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Abstract 

 
The neural networks application with various 

properties is considered for accuracy increasing of 
physical quantities measurement by prediction of sensors 
drift. There is researched method of sensor drift 
prediction on early stage of sensor exploitation by 
simulation modeling for various kind of sensor drifts. 
 
 
1. Introduction 
 

As it is shown from [1, 2], the error of modern data 
acquisition systems is much less than initial sensor error 
in majority of cases. Besides the sensor drift is much 
higher than drift of the other measuring channel 
components. It is possible to provide accuracy increasing 
of physical quantities measurement by sensor calibration 
using special calibrator or sensor’s periodic testing with 
reference sensor on exploitation place [3]. But operations 
realizing these methods are rather difficult. The low 
maintenance is provided by sensor drift prediction [4]. 
However, prediction based on average drift of similar 
sensors has low reliability and does not take into account 
an individual sensor features in conditions that are similar 
to exploitation conditions. The testing or calibration 
maintenance can be reduced by sensor drift prediction 
during intertesting interval. The most effective is the 
application of artificial intelligence methods, in 
particularly neural networks [5, 6, 1] for this purpose. 

It is known [7, 8] the quality of neural networks 
training depends on the volume of training data in strong 
degree. It causes the main contradiction at neural 
networks using for sensor drift correction [2]. The high-
quality neural network training allows sharply to reduce 
the prediction error and also to increase an intertesting 

interval. The obtained by calibration data volume will 
appear insufficient for high-quality neural network 
training. It is offered to use an additional neural network 
for increasing of data volume for predicting neural 
network training in [2]. A method of artificial increasing 
of data volume for neural network training is known also 
by using of historical (accumulated before) data [9]. 
However the historical data accumulated according to [9] 
do not provide sensor drift prediction. It is offered to use 
the real data about drift of the same types of sensors in the 
similar exploitation conditions as historical data [1]. The 
possibilities of such historical data using for high-quality 
individual prediction of sensor drift during intertesting 
interval are considered below.  
 
2. Method of Sensor Drift Prediction 
 

It is obviously, that the best prediction quality of 
sensor drift is provided by training of predicting neural 
network using real data about sensor drift (which can be 
obtained by sensor’s calibration or testing at exploitation 
place). However, the volume of real data frequently is not 
enough for high-quality neural network training as was 
considered above. And these data are not available at the 
beginning of sensor exploitation. The historical data 
should be replaced by real data in accordance with 
accumulation of real data about drift of the given sensor. 

The historical data should be integrated for taking into 
account of individual features of each sensor drift by 
appropriate way. It is proposed to use a set of integrating 
historical data neural networks (IHDNN) for such 
integration. Let us consider the historical data of sensor 
drift as curves dn...1d  (see Fig. 1), which are equal to 

dci,dbi,dai , n,1i =  into calibration points c,b,a . The first 
calibration of the new sensor allows correcting initial 
sensor error at the moment 0. The second calibration of 



 89 

the new sensor allows receiving the first real value dak of 
sensor drift in calibration point a . The purpose of the 
historical data using is the prediction of number of points 

dck,dbk on the basis of dak  value etc. This allows 
predicting sensor drift at the future calibration points.  

The main purpose of the IIDNN using is the providing 
prediction of point dbk  on the basis of dak  and dai , 

n,1i = , the next point dck  on the basis of dbk  and dbi , 
n,1i =  and etc. The number of available historical curves 

of sensor drift determines structure of IIDNN input layer. 
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Fig. 1. Historical data about sensor drift

 
It is expedient to form training sample for IIDNN by 

special algorithm: 
1. One curve of sensor drift di  is considered as real and 

all other curves dj , 1i,1j −= , n,1ij +=  are 
considered as historical data. Thus, the real data dai  
in point a  and dbi  in point b  are obtained; 

2. The absolute deviations dajdaiij −=∆  of point dai  

from all other points daj  is defined, where n,1i = , 
1i,1j −= , n,1ij += ; 

3. All absolute deviations obtained on step 2 is sorted in 
decreasing order and maximum and minimum values 
are calculated; 

4. Sorting of daj  values according to decreasing order 
forms the set of training vectors. 

The results of historical data integration in calibration 
points are considered as basis for approximating neural 
network training. That actually increases data volume for 
predicting neural network training. The experimental 
researches of historical data integration of various kinds 
of sensor drift are considered below. 
 

3. Experimental Researches 
 

The error of sensor drift prediction contains three 
components by proposed method using: (i) an error of 
historical data integration, (ii) an error of approximation 
of drift integration results into sensor’s calibration points 
and (iii) an error of properly prediction of approximation 
results for future time of sensor exploitation. 

The error of historical data integration represents an 
error of prediction of the sensor drift dck,dbk  etc. in next 
calibration points n...c,b  on the basis of second 
calibration results in point a  (see Fig. 1). For example, 
the percentage error of integration in point b  for sensor 
k  is equal 
 

%100)dbkdbk(bk realpred ⋅−=δ ,   
 
where preddbk is the result of sensor drift prediction in 
calibration point b  and realdbk  is the real value of sensor 
drift obtained at calibration.  

The drift of certain sensors does not allow evaluating 
possibilities of prediction method as a whole in some 
specific exploitation conditions. Therefore, the 
experimental researches of proposed sensor drift 
prediction method were conducted by simulation 
modeling. The hypothetical data [1] about sensor drift 
were used as historical. They are presented as 
mathematical expressions simulating various kinds of 
possible sensor drift. The 10 curves of hypothetical data 
were formed per each kind of drift. During researches 
each from 10 curves is accepted for real sensor drift and 
the remaining curves are used for forming of IHDNN 
training sample according to Chapter 2. Thus the 10 
curves of percentage errors of historical data integration 
are received on the basis of 10 curves of hypothetical 
data. It is expedient to research integration error since 3 
calibration because the first and second calibrations are 
already executed at moment of data integration. 

The first set of curves simulating drift "with saturation" 
is presented on Fig. 2. The drift velocity decreases during 
exploitation for such sensors. Such kind of drift is simple 
and it is possible to use a model of single-layer perceptron 
with linear neuron’s activation function for data 
integration. Thus the inputs number of perceptron should 
correspond to number of trained data curves. For 10 
researched curves the single-layer perceptron has 9 inputs. 

The sum-squared error of single-layer perceptron 
training has made 10Е-5 and the average duration of 
training did not exceed 3 seconds on the computer 
Pentium-II per each curve. The maximum and average 
percentage error of data integration (see Fig. 3) did not 
exceed 7% and 3% accordingly. 
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Fig. 2. First set of hypothetical data about sensor drift
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Fig. 3. Percentage integration error of first set of
sensor drift

 
The second set of curves simulating drift "with 

acceleration" is presented on Fig. 4. The drift velocity 
increases during exploitation for such sensors. It is 
possible to use neural network similar previous for such 
drift data integration. 

The sum-squared error of single-layer perceptron 
training has made 10Е-6 and the average duration of 
training did not exceed 12 seconds per each curve. The 
maximum and average percentage error of data 
integration (see Fig. 5) did not exceed 25% and 8% 
accordingly. 

The third set of curves simulating a combination of 
two previous kinds of drifts is presented on Fig. 6. The 
drift velocity of one part of sensors is increased and the 
velocity of other part of sensors is reduced in this case. 
Such kind of drift is not characteristic for the existing 
sensors, however it is expedient to research the method’s 
possibilities for such data. As have researches shown, the 

model of single-layer perceptron does not provide 
acceptable results in this case. It is necessary to use 
nonlinear neural networks for such drift data integration. 
The model of three-layer perceptron was used for 
experiments execution. The first layer of neural network 
contains 9 neurons, the second layer contains 9 neurons 
(with logistic activation function) and the third level 
contains one linear neuron. 
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Fig. 4. Second set of hypothetical data about sensor drift
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Fig. 5. Percentage integration error of second set
 of sensor drift

 
The training of multi-layer perceptron with data from 

Fig. 6 is instability process and has shown different 
prediction results in calibration points. Therefore sum-
squared error 10Е-4 and maximum training epoch number 
30000 limited training per each neural network. It is 
necessary to note, that the best convergence was shown 
by layer-by-layer training algorithm. The average training 
duration did not exceed 100 seconds per each curve. The 
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maximum and average percentage errors of data 
integration (see Fig. 7) did not exceed 52% and 30% 
accordingly. 
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Fig. 6. Third set of hypothetical data about sensor drift
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Fig. 7. Percentage integration error of third set of
sensor drift

 
The fourth set of curves (similar Fig. 6 but with 

increased sensor drift velocities) is presented on Fig. 8. 
This kind of drift is researched for estimation of limit 
possibilities of proposed method. The model of three-
layer perceptron considered above was used for such drift 
data integration. 

Sum-squared error 10Е-5 and maximum training epoch 
number 40000 limited training per each neural network. 
The average training duration did not exceed 190 seconds 
per each curve. The maximum and average percentage 
errors of data integration (see Fig. 9) did not exceed 70% 
and 50% accordingly for the third calibration point. The 
percentage errors were reduced for the following 
calibration points. However the significant integration 

errors has shown some restrictions of proposed method at 
the beginning of sensor exploitation. 
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Fig. 8. Fourth set of hypothetical data about sensor drift
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Fig. 9. Percentage integration error of fourth set
of sensor drift

 
The results of historical data integration are 

approximated by special approximating neural network 
for correction factor prediction on sensor drift. 
Experimental researches (by simulation modeling) with 
using integration results considered above have shown 
that the percentage error of approximation is much lower 
than integration error. For example, approximating neural 
network (model of three-layer perceptron) consists of one 
input neuron, 5 hidden neurons with logistic activation 
function and one output neuron for data from Fig. 2. The 
sum-squared error 2.4Е-7 of training was reached. The 
maximum percentage approximation error did not exceed 
2% [10] in five calibration points (points 3 … 7 which 
corresponds to points ...d,c on Fig. 1). 
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The approximation result contained 25 points per each 
curve of historical data. The predicting neural network 
(recurrent neural network with 10 input neurons, 10 
hidden neurons with logistic activation function and one 
output linear neuron) was trained using these data. The 
maximum percentage error of properly prediction did not 
exceed 11% [10] for sum-squared error of training 10Е-7. 
Thus, the proposed prediction method allows 
considerably to increase the intertesting interval (up to 10 
times) at accuracy increasing of physical quantity 
measurement in 2-3 times. 
 
4. Conclusion 
 

The proposed method of sensors drift prediction allows 
providing error reduction of physical quantity 
measurement in intelligent systems by self-adaptation. 
The self-adaptation is provided by interaction of neural 
networks with various properties. The proposed method 
allows successfully to predict various kinds of sensor drift 
and to reduce sensor errors on early stage of their 
exploitation in some times. This method can successfully 
be used in intelligent distributed hierarchical systems [11-
14] where the neural network training is performed on a 
higher system level (not in real time scale) and properly 
prediction is performed on lower levels (in real time 
scale). 
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