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Abstract 
 
Neural networks models and their training algorithms on 
central computer with reference to previously developed 
distributed sensor network are considered. The 
requirements to its intelligent node are formulated. Also 
node’s structure is offered which realise such intelligent 
functions, as sensor and other measuring channel 
components drift prediction using remote reprogramming. 
 
 
1. Introduction 
 

The quality management of modern industrial systems 
requires usage of intelligent instrumentation. Their sensors 
mostly have low accuracy because of technological 
restrictions and absence of built-in correction means. 
Usually the measuring modules work on non-changed 
algorithms, their output information is transferred by 
analog or raw digital signals. It requires large 
communication and computational power for distributed 
sensor systems and networks construction. The works [1, 
2, 3] are devoted for these defects elimination. However 
the problem is still matter of current interest – the majority 
of produced measuring modules and systems [4] do not 
provide sensor error correction. 

In [5] a hierarchical structure of intelligent distributed 
sensor network (IDSN) (measuring modules (IM), 
intelligent nodes (IN), central computer (CC)) is offered 
which realises some intelligent functions. Below is given 
essence of main IDSN component construction – 
intelligent node, which enable to use effectively a neural 
networks for measuring channels errors correction using 
remote reprogramming. There are two ways of 
reprogramming [6]: 
1. Storing in node’s non-volatile memory all previously 

debugged subroutines and supervising software of 
their choice (new constants values are loaded in RAM 

in particular). Loading the software in C, Forth, Basic 
languages into external microcontoller’s RAM with its 
execution by program-interpreter [6] (the data loaded 
for program stored in ROM) also is variant of this; 

2. Remote loading of new software (during node’s 
functioning) into microcontroller’s RAM (like IВМ 
РС remote boot [7], etc.). It requires system loader 
presence in microcontroller’s ROM [6] (for routine 
storing and their addresses modification before 
execution), network server support and the shared 
code and data memory addresses (von Nouman 
architecture). 
The first way disadvantages are speed reduction by 

interpreter using, enlarging sizes routines library and its 
expansion difficulty during system exploitation. The 
second way disadvantages are routine debugging 
complexity because addresses updating and interruptions 
service time increasing. The specified defects strongly 
complicate using of both ways in IDSN. Therefore, the 
specialised IN development is expedient for measuring 
channels errors correction using neural networks. 

 
2. Sensor error prediction using neural 
networks 

 
For sensor and other IDSN components errors 

prediction single-layer and multi-layer perceptrons 
models [8] are used. In used models the current neuron 
condition is 

∑ −⋅=
=

N

i
ii Twxs

1
,  (1) 

where xi – neuron synapses value, 
wi – synapses weight, 
T – neuron threshold. 
The neuron output is determined as function of its 
condition 

)(sfy = .    (2) 
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In single-layer perceptron model linear function is used 
1,)( =⋅= KxKxf ,  (3) 

and in multi-layer perceptron model – non-linear sigmoid 
function 
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The single-layer perceptron training was executed on 
following algorithm: 
1. Initialise the weights and threshold to small random 

numbers; 
2. Present to perceptron inputs the source pattern, and 

calculate its output, using equation (1), (2), (3); 
3. If output is correct, go to step 4; 

Else calculate the difference between received and 
required output values 

dy −=β ,     
where y – real (received) perceptron output, 
d – required output value. 
Update the perceptron inputs weight 

iii xttwtw ⋅⋅−=+ βα )()()1( ,   
where: t and t+1 – current and next iterations numbers 
accordingly, 
i – number of perceptron input, 
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)(α  - adaptive learning rate [9]. 

4. Repeat cycle from step 2, while network error exceeds 
given value. 
The training of multi-layer perceptron was executed on 

back propagation error algorithm [10]: 
1. Initialise the weights and thresholds to small random 

numbers; 
2. Present to network inputs the source pattern, and 

calculate last layer outputs, using equation (1), (2), 
(4); 

3. If output is correct, go to step 4; 
Else calculate last layer neurons error 

j
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where yj – real output condition of neuron j, 
dj – required output condition of this neuron, 

j

j

ds

dy
 – sigmoid function's derivative for neuron j. 

Update of the last layer neurons weights  

ijijij yttwtw ⋅⋅−−= βα )()1()( , (6) 

where βj – error of j neuron of current layer, 
yi – previous layer neuron output values. 
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 - adaptive learning rate [9]. 
To calculate new weights for all previous layers using 
equations (5), (6), (7). 

4. Repeat cycle from step 2, while the network error 
exceeds given value. 
IDSN components errors prediction was executed by 

two methods: 
• The multi-step prediction – on next prediction step is 

used not real, but predicted value, received by own 
neural network on the previous prediction step. The 
method is used at the long-term prediction for 
determination of trend and its characteristic points. 
The error analysis of multi-step prediction permits to 
evaluate increase rate of inter-calibration interval and 
its possible risk; 

• The one-step prediction – on next prediction step is 
used real value instead predicted. The method is used 
for determination error prediction quality. 
Analysis of neural network training and use has shown 

that they are incommensurable in computing resources. 
Typical training time of neural networks on PC Pentium-
200 is up to several minutes and operational time 
(prediction) takes microseconds. For simple models of 
neural networks it allows to exclude approximation of 
individual sensor drift error function and to use previously 
trained on CC neural network in intelligent node. 
However it imposes the additional requirements to IN 
considered below. 

 
3. Intelligent node’s requirements and 
structure 

 
The structure of offered IDSN hardware contains three 

levels of measuring information processing [5]: 
• The first level (measuring modules) realises sensor 

signal transformation into a code, and, in most cases, 
simple calculations. The processing algorithms usually 
are realised by hardware or are recorded in the IN 
microcontroller’s ROM; 

• The second level (intelligent nodes) realises the 
majority of formulated in [5] intelligent functions 
concerning measuring process; 

• The third level (central computer server) provides 
adaptation and self-training procedures for intelligent 
nodes and supports all IDSN elements functioning. 
The offered IDSN structure features by passing to INs 

the functions of measurements results correction 
(continuous prediction of the correction and correction 
error for measuring channel elements, in particular, 
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sensor, by individual simplified mathmodels, as well as 
measurements results correction). It considerably reduces 
a network traffic at the expense of exchange between 
network components by processed measurements results 
only (with pre-set errors). As the first and third levels 
elements devices considered in [5] should be used. IDSN 
advantages, provided by such functions division, are 
determined by IN opportunities. Therefore problems of its 
construction are considered below in more details. 

The IDSN universality requirements assume a 
possibility to integrate heterogeneous sensors, measuring 
modules, etc. in a single network. Thus the intelligent 
node according to [5] must realise the following 
procedures: 
1. The support of necessary number of input/output 

channels (requirements of their protocols are difficult 
to define beforehand); 

2. Realisation of measuring information processing 
functions which correspond to individual parameters 
of used measurement channels (depending on 
measured physical quantity, sensor type, measuring 
module, interface); 

3. Realisation of testing and calibration functions for 
used measuring channels and their components; 

4. Sensor drift correction calculation and, if necessary, 
other measuring channel components; 

5. Including correction into measurement results; 
6. Calculation of prediction error for sensor drift 

correction and, if necessary, other measuring channel 
components; 

7. Measurement results output according to users 
requests. 
Expediently also is to provide an opportunity of direct 

connection to IN the nearest sensors and effectors and 
external devices control signals generation. Besides, the 
procedures in items 1..3 depend on variable structure of 
channel and its elements according to measuring task 
requirements. Procedures in items 4..6 depend on neural 
network models (calculating the corrections and errors) 
which in general are individual for each channel. Thus, in 
a simple case, the use of one model with individual 
parameters is possible, and in a complex case it is 
necessary to use the individual models. It is clear, that the 
requirements to intelligent node are rather contradictory 
and it is hard to define them before the IDSN design 
stage. Moreover, IDSN should have possibility to change 
4..6 procedures at its normal functioning during 
adaptation and training processes. It can be supplied by 
remote reprogramming (reconfiguration) of IN software. 

The optimal base for IN construction on executed 
functions volume/price ratio is single-chip (for example, 
AT89C51 type) [6]. Such microcomputer contains built-in 
serial interface, timers and interrupt request inputs, also it 
supports external and internal ROM and RAM modes, etc. 
However, addresses division on commands and data 

spaces (Harvard architecture) does not allow direct 
facilitating the two ways of remote reprogramming 
described in Introduction. Also the necessity of loaded 
code addresses and interrupt vectors modification 
complicates the debugging [6]. For elimination of these 
defects loading the IN work software into external RAM 
from zero address by system loader (located in internal 
microcomputer’s ROM [11]) is offered. After software 
loading the microcomputer is switched to external 
memory operation mode and begins program execution. 
Thus any changes in the loaded software is not required. 
The structure of this software corresponds to [5] and 
contains three subsystems: compensation, supervisor and 
communicator (as the loader is not accessible in 
microcomputer’s external memory operation mode). 

The central element of IN in the general IDSN 
structure (Fig. 1.) is developed Base Controller. It 
interacts with server through the network interface (NI) 
and measuring (MB) and control (CB) expansion boards 
are connected through the system bus interface (SBI). 
Sensors and effectors are connected to MB and CB. 
Digital code producing measurement modules MM 
interact with IN through the input-output interface boards 
(IB). Basic input-output ports (BIOP) located on 
controller’s board provide seven-segment or LED display 
and simple 16 button or 101-key IBM PC keyboard and 
printer connection to IN, as well as organise interaction 
with MMs without expansion IBs use. The offered IN 
structure is reasonably universal, makes possible to realise 
above listed procedures and can be used in wide range of 
IDSN applications. 

 
4. IN realisation 

 
The IN structure on single-chip 89C51 type with 

electrical reprogramming ROM (flash-memory) is shown 
on Fig. 2 [11]. On the IN board there is a low addresses 
register (AR), random access memory (RAM) with 
control circuit (CS), system decoder (DC), network 
interface adapter (NI), clock generator (Clk), interrupt 
circuit (IC), bus former (CD), microcomputer reset circuit 
(Res), as well as BIOP registers. The trigger (Tr) is added 
to the circuit for maintenance of remote routine 
reconfiguration. RAM chips up to 32 Kbytes can be used. 
The addresses range is equally divided between the code 
(begins with zero address) and data (other dividing is 
possible). CS permits passage of write signal (WR) on 
RAM at choice of any addresses during remote routine 
reconfiguration and forbids write in routine addresses 
range, as well as permits passage of commands choice 
signals (PSEN) and data reading (RD) during routine 
execution. Non-masked interrupt signal (NMI) arrives 
directly on the microcomputer (MCU) input (INT0) with 
maximum priority, the other interrupts are generated by 
IC on the input INT1. 
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P1 port is used for identification of interrupt source. Up to 
six BIOP registers are stipulated in IN and four of them 
are outputs and two of them are inputs. For connection of 
single expansion board set the SBI is realised containing 
data DAT0...7 signals buffered by CD, low addresses A0...7 
and write EWR and read ERD signals, as well as clock 
signals, interrupt requests NMI and IRQ and timer inputs. 
The circuit NI is executed on transistors, optrone 
separation is stipulated. For expansion of use NI realises 
conventional three wires network (RS-232C standard), as 
well as offered in [12] two-wire, enabling IN to work in 
network up to1.5 km. 

At using 61256 RAM in IN the microcomputer’s 
addresses spaces (64 Kbytes) is divided as following: 
• Code memory (write protected during execution) - 

0000... 3FFF; 
• Data memory - 4000... 7FFF; 
• Expansion board addresses, connected to a system bus 

- 8000... 80FF; 
• BIOP addresses - C0F1... C0D0; 
• Addresses for switching to external (stored in RAM) 

program - C040; 
• Addresses for switching to internal (stored in ROM) 

program - C080. 
Such IN, having large flexibility in application, allows 

according to processor and memory loading, to provide 
various volume of correction functions of measurements 
results (for example, in one of the most difficult cases - 
combination of calibration with prediction [13]). Thus the 
IN supervising routine downloads required functions by 
reading from CC and stores into RAM necessary 
subroutines. Inparticularly the stage of network training 
using neural networks requires large computing and 
timing resources. At the same time the errors prediction 
stage of sensors and other IDSN components does not 
require significant resources, because it is reduced to 
calculation of prediction source data results. 

 
5. Sensor error prediction results 

 
Described above neural networks models were used for 

prediction of distributed sensor network components 
errors. For neural network training mathmodels of 
concrete sensors types and other components were used. 
It made possible to separate from particular devices in 
certain measuring channels. For example, function 

gfexdcbxay ++++= )sin()sin(  (8) 
modelling measuring channel errors without sensor, 
which include such IDSN components errors as 
switchboards, ADC, etc. For these errors prediction the 
multi-layer perceptron model is used (according to (1), 
(2), (4)), which consists of five input and four hidden and 
one output neurons. The training sample consists of 50 

values with step 0.1. Prediction was executed on a 
interval {0 ..5}. For 536 thousand training iterations (37 
minutes of training on PC Pentium-200) sum-square error 
1×10E-4 was achieved, that has allowed to receive 
maximum error 0.56% on the one-step prediction and 
11.25% on the multi-step prediction (Fig.3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Other function 
)sin(2 xcbxaxy ++=  (9) 

modelling industrial thermocouple drift [14] according 
with calibration and testing errors. For drift prediction 
was used six-input single-layer perceptron model 
according to (1), (2), (3). The training sample consists 
from 100 values with step 0.4. Prediction was executed on 
a interval {40 ..80}. For 3.6 million training iterations (44 
minutes of training on PC Pentium-200) sum-square error 
1×10E-8 was achieved, that has allowed to receive 
maximum error percent 0.000004% on the one-step 
prediction and 0.012% on the multi-step prediction 
(Fig.4). 
 
6. Conclusion 
 

Testing of developed IN in complete set with precision 
switchboard and low voltage sensitive ADC [15] has 
shown, that the error briefly and intermediate term 
prediction correction on industrial thermocouples drift 
does not exceed specified in [5] 0.3 .0.5°C. Developed IN 
can be successfully used in IDSN, which require high 
measurement accuracy at frequent change of its structure, 
executed tasks and operational conditions of sensors. 

Fig 3. Predicted percentable error for function (8) 
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