanet.edu.te.ua 
 

2 Electronics Laboratory, Physics Department, Aristotle University of Thessaloniki, 54006, 
Thessaloniki, Greece, E-mail: laopoulos@physics.auth.gr 

 
 
Abstract: The main feature of neural network using for 
accuracy improvement of physical quantities (for 
example, temperature, humidity, pressure etc.) 
measurement by data acquisition systems is insufficient 
volume of input data for predicting neural network 
training at an initial exploitation period of sensors. The 
authors have proposed the technique of data volume 
increasing for predicting neural network training using 
(i) additional approximating neural network; (ii) method 
of “historical” data integration (fusion). In this paper we 
have proposed the advanced method of “historical” data 
integration and presented simulation results on 
mathematical models of sensor drift using single-layer 
perceptron.  
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1. INTRODUCTION 
 

The authors have shown in [1, 2], that the error of 
modern data acquisition systems is much less than 
sensor’s error in many cases. The accuracy improvement 
of physical quantity measurement is provided by (i) 
sensor calibration using special calibrator or (ii) sensor’s 
periodic testing by reference sensor on the exploitation 
place [3]. The frequency of calibration/testing procedure 
is called as inter-testing interval. However operations, 
which implement these methods are rather laborious. 
Sensor drift prediction provides low laboriousness. 
Prediction based on average drift of similar sensors has 
low reliability and does not take into account an 
individual native of sensor in specific exploitation 
conditions. Sensor drift prediction during inter-testing 
interval can be used in order to reduce laboriousness of 
calibration or testing procedures. Using artificial 
intelligence methods, in particularly neural networks is 
most effective in this case [4, 5]. 

The same team of authors considers an approach to 
sensor drift prediction in number of publications [1, 2, 6, 
7]. In [7] it is proposed and experimentally analysed the 
two methods: (i) additional approximating neural network 
and (ii) integration of "historical" data, which allow 
sharply reducing number of sensor calibrations or testing 
by artificial increasing of training set of predicting neural 

network. The advanced method of “historical” sensor data 
integration and its simulation modelling on mathematical 
models of sensor drift in comparison with the basis 
method of data integration are considered below.  
 
2. BASIS METHOD OF HISTORICAL 
DATA INTEGRATION 
 

It is proposed to use three groups of data about sensor 
drift in [1]: real data, “historical” data and hypothetical 
data. The real data are not available at the beginning of 
sensor exploitation. Using "historical" data (obtained as 
result of calibration or testing of the same type sensors in 
the similar exploitation conditions) can compensate this 
disadvantage. It is obviously, that predicting neural 
network can provide the best quality of sensor drift 
prediction in case of its training using real data about 
sensor drift. Therefore the "historical" data should be 
replaced by real data for each particular sensor during its 
exploitation. 

The "historical" data should be integrated in order to 
account individual properties of each sensor drift. It is 
proposed to use a set of Integrating "Historical" Data 
Neural Networks (IHDNN) for such integration. Let us 
consider the "historical" data of sensor drift as curves 

xnx ...1  (Fig. 1), which are equal to xcixbixai ,, , ni ,1=  
into calibration points cba ,, . The first calibration of the 
new sensor allows correcting initial sensor error at the 
moment 0. The second calibration of the new sensor 
allows receiving the first real value xak  of sensor drift in 
calibration point a . The main goal of the IHDNN using is 
provide prediction of point xbk  on the basis of xak  and 
xai , ni ,1= , the next point xck  on the basis of xbk  and 
xbi , ni ,1=  and etc. The number of available "historical" 
curves of sensor drift determines structure of IHDNN's 
input layer. 

There is propose to form the IHDNN’s training set by 
the following algorithm: 
1. One curve of sensor drift xi  is considered as real 

data and all other curves xj , 1,1 −= ij , nij ,1+=  
are considered as "historical" data. Thus, the real 
sensor drift is describes as xai  value in point a  and 
dbi  value in point b ; 
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2. To calculate absolute deviations xajxaiij −=∆  of 

point xai  from all other points xaj , where ni ,1= , 

1,1 −= ij , nij ,1+= ; 
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Fig.1 - Historical Data about Sensor Drift of 
Similar Sensors 
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3. To sort all absolute deviations, calculated in the 
previous step, in decreasing order; to calculate 
maximum ijij ∆=∆ maxmax  and minimum 

ijij ∆=∆ minmin  values of absolute deviations; 
4. To generate each training vector as set of values xbi , 

xai , xaj , where xaj , 1,1 −= ij , nij ,1+=  values 
is necessary to put into training vector according to 
sorted (in decreasing order) values of absolute 
deviations 
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 from value xak(see Table 1);  

5. To repeat steps 1-4 above for ni ,1= . 
 

Table 1. Internal structure of training vector for 
IHDNN according to basis method of “historical” data 
integration 
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Thus the training set of IHDNN, which predicts sensor 

drift in the moment b  should be formed on the basis of 
xai  and xbi  values, where ni ,1=  (see Fig. 1). These 
values can be considered as "window" of the “historical” 
data for training set forming. Therefore it is necessary to 
shift this "window" to right on one calibration point after 
prediction sensor drift value xbk  in the moment b . Then 
the training set of IHDNN, which predicts sensor drift in 
the moment c  should be formed on the basis of xbi  and 
xci  values, where ni ,1=  for next calibration point. 

As have simulation results shown, the basis method 
gives good results for no noise data at using single-layer 
perceptron as IHDNN. For example [6], the given method 
is researched on the mathematical model of sensor drift 

"with saturation" (drift’s speed decreases during 
exploitation) and "with acceleration" (drift’s speed 
increases during exploitation). The maximum and average 
percentage errors of data integration did not exceed 7% 
and 3% for drift "with saturation" and 25% and 8% for 
drift "with acceleration" respectively. The researches of 
mathematical model of the combined sensor drift have 
shown, that the maximum and average percentage errors 
of data integration is more than 52% and 30% [6] and 
these results are received using multi-layer perceptron 
(single-layer perceptron has not given desirable result). 
Also the acceptable results are received using multi-layer 
perceptron [8] at experimental research of mathematical 
models of noise sensor drifts (see Fig. 2 and Fig. 3). Using 
multi-layer perceptron requires significant computing 
power in multi-channel data acquisition systems. That is 
inadmissible at using microcomputer AT89C51 on the 
middle level of such systems [9]. The advanced method of 
«historical» data integration is considered below, which 
allows using simple single-layer perceptron model as 
IHDNN. 
 
3. ADVANCED METHOD OF 
HISTORICAL DATA INTEGRATION 
 

The disadvantage of basis method of «historical» data 
integration can be considered as follows. This method 
takes into account sensor drift values, which have placed 
in "window" only. For example, it is values xai  and xbi , 

ni ,1=  for the calibration point b . The main idea of 
advanced method of “historical” data integration is 
necessity to take into account specific data for all past 
calibration points. For example, the training set for 
IHDNN in calibration point b  should be formed on the 
basis of xai , xbi  and xci , ni ,1=  values for prediction 
sensor drifts values at the following calibration point c  
(see Fig. 1). Therefore the IHDNN’s training sample in 
calibration point b  is formed as follows: 
1. One curve of sensor drift xi  is considered as real 

data and all other curves xj , 1,1 −= ij , nij ,1+=  
are considered as "historical" data. Thus, the real 
sensor drift is describes as xai  value in point a , dbi  
value in point b  and xci  value in point c ; 

2. To calculate absolute deviations xbjxbiij −=∆  of 

point xbi  from all other points xbj , where ni ,1= , 

1,1 −= ij , nij ,1+= ; 
3. To sort all absolute deviations, calculated in the 

previous step, in decreasing order; to calculate 
maximum ijij ∆=∆ maxmax  and minimum 

ijij ∆=∆ minmin  values of absolute deviations; 
4. To generate each training vector as set of values xaj  

and xbi , where 1,1 −= ij , nij ,1+=  values is 
necessary to put into training vector according to 
sorted (in decreasing order) values of absolute 
deviations xbj  from value xbi (see Table 2);  

5. To repeat steps 1-4 above for ni ,1= . 
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Table 2. Internal structure of training vector for IHDNN according to advanced method of “historical” data integration 
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4. SINGLE-LAYER PERCEPTRON 
MODEL 
 

The model of single-layer perceptron with linear 
neuron activation function should be used as IHDNN. The 
output value of perceptron 
 

∑
=

−=
n

i
ii TxwY

1
1 ,        (1) 

 
where 1iw  are the weight factors of inputs of linear 
neuron, ix  is the input data, T  is the neuron’s threshold. 
The Widrow-Hoff rule [10] is used for perceptron 
training. The total sum-square error of training is  
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where P  is the size of training set, cba ,,  is the sum-

square error for p  input vector (pattern), pp DtY ),(  are 
the output and desirable values for p  input vector 
respectively. 

The final expressions for modification of weight 
factors and thresholds are 
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where ni ,1= , p

ix  –  there is i -component of input p  
vector, 
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is the adaptive learning rate [2]. 

The following algorithm is used for training [7]: 
1. To set the adaptive learning rate as value 10 << α  

and minimum sum-square error minE ; 
2. To initialise the weight factors and threshold of 

perceptron by randomise values; 
3. To give an input data to perceptron input, to calculate 

the output according to expression (1); 

4. To update the values of weight factors and threshold 
according to expressions (3-5); 

5. To execute steps 3-4 while total sum-squared error 
(2) will not become less minimal minEE ≤ . 

 
5. EXPERIMENTAL RESEARCHES 
 

The experimental researches have executed by 
simulation modelling using mathematical models of noise 
sensor drift (10 sensor drift curves). The mathematical 
model of noise sensor drift "with saturation" (Fig. 2) 
corresponds to results of experimental researches of 
30K5A1 sensor drift at working temperatures 150°C. The 
drift "with acceleration" (Fig. 3) corresponds to results of 
experimental researches of KMT-4 sensor drift at working 
temperature 120°C.  
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Fig. 2 - Mathematical model of sensor drift "with 
saturation"  

 
There are researched the percentage errors of 

integration at the third calibration point (calibration point 
b ), because the first calibration at the moment 0 allows to 
correct initial sensor error and the second calibration at 
the moment a  allows to receive real value xak  of sensor 
drift (see Fig. 1). The single-layer perceptron model 
(described in Section 4) is used during modelling. The 
training time (for 10 curves) on the computer Pentium-III-
600 for basis method of «historical» data integration and 
for advanced method of integration has made 3 and 1.6 
min for sensor drift "with saturation" and 5 and 2 min for 
sensor drift "with acceleration" respectively. The average 
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percentage error of data integration in calibration point b  
(corresponds to 200 hours on Fig. 2) has made 19% at 
usage of basis method and 10% at usage of advanced 
method for sensor drift "with saturation". The average 
percentage error of data integration in calibration point b  
(corresponds to 20 days on Fig. 3) has made 41% at usage 
of basis method and 15% at usage of advanced method for 
sensor drift "with acceleration". Therefore, the results of 
simulation modelling at the use simple single-layer 
perceptron allow to make conclusion, that advanced 
method of “historical” data integration allows to improve 
integration accuracy in 2-3 times in comparison with the 
basis method. 
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Fig. 3. Mathematical model of sensor drift "with 
acceleration"  

 
6. CONCLUSION 
 

The obtained experimental results confirm efficiency 
of proposed advanced method of historical data 
integration. This method can be used together with 
approximating and predicting neural networks in order to 
improve accuracy of sensor signal processing by 
permanent prediction of sensor drift at simultaneous 
increasing of inter-testing interval. The usage of proposed 
methods in intelligent data acquisition systems provides 
sharply reduction of error of physical quantity 
measurement, i.e. provides high system's adaptability to 
external exploitation conditions. These methods are 
implemented in the prototype of an Intelligent Sensing 
Instrumentation System (ISIS) within the project INTAS-
OPEN-97-0606 [11-13], where neural networks training 
is fulfilled on the higher ISIS level and proper prediction 
is fulfilled on the middle level. 
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