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Abstract. A new computational technique for training of multilayer feed-forward neural networks with sigmoid
activation function of the units is proposed. The proposed algorithm consists two phases. The fiist phase is an adaptive
training step calculation, which implements the steepest descent method in the weight space. The second phase is
estimation of calculated training step rate, which provide reach a state of activity of the units on the each training
iteration. The simulation results are provided for the test example to demonstrate the efficiency of the proposed method,
which solves the problem of training step choice in multilayer perceptions.

1. Introduction

Multilayer perceptions (MLP) form a wide set of feed-forward neural networks. They have a wide vwiety of
applications in different areas: classification, control, pattern recognition, fimction approximation, prediction etc.
Adaptability of the neural models for any application provides by training procedures. The most commonly training
methods in MLP is error backpropagation (BP) algorithm [2], [3]. In spite of the fact that BP is successfully used for
various kind of tasks, it have lacks such as slow convergence, non-stability of convergence and local mitimmn
problems [4]. Many efforts have been made to development the MLP training methods using in BP variable training
step size [5], [11], layer-by-layer optimization [12] and using for training the Newton method [6], [7], the Levenberg-
Marquardt method [8], conjugate-gradient technique [9], [10].

In this paper a new method is developed for efficient training of MLP by combining BP, adaptive training step
calculation (ATS) technique [1] and training step size estimation (SSE) method. The ATS is used to fiid an optimal
training step, which minimizes the neural unit training error. The SSE is used to validation the training step size for
guaranteeing of neural unit training adaptability. This technique along with BP allows to solve “theproblems of optimal
learning rate choice and to advance of MLP adaptability, as demonstrated the various experiments.

In this work Section 2 will discuss the architecture of MLP. Proposed ATS technique and SSE technique is
discussed in section 3. Section 4 gives the computational experiments along with discussions, confining good
performance of the proposed learning methodology. To end, Section 5 gives conclusions.

2. MLP Architecture

The basic MLP architecture is shown in Fig. 1. This layered structure has 1 input, 1 output and L – 2 hidden layers.
The model of a typical neuron in MLP shown in Fig. 2. The output of neural unit for layer 1can be expressed as:

()
_ql] -~

g(S~])= l+e

where S}!] is weighted sum of input activity of this unit, defined as:

a.s. z
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Fig. 1.The MLP architecture Fig. 2. Modelof neuralunit j for the layer ~
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3. Training Method

This section describes the proposed learning method as weight updation scheme. The computational scheme of the
proposed ATS technique and SSE technique starts as follows.

An initial point is chosen in the weight space at random. The new point is adaptive training step definition and it
validation for guaranteeing of neuron training activity after weight updation phase. The next point is weight updation
by using BP method,

3.1. BP Technique

The most popular training algorithm for MLP is BP and is described in brief with the following notations,

Yy] Output of the j th unit in layer 1.

[/]
w Weight connecting i th unit in layer 1– 1 to j th unit in layer 1.

d’ Input p th training sample.

dp Desired p th training sample.

L Number of layers.

iv’ Number of units in layer 1.
P Number of training patterns.
t Number of current training iteration.

In this notations wI} represents weight connecting i th unit in the bias layer to j th unit in layer 1 and y~-’l = –1.

BP implements a gradient search technique to find the network weights, that minimizes the squared error function
given below:

E(t) = ‘jEp(f)=‘ffj#(t)-df]~ (3)
p=l @ kzl

The weights of MLP are updated iteratively according to following rule:

~Ep

Here — is gradient error defined as
~}1

(4)

(5)

a >0 is a constant, called training step.
Before training the weights are initialize by small random values. The BP training rule (4) is repeated for all training
samples until then will achieved acceptable squared error (3).

3.2. Using the ATS Technique in BP

In BP there is a problem of choice of an optimal training step [5], [11]. For choice of adaptive step it is possible to

use a method of steepest descent [1]. According to it, the training step czP,[lI(t) for layer z is selected by minimizing a

square error Ep (t) for training sample p as given below:

The expression for ATS calculation, considered in [7], is follows:
~m

yJj’’’’’)2&?(q””9
~m (t)=

j=l

~11.11 ~11

g’(o) .(1+ ~(Ypq*)~T’yl 2W?’W2
id i=]

(6)

(7)

In expression (7) was used decomposition of activation fiction g under the Tailor series and limitation by first two

members. Therefore this is approximate method of ATS definition for nonlinear activation tlmctions. For MLP efficient
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training using ATS it is necessary to limit the ATS size [1]. The limitation size is defined empirically. Therefore there
is a problem to definition of acceptable bounds of the training step.

Let’s consider the next problem connected with incorrect choice of the training step size.
During training phase all neural units of MLP are divided on subset of neural units with smaU training efficiency

and on subset of neural units with large training efficiency. The training efficiency for the neural unit j on the layer 1

is defined by size of activation fimction derivative g’(S~[’]). For sigmoid nonlinearity it is defined as

(8)

When training step size is too large, it provides in the most cases to form output activity closely to O or to 1 for the
next training iterations. In this cases there is reduction of training adaptability of this units, as

~Ep
g’(sflq + 0,= ~[/1— -+ O (see Fig. 3). As result there is reduction of the training efficiency and reduction adaptability

!/
of MLP.
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Fig. 3. The sigmoidactivationfimctionand it
derivative

For solving of described above problems consider below the developed in this paper the technique of ATS
validation.

3.3. SSE Technique

As criterion for definition of acceptable bounds of the training step in this work is used minimum acceptable of
activation function derivative rate s. During the training it is necessary to provide the next inequality:

g’(sf’[~l(t + 1))> & (9)

Solve this inequality for sigmoid nonlinearity according ap>[’]:

yf’[~1(t + 1)(1- yjqf + 1)) > .s (lo)

Along the expression (4) we can get:

+-+G<Y;[’~(F+l) <*++G. (11)

As sigmoid function is increasing and monotonic, it is possible to transformation this inequality to the next form:

g (2-Z ) (z 2 )9
[-~11 ~~ <~y[~l(~+l)<g[-ll :+1- (12]

-]] is inverse ~nction, defined as:where g[

Then the expression (12) can be presented as follows:

*J-Z I+fi
< Sj’’[ll(t + 1)< in

l+- I-G
(13)
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In this expression the S~[’] is calculated as

Final solving for inequality (9) is follows:

I

Sfl[/](t)– ]nl-m Sj3[1](j)– in l+JGG

l+JCG 1-~ . “-” ~,[/-q~Ep > ~

~yp,,,-,,~ ‘aP’[’’(’)’ ~yp,l_ll i3Ep ‘ti;y’ @,_
r

i=o
&;]

ho
@;]

(14)

(15)

~[1-1]

Let’s consider in detail application of the given expression for SSE. In (14) the expression ~ y~[’-]] ~ specifies
/=0 *;I

‘@l]

P,t/-ll~ <0 this implyies that 5“J11(t)<SjJq(t+l)the direction of gradient search for S~[’] during training. If ~ Yi
i=o a~l

and correspondingly that y~’[’](t) < y~[’] (t +1) for unit j of layer 1. In thk case it is necessary to use the next

limitation for ap’[~](t):

#l-l]

PM ~EpIn other case, if ~ yi — >0 then after next training iteration $[1]($ >S~[’l(t +1) and correspondingly
ieo tifl

y~’[’](t)> y~[’l (t + 1). In this case it is necessary to use the next limitation for czp’[~}(t):

fj~[~](~)-ln 1–JCZ

~p’[’](o< M,.,,
l+JCZ

zyf’[’””~
i=o !I

(17)

~[1-11

P,[t-]] ~EpAs ~ yj
p,,] , p,,, “-” ‘3[1-]])2and g’(S~[’l) >0, then for definition of gradient search direction in-=)’j’ g(sj’ )~bi

i=O v i=O

Psi]expressions (16), (17) it is necessary to analyze only yj .

So, the SSE method includes the phase of analyzing of unit error y~[’] and phase of application of expression (16)

or(17) for ATS validation.
The next section illustrates the technique of the SSE application in computational algorhn.

3.4. Computational Scheme

In this section the proposed learning algorithm is expressed as computational steps as given below.

1) Initialize MLP by small random weights.
2) Choice the limitation of the sigmoid derivative c
3) BP
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3.1) Choose the limitation of square error, at which gradient descent will come to a halt.
3.2) Repeat

3.2. 1) Feed Forward
3.2.2) Compute Gradient
3.2.3) ATS
3.2.4) ESS: a@st the training step size for each unit j on layer 1 using the next rules:

~P>[/I(t)<

3.3) Update weights using a@sted training step.

So, implementation proposed computational algorithm provides the saving of training adaptability for MLP units
during training phase.

The next section gives the simulation results and demonstrates the computational effort of the BP algorithm with
combination ATS technique and SSE technique.

4. Simulation Results and Discussion

To assess the performance of the proposed learning technique experiments were conducted on standard problems of
parity, Here the output of the MLP is required to be ‘1‘ if the input pattern contains an odd number of’1‘ and ‘O’
otherwise. In this problem the most similar patterns which differ by a single bit require different answer. For simulation
a three-layer MLP of size 4-4-1 is considered. The training set contains 16 samples. Ten different series of experiments
are considered for various training conditions and the average results is provided in the Table 1. The simulation results
demonstrate the efficiency of SSE technique for ATS validation.

TABLE 1
Table showing the simulation results for varions training conditions: 1) using constant training step; 2)

using ATS technique with various constant limitations; 3) combining the ATS technique and SSE
technique. NIT - number of training iterations; MSE - mean square error.

NIT MSE Type of training Size of the ATS validation &

step training step

2010 0.0241 Constant 0.099

2350 0.0067 Constant 0.50

2140 0.0941 Constant 0.99

2500 0.091 ATS <0.50

1990 0.078 ATS <(),99

2090 0.0096 ATS <1.99

2050 0.267 ATS <2,50

2100 0.0052 ATS SSE 0.099

2250 0.0051 ATS SSE 0.05

2310 0.0292 ATS SSE 0.0099
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5. Conclusions

In this paper a new algorithm based on combining the adaptive training step technique and training step size
estimation technique in backpropagation is proposed. The SSE is used to validation the training step size for
guaranteeing of neural unit training adaptability. This technique along with BP allows to solve the problems of optimal
learning rate choice and to advance of MLP adaptability. The testing example demonstrates efficiency of proposed
method of the training step size estimation.
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