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Abstract - Methods of improving the measurement accuracy by 
estimation and correction of the maximum error components, are 
analyzed in this paper. The functional structure of the 
measurement channel in an Intelligent Sensing Instrumentation 
System (ISIS) is described along with the procedures of 
component error correction. An experimental setup, implementing 
such methods in a multi-processing neural network configuration 
is presented.  
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I. INTRODUCTION 

The problem of improving the accuracy of measurement of 
physical quantities remains open in many cases, despite the 
vast variety of modern sensors. The problem becomes 
important when either the sensor or the measurement method 
cannot offer inherently, the desired resolution and accuracy. 
Yet, this is the most usual case in many applications. The 
problem of inaccuracy is then associated with the dominating 
error of the measurement channel [1], which may be described 
as sensing error. While a number of research efforts [2, 3] is 
devoted to sensor error correction, and the availability of low 
cost micro-controllers (as implementation tools), such features 
are still a research subject and have not been incorporated in 
most high-quality measurement units. Only certain automated 
systems [4] provide the facility of calibration of the 
measurement channel for a particular type of sensor. The main 
principles of developing a hierarchical, distributed, Intelligent 
Sensing Instrumentation System (ISIS) were considered in 
other previous publications of the same team [5-9]. 
Automated sensor error correction based on calibrations or 
self-testing is provided in ISIS. The proposed system includes 
a structure for the prediction of sensor drift using neural 
networks, in order to implement an effective, generalized, and 
realistic (in terms of cost and complexity) error compensation 
procedure. The desired goal is to develop a system self-
adaptable to the sensor operating conditions by self-training. 
Different parts of this complex system have been previously 
examined: the structure of the Intelligent Node (IN) as a basic 
ISIS element, the capabilities of a self-modified procedure 
implemented by remote reprogramming, and the capabilities 
of parallel operations at different hierarchical levels of data 
processing. The IN allows ease of changing algorithms for 

sensor signal processing (including error correction 
algorithms), by using the "remote reprogramming mode". At 
the same time there are sufficient computing resources at each 
IN, which permit the use of previously trained neural 
networks for sensor drift correction. This procedure is shown 
to increase its efficiency [8]. This paper is presenting a 
detailed analysis of all error components (i.e. sensors and 
other elements of the measurement channel), and a description 
of the method of operation of the system developed. This 
system is thought as a generalized implementation of an 
intelligent sensing structure in the sense of incorporating 
advanced error correction and measurements evaluation 
procedures.  

II. FUNCTIONAL STRUCTURE OF ISIS 
MEASUREMENT CHANNEL 

It is obvious, that the intelligent functions require significant 
computing resources. Therefore it is more expedient to build 
an intelligent sensing system as a multilevel hierarchical 
structure, where each level implements particular functions 
and the overall system has intelligence as a whole [9]. In this 
type of structure, the data received from each sensor are 
processed at an intermediate level and only the “useful” 
information is forwarded to the users of measurement 
information. These "users" are located in the higher 
hierarchical level, implementing thus a data reduction scheme. 
The important problem in such systems is the optimal 
separation of the functions to be performed at each level. This 
procedure is based on the requirement for measurement 
quality (minimal error) with maximal effectiveness and 
rational usage of measuring and computing equipment. 

The ISIS structure is considered to be implemented at three 
different levels of measurement information processing: 
• The lower level (with multiple-inputs measurement 

modules) provides sensor signal conversion into a digital 
code, and, in most cases, simple calculations. The 
processing algorithms typically are implemented by a 
microcontroller. 

• The middle level (Intelligent Nodes - IN) provides the 
majority of intelligent functions in relation to 
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measurement process formulated as calculations and 
logical (usually non-linear) operations. 

• The higher level (central computer) supervises proper 
functioning of all ISIS elements, controls the self-
modification procedure of the processing algorithms, and 
handles the data storage. 

The main feature of proposed ISIS structure is this 
distribution of intelligent “treatment” of data to different 
levels (permanent prediction of correction factor, of the error 
elements of the measurement channel, and correction of 
current measurement results using individual mathematical 
models). Neural networks are used mainly in the 
representation of the individual mathematical models of each 
sensor's error. The ISIS central computer trains neural 

network models using calibration or testing results, and 
modifies the IN software if needed. All real-time processing 
of sensors' signals is completed at the lower and middle ISIS 
levels. Thus, the IN transmits the physical quantity 
measurement results with allowable error as reply to the 
request from the users of information on the higher ISIS level.  

The functional structure of ISIS measurement channel is 
presented in Fig. 1, where the lower and middle ISIS levels 
are considered. The lower level is presented as minimum set 
of hardware blocks providing sensor signal conversion to 
code. If correction of systematic ADC error could be executed 
under rigid algorithms, then it is rational to implement these 
algorithms into lower ISIS level using proper microcontroller 
or embedded microprocessor. Otherwise ADC error 
correction is expedient to transfer to the middle ISIS level. 

 

λ  – Physical Quantity
IQ  – Influence Quantity
Sr  – Reference Sensor of Physical Quantity
∆Sr  – Reference Sensor Error
Sx  – Sensor of Physical Quantity
∆Sx  – Sensor Error
SI  – Sensor of Influence Quantity
Sλ r  – Reference Sensor Signal
Sλx  – Sensor Signal of Physical Quantity
SIQ  – Sensor Signal of Influence Quantity
SADC  – Signal of Reference Source
RADC  – Reference Source
∆ADC  – Residual ADC Error

MUX  – Multiplexer
AMP  – Amplifier
ADC  – Analog-to-Digital Converter
SλD  – Digital Code of Sλ

SIQD  – Digital Code of SIQ

∆IQ  – Residual Error of Influence Quantity Correction
SIC  – Corrected Sλ

∆PQC  – Residual Error of Physical Quantity Calculation
λNC  – No Corrected Physical Quantity
λC  – Corrected Physical Quantity
∆Sλ  – Sensitivity and Offset Error
∆ Sτ  – Sensor Drift
∆λC  – Current Value of λC Residual Error

Fig. 1. General structure of ISIS measurement channel (lower and middle levels) 
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III. SENSOR ERROR CORRECTION PROCEDURES 

The middle ISIS level is presented as software blocks 
(procedures) providing calculation of measured physical 
quantity, and error correction of practically all predictable 
elements of the measurement channel. Such implementation 
of sensor signal processing procedures is possible using IN 
remote reprogramming [7], and provides maximum 
adaptability and universality of ISIS operation [9]. 

Usually, the first correction procedure is correction of the 
influence quantity error (see Fig. 1). These errors have a 
direct influence on a sensor signal (the cold junction 
temperature of a thermocouple, the working current of an 
RTD, etc) and could be evaluated using the additional 
channels. It is possible to use simple neural networks for 
correction of the influence quantity error if correction 
function is nonlinear. Fig. 2 represents the dependence 
between approximation error of cold junction and number of 
single layer perceptron inputs for widely used thermocouples. 
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Fig. 2. The cold junction approximation error 
 

 
A significant number of sensors have nonlinear conversion 
characteristic, therefore the calculation of the output value is 
based on a nonlinear transformation. The linearization process 
of the sensor input/output (I/O) characteristic is performed by 
a single-layer perceptron scheme, with large number of inputs 
(Fig. 3) or by a multi-layer neural network. However, it is 
estimated that a 5- to 7-inputs single-layer perceptron (Fig. 4) 
is enough for an accurate transformation to a linear I/O 
characteristic.  
 
The error of each type of sensors may be divided in two error 
components: the initial component (sensitivity and offset 
error) and drift. The initial component usually has a nonlinear 
character and can be corrected (by initial testing or calibration 
results) using neural networks as in the case of influence 
quantity error. Correction of drift error is more complicated, 
because it has individual random components. The use of 
neural networks offers a better prediction, which could be 
adapted to the individual features of each sensor drift [7]. 
 
The periodic sensor testing/calibration provides the correction 
of the mathematical model of prediction process. Note that 
neural network training is performed at the higher level of 
ISIS, while correction factor calculation is performed at the 
middle level. It is necessary to use multi-layer perceptron or 
recurrent neural network because of the complicated 
prediction process. Thus, the neural network calculations 
requirements determine the computing power needed at the 
middle level of ISIS. For example, the AT89C51 
microcontroller used at the middle level is capable of 
processing signals, in real-time mode, for a small number 
only, of slow response sensors. The computing power of this 
microcontroller becomes inadequate when employing a 

certain number of measurement channels or high-speed 
sensors. 
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Fig. 3. The nonlinearity error by approximation of
thermocouple I/O characteristic 

 
The use of a specialized controller for neural network 
calculations (of the same type microcontroller [10]) is more 
effective and economical solution in that case. 
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Fig. 4. The nonlinearity error by approximation of the
nonlinearity component only of thermocouple I/O characteristic  

 
The lack of data about sensor drift at initial sensor 
exploitation period is one of the main problems for sensor 
drift prediction using neural networks. It is necessary to have 
30 to 50 values of real drifting effect, for accurate neural 
network training. Periodic testing or calibration allows 
gathering the appropriate amount of data, but requires a 
certain cost and long time (which is commensurable with 
sensor lifetime). A different prediction method has been 



 

 872 

proposed  [6] for solution of this problem, based on 
“historical” data, which are the results of testing or calibration 
for the same type sensors in the similar operating conditions. 
The cooperation of different types of neural networks has 
been proposed for this implementation (Fig. 5). This 

cooperation increases artificially the size of Predicting Neural 
Network (PNN) training set. This technique provides 
interaction of the set of Integrating Historical Data Neural 
Networks (IHDNN) with Approximating Neural Network 
(ANN) and PNN. 

 

Approximated sensor drift 
with required timestamps 
on training interval 

Fig. 5. Combination of Integrating Historical Data Neural Network (IHDNN), Approximating Neural Network 
(ANN) and Predicting Neural Network (PNN) for Error Compensation in ISIS 
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The number of IHDNNs must correspond to the number of 
sensor testing (or calibration) during the acquisition of the 
“historical” data. The set of IHDNNs is trained on “historical 
data” of sensor drift. During every cycle of IHDNN training 
one of the “historical”-data-curves is simulating the sensor 
real data curve. The IHDNN, which was previously trained on 
the first calibration results from “historical” data, is now used 
for drift prediction of estimated sensor at the time of the 
second calibration. The next IHDNN is then using this value 
for drift prediction of the same sensor at the time of the third 
calibration, etc. The output of integration on the “historical” 
data is then driven to the ANN input. The ANN generates an 
extended training set for PNN. The ANN and the PNN 
structures are used for the individual prediction of sensor drift 
during the normal operation at the middle ISIS level. ANN is 
used within the initial time of sensor operation (during the 
validation time of “historical” data). PNN is used after that. 
The remote reprogramming mode of the "Intelligent Node" is 
then used for the transfer of the new (working) model of 
neural network to the middle ISIS level. 

It is certainly difficult to obtain actual drift information for the 
particular type of sensors under specific operating conditions, 
which could be used in the evaluation of the proposed 
methods. Therefore the experimental verification was 
performed by simulation of the sensor drift. It is necessary to 
note that the valid parameters of sensor drift process are 
unknown during simulation. It is possible to define the drift 
parameters only with limited accuracy (during calibration or 
testing), which then gives an additional error of drift 

correction. Therefore, one should consider the general 
mathematical model of sensor drift in order to evaluate the 
proposed method. 

The sensor drift is considered as a set of separate, second-
order, non-stationary, random figures. The general trend of 
these figures can be characterized by curves "with saturation" 
(drift velocity decreases during exploitation time). Such 
curves can be simulated by expression xy = . It is 
necessary to receive a set of curves, which describe non-
stationary and irregular sensor drift at development phase of 
the generalized mathematical model. The mathematical model 

dC  will result as a set of j -curves, which are passing 
through the point of origin (since the offset factor 1C  is 
defined by the outcome of the first testing procedure). The 
separate realizations of curves dC  should deviate from the 
expected (average of distribution) curve in order to present 
the non-stationary behavior of the sensor drift. They may be 
simulated by the expression 

xjcnnxjbnay ++= )(   (1) 

where randnjejdjnjn ⋅⋅+⋅+−= 1 . The symbols a  - l , 

which are used in (1) and in the following expressions (2, 3), 
are coefficients of mathematical model of sensor drift. The 
expression randn  is the random generator with the normal 
law of distribution. The drift velocity can change in relation to 
average value in real exploitation conditions. Hence it is 
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possible to use a sinusoid expression with random change of 
phase from case to case 

)sin( jngxfy += ,  (2) 
where f  and g  is the coefficients of mathematical model. 

The model of sensor drift should also show the errors of 
obtain of drift values dC∆ . At the same time the error of 
reference sensor includes systematic and random components. 
Systematic components have a constant value for each 
realization of drift curve. It can be also simulated by a 
sinusoidal curve with random changing of phase from case to 
case 

)sin( jnxhy += ,   (3) 
where h  is the coefficient of mathematical model. 

The random component of reference sensor error and 
truncation error met∆  has a different value for each testing 
procedure. They may be simulated by random function with 
uniform law of distribution randk ⋅ . The measurement errors 
of signals of reference and tested sensors are the same in case 
of their connection to the same measuring channel. The 
effective methods of all components of measurement error 
reduction are usually applied in precision systems of physical 
quantity measurement. Therefore, the residual error has a 
random nature and a normal law of distribution. In this case 
the measurement error may be obtained by the expression 

randnl ⋅ .
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Fig. 6. Mathematical model of sensor drift "with saturation"  

The general sensor drift is expressed as the sum of separate 
components, including (1-3). The following expression  

randnjnxrand

jnx
jn

x
jny

1.0)sin(15.02.0

)3.0sin(25.0)2.01.0(2.0

+−++

++++=
    (4) 

is used to generate 10 such curves of sensor drift (Fig. 6).  
The coefficients of mathematical model of sensor drift 
(equation 4) are specially chosen so that the drift curves from 

Fig. 6 correspond (by form) to previously obtained results of 
experimental data from K-type thermocouples drift at 
operation temperatures 1000-1100˚C into air electric furnaces. 
The main goal of this paper is to investigate the capabilities of 
the proposed methods, therefore interesting interval defines 
abscissa axis into the following figures. Similarly conditional 
units are shown at the axis of ordinates instead of certain 
values of sensor drift.  

The mathematical model of sensor drift "with acceleration" 
(drift velocity increases during exploitation time) developed 
for evaluation purposes of the proposed methods. This model 
is used for generate 10 curves of sensor drift "with 
acceleration" (Fig. 7).  
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Fig. 7. Mathematical model of sensor drift "with acceleration"  
 

Each IHDNN has 9 inputs for these 10 curves. The 6 
independent IHDNNs were used for each calibration point 
from the integration interval (see Fig. 6, 7). The models of 9-
input single-layer perceptron and multi-layer perceptron (9 
input neurons, 9 neurons on a hidden layer with logistic 
function and one output linear neuron) are used as IHDNN. 
The IHDNN training is conducted up to different sum-square 
errors, while the average training time is from 12 sec. to 1.5 
minutes for each curve. The average percentage of errors, on 
"historical" data integration procedure, has not exceeded 
15%. It should be noted that the error of integration decreases 
in each following point of calibration. The results of 6-points-
integration are used for ANN training and for each particular 
curve. The multi-layer perceptron model (1 input neurons, 5 
neurons on the hidden layer with logistic function and one 
output linear neuron) is used as ANN [6]. The average 
percentage of approximation errors (total errors including 
integration error), has not exceeded 20% for sensor drift "with 
saturation", and 23% for sensor drift "with acceleration". The 
average percentage of approximation error has decreased to 
8% and 7% accordingly at the end of training set (after 25-30 
points). The 30 approximated points are used as training set 
for the predicting neural network. The model of recurrent 
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neural network (10 input neurons, 10 neurons on the hidden 
layer with logistic function, 11 pseudo-neurons on the hidden 
level and one output linear neuron) is used as PNN [6]. The 
average and maximum percentage of prediction errors have 
not exceeded 9%, and 31% for sensor drift "with saturation" 
(Fig. 8), and 14% and 27% for sensor drift "with acceleration" 
(Fig. 9), respectively. 
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Fig. 8. The percentage error of prediction of sensor drift "with 
saturation"   
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Fig. 9. The percentage error of prediction of sensor drift 
"with acceleration"   

Thus, the results of simulation permit us to conclude, that the 
use of the “historical” data integration method, increases the 
inter-testing interval about 12 times. Under these conditions 
the average percentage prediction error is 9% (for sensor drift 
"with saturation") and 14% respectively (for sensor drift "with 
acceleration"). 

IV. CONCLUSIONS 

The error analysis and automated correction procedure of a 
proposed Intelligent Sensing Instrumentation Structure (ISIS), 
is presented in this work. The ISIS measurement channel is 
thought to provide correction of systematic errors in precision 
intelligent measurement systems. Neural networks are used as 
a basic functional module for error correction, which allows a 
generalization of the software at the middle level intelligent 
node, while being compatible with the ISIS higher level 
software.  
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