
Book

Next: Contents Contents

Reinforcement Learning:

An Introduction

Richard S. Sutton and Andrew G. Barto

A Bradford Book

The MIT Press

Cambridge, Massachusetts
London, England

In memory of A. Harry Klopf

● Contents
❍ Preface
❍ Series Forward
❍ Summary of Notation

● I. The Problem

❍ 1. Introduction
■ 1.1 Reinforcement Learning

http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html (1 di 4)22/06/2005 9.04.27

Book

■ 1.2 Examples
■ 1.3 Elements of Reinforcement Learning
■ 1.4 An Extended Example: Tic-Tac-Toe
■ 1.5 Summary
■ 1.6 History of Reinforcement Learning
■ 1.7 Bibliographical Remarks

❍ 2. Evaluative Feedback
■ 2.1 An -Armed Bandit Problem
■ 2.2 Action-Value Methods
■ 2.3 Softmax Action Selection
■ 2.4 Evaluation Versus Instruction
■ 2.5 Incremental Implementation
■ 2.6 Tracking a Nonstationary Problem
■ 2.7 Optimistic Initial Values
■ 2.8 Reinforcement Comparison
■ 2.9 Pursuit Methods
■ 2.10 Associative Search
■ 2.11 Conclusions
■ 2.12 Bibliographical and Historical Remarks

❍ 3. The Reinforcement Learning Problem
■ 3.1 The Agent-Environment Interface
■ 3.2 Goals and Rewards
■ 3.3 Returns
■ 3.4 Unified Notation for Episodic and Continuing Tasks
■ 3.5 The Markov Property
■ 3.6 Markov Decision Processes
■ 3.7 Value Functions
■ 3.8 Optimal Value Functions
■ 3.9 Optimality and Approximation
■ 3.10 Summary
■ 3.11 Bibliographical and Historical Remarks

● II. Elementary Solution Methods

❍ 4. Dynamic Programming
■ 4.1 Policy Evaluation
■ 4.2 Policy Improvement
■ 4.3 Policy Iteration
■ 4.4 Value Iteration
■ 4.5 Asynchronous Dynamic Programming
■ 4.6 Generalized Policy Iteration
■ 4.7 Efficiency of Dynamic Programming

http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html (2 di 4)22/06/2005 9.04.27

Book

■ 4.8 Summary
■ 4.9 Bibliographical and Historical Remarks

❍ 5. Monte Carlo Methods
■ 5.1 Monte Carlo Policy Evaluation
■ 5.2 Monte Carlo Estimation of Action Values
■ 5.3 Monte Carlo Control
■ 5.4 On-Policy Monte Carlo Control
■ 5.5 Evaluating One Policy While Following Another
■ 5.6 Off-Policy Monte Carlo Control
■ 5.7 Incremental Implementation
■ 5.8 Summary
■ 5.9 Bibliographical and Historical Remarks

❍ 6. Temporal-Difference Learning
■ 6.1 TD Prediction
■ 6.2 Advantages of TD Prediction Methods
■ 6.3 Optimality of TD(0)
■ 6.4 Sarsa: On-Policy TD Control
■ 6.5 Q-Learning: Off-Policy TD Control
■ 6.6 Actor-Critic Methods
■ 6.7 R-Learning for Undiscounted Continuing Tasks
■ 6.8 Games, Afterstates, and Other Special Cases
■ 6.9 Summary
■ 6.10 Bibliographical and Historical Remarks

● III. A Unified View

❍ 7. Eligibility Traces
■ 7.1 -Step TD Prediction

■ 7.2 The Forward View of TD()

■ 7.3 The Backward View of TD()
■ 7.4 Equivalence of Forward and Backward Views
■ 7.5 Sarsa()
■ 7.6 Q()
■ 7.7 Eligibility Traces for Actor-Critic Methods
■ 7.8 Replacing Traces
■ 7.9 Implementation Issues
■ 7.10 Variable
■ 7.11 Conclusions
■ 7.12 Bibliographical and Historical Remarks

❍ 8. Generalization and Function Approximation
■ 8.1 Value Prediction with Function Approximation
■ 8.2 Gradient-Descent Methods

http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html (3 di 4)22/06/2005 9.04.27

Book

■ 8.3 Linear Methods
■ 8.3.1 Coarse Coding
■ 8.3.2 Tile Coding
■ 8.3.3 Radial Basis Functions
■ 8.3.4 Kanerva Coding

■ 8.4 Control with Function Approximation
■ 8.5 Off-Policy Bootstrapping
■ 8.6 Should We Bootstrap?
■ 8.7 Summary
■ 8.8 Bibliographical and Historical Remarks

❍ 9. Planning and Learning
■ 9.1 Models and Planning
■ 9.2 Integrating Planning, Acting, and Learning
■ 9.3 When the Model Is Wrong
■ 9.4 Prioritized Sweeping
■ 9.5 Full vs. Sample Backups
■ 9.6 Trajectory Sampling
■ 9.7 Heuristic Search
■ 9.8 Summary
■ 9.9 Bibliographical and Historical Remarks

❍ 10. Dimensions of Reinforcement Learning
■ 10.1 The Unified View
■ 10.2 Other Frontier Dimensions

❍ 11. Case Studies
■ 11.1 TD-Gammon
■ 11.2 Samuel's Checkers Player
■ 11.3 The Acrobot
■ 11.4 Elevator Dispatching
■ 11.5 Dynamic Channel Allocation
■ 11.6 Job-Shop Scheduling

● Bibliography

❍ Index

Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html (4 di 4)22/06/2005 9.04.27

Contents

Next: Preface Up: Book Previous: Book

Contents

● I. The Problem
❍ 1. Introduction
❍ 2. Evaluative Feedback
❍ 3. The Reinforcement Learning Problem

● II. Elementary Solution Methods

❍ 4. Dynamic Programming
❍ 5. Monte Carlo Methods
❍ 6. Temporal-Difference Learning

● III. A Unified View

❍ 7. Eligibility Traces
❍ 8. Generalization and Function Approximation
❍ 9. Planning and Learning
❍ 10. Dimensions of Reinforcement Learning
❍ 11. Case Studies

● Bibliography

Subsections

❍ Preface
❍ Series Forward
❍ Summary of Notation

Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node1.html22/06/2005 9.04.31

Preface

Next: Series Forward Up: Contents Previous: Contents Contents

Preface

We first came to focus on what is now known as reinforcement learning in late 1979. We were both
at the University of Massachusetts, working on one of the earliest projects to revive the idea that
networks of neuronlike adaptive elements might prove to be a promising approach to artificial
adaptive intelligence. The project explored the "heterostatic theory of adaptive systems" developed
by A. Harry Klopf. Harry's work was a rich source of ideas, and we were permitted to explore them
critically and compare them with the long history of prior work in adaptive systems. Our task became
one of teasing the ideas apart and understanding their relationships and relative importance. This
continues today, but in 1979 we came to realize that perhaps the simplest of the ideas, which had long
been taken for granted, had received surprisingly little attention from a computational perspective.
This was simply the idea of a learning system that wants something, that adapts its behavior in order
to maximize a special signal from its environment. This was the idea of a "hedonistic" learning
system, or, as we would say now, the idea of reinforcement learning.

Like others, we had a sense that reinforcement learning had been thoroughly explored in the early
days of cybernetics and artificial intelligence. On closer inspection, though, we found that it had been
explored only slightly. While reinforcement learning had clearly motivated some of the earliest
computational studies of learning, most of these researchers had gone on to other things, such as
pattern classification, supervised learning, and adaptive control, or they had abandoned the study of
learning altogether. As a result, the special issues involved in learning how to get something from the
environment received relatively little attention. In retrospect, focusing on this idea was the critical
step that set this branch of research in motion. Little progress could be made in the computational
study of reinforcement learning until it was recognized that such a fundamental idea had not yet been
thoroughly explored.

The field has come a long way since then, evolving and maturing in several directions.
Reinforcement learning has gradually become one of the most active research areas in machine
learning, artificial intelligence, and neural network research. The field has developed strong
mathematical foundations and impressive applications. The computational study of reinforcement
learning is now a large field, with hundreds of active researchers around the world in diverse
disciplines such as psychology, control theory, artificial intelligence, and neuroscience. Particularly
important have been the contributions establishing and developing the relationships to the theory of
optimal control and dynamic programming. The overall problem of learning from interaction to
achieve goals is still far from being solved, but our understanding of it has improved significantly.
We can now place component ideas, such as temporal-difference learning, dynamic programming,
and function approximation, within a coherent perspective with respect to the overall problem.

Our goal in writing this book was to provide a clear and simple account of the key ideas and
algorithms of reinforcement learning. We wanted our treatment to be accessible to readers in all of
the related disciplines, but we could not cover all of these perspectives in detail. Our treatment takes

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node2.html (1 di 3)22/06/2005 9.04.33

Preface

almost exclusively the point of view of artificial intelligence and engineering, leaving coverage of
connections to psychology, neuroscience, and other fields to others or to another time. We also chose
not to produce a rigorous formal treatment of reinforcement learning. We did not reach for the
highest possible level of mathematical abstraction and did not rely on a theorem-proof format. We
tried to choose a level of mathematical detail that points the mathematically inclined in the right
directions without distracting from the simplicity and potential generality of the underlying ideas.

The book consists of three parts. Part I is introductory and problem oriented. We focus on the
simplest aspects of reinforcement learning and on its main distinguishing features. One full chapter is
devoted to introducing the reinforcement learning problem whose solution we explore in the rest of
the book. Part II presents what we see as the three most important elementary solution methods:
dynamic programming, simple Monte Carlo methods, and temporal-difference learning. The first of
these is a planning method and assumes explicit knowledge of all aspects of a problem, whereas the
other two are learning methods. Part III is concerned with generalizing these methods and blending
them. Eligibility traces allow unification of Monte Carlo and temporal-difference methods, and
function approximation methods such as artificial neural networks extend all the methods so that they
can be applied to much larger problems. We bring planning and learning methods together again and
relate them to heuristic search. Finally, we summarize our view of the state of reinforcement learning
research and briefly present case studies, including some of the most impressive applications of
reinforcement learning to date.

This book was designed to be used as a text in a one-semester course, perhaps supplemented by
readings from the literature or by a more mathematical text such as the excellent one by Bertsekas
and Tsitsiklis (1996). This book can also be used as part of a broader course on machine learning,
artificial intelligence, or neural networks. In this case, it may be desirable to cover only a subset of
the material. We recommend covering Chapter 1 for a brief overview, Chapter 2 through Section 2.2,
Chapter 3 except Sections 3.4, 3.5 and 3.9, and then selecting sections from the remaining chapters
according to time and interests. Chapters 4, 5, and 6 build on each other and are best covered in
sequence; of these, Chapter 6 is the most important for the subject and for the rest of the book. A
course focusing on machine learning or neural networks should cover Chapter 8, and a course
focusing on artificial intelligence or planning should cover Chapter 9. Chapter 10 should almost
always be covered because it is short and summarizes the overall unified view of reinforcement
learning methods developed in the book. Throughout the book, sections that are more difficult and
not essential to the rest of the book are marked with a . These can be omitted on first reading without
creating problems later on. Some exercises are marked with a to indicate that they are more
advanced and not essential to understanding the basic material of the chapter.

The book is largely self-contained. The only mathematical background assumed is familiarity with
elementary concepts of probability, such as expectations of random variables. Chapter 8 is
substantially easier to digest if the reader has some knowledge of artificial neural networks or some
other kind of supervised learning method, but it can be read without prior background. We strongly
recommend working the exercises provided throughout the book. Solution manuals are available to
instructors. This and other related and timely material is available via the Internet.

At the end of most chapters is a section entitled "Bibliographical and Historical Remarks," wherein
we credit the sources of the ideas presented in that chapter, provide pointers to further reading and

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node2.html (2 di 3)22/06/2005 9.04.33

Preface

ongoing research, and describe relevant historical background. Despite our attempts to make these
sections authoritative and complete, we have undoubtedly left out some important prior work. For
that we apologize, and welcome corrections and extensions for incorporation into a subsequent
edition.

In some sense we have been working toward this book for twenty years, and we have lots of people
to thank. First, we thank those who have personally helped us develop the overall view presented in
this book: Harry Klopf, for helping us recognize that reinforcement learning needed to be revived;
Chris Watkins, Dimitri Bertsekas, John Tsitsiklis, and Paul Werbos, for helping us see the value of
the relationships to dynamic programming; John Moore and Jim Kehoe, for insights and inspirations
from animal learning theory; Oliver Selfridge, for emphasizing the breadth and importance of
adaptation; and, more generally, our colleagues and students who have contributed in countless ways:
Ron Williams, Charles Anderson, Satinder Singh, Sridhar Mahadevan, Steve Bradtke, Bob Crites,
Peter Dayan, and Leemon Baird. Our view of reinforcement learning has been significantly enriched
by discussions with Paul Cohen, Paul Utgoff, Martha Steenstrup, Gerry Tesauro, Mike Jordan, Leslie
Kaelbling, Andrew Moore, Chris Atkeson, Tom Mitchell, Nils Nilsson, Stuart Russell, Tom
Dietterich, Tom Dean, and Bob Narendra. We thank Michael Littman, Gerry Tesauro, Bob Crites,
Satinder Singh, and Wei Zhang for providing specifics of Sections 4.7, 11.1, 11.4, 11.5, and 11.6
respectively. We thank the the Air Force Office of Scientific Research, the National Science
Foundation, and GTE Laboratories for their long and farsighted support.

We also wish to thank the many people who have read drafts of this book and provided valuable
comments, including Tom Kalt, John Tsitsiklis, Pawel Cichosz, Olle Gällmo, Chuck Anderson,
Stuart Russell, Ben Van Roy, Paul Steenstrup, Paul Cohen, Sridhar Mahadevan, Jette Randlov, Brian
Sheppard, Thomas O'Connell, Richard Coggins, Cristina Versino, John H. Hiett, Andreas Badelt, Jay
Ponte, Joe Beck, Justus Piater, Martha Steenstrup, Satinder Singh, Tommi Jaakkola, Dimitri
Bertsekas, Torbjörn Ekman, Christina Björkman, Jakob Carlström, and Olle Palmgren. Finally, we
thank Gwyn Mitchell for helping in many ways, and Harry Stanton and Bob Prior for being our
champions at MIT Press.

Next: Series Forward Up: Contents Previous: Contents Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node2.html (3 di 3)22/06/2005 9.04.33

Series Forward

Next: Summary of Notation Up: Contents Previous: Preface Contents

Series Forward

I am pleased to have this book by Richard Sutton and Andrew Barto as one of the first books in the
new Adaptive Computation and Machine Learning series. This textbook presents a comprehensive
introduction to the exciting field of reinforcement learning. Written by two of the pioneers in this
field, it provides students, practitioners, and researchers with an intuitive understanding of the central
concepts of reinforcement learning as well as a precise presentation of the underlying mathematics.
The book also communicates the excitement of recent practical applications of reinforcement
learning and the relationship of reinforcement learning to the core questions in artifical intelligence.
Reinforcement learning promises to be an extremely important new technology with immense
practical impact and important scientific insights into the organization of intelligent systems.

The goal of building systems that can adapt to their environments and learn from their experience has
attracted researchers from many fields, including computer science, engineering, mathematics,
physics, neuroscience, and cognitive science. Out of this research has come a wide variety of learning
techniques that have the potential to transform many industrial and scientific fields. Recently, several
research communities have begun to converge on a common set of issues surrounding supervised,
unsupervised, and reinforcement learning problems. The MIT Press series on Adaptive Computation
and Machine Learning seeks to unify the many diverse strands of machine learning research and to
foster high quality research and innovative applications.

Thomas Diettrich

Next: Summary of Notation Up: Contents Previous: Preface Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node3.html22/06/2005 9.04.34

Summary of Notation

Next: I. The Problem Up: Contents Previous: Series Forward Contents

Summary of Notation

discrete time step

final time step of an episode

state at

action at

reward at , dependent, like , on and

return (cumulative discounted reward) following

-step return (Section 7.1)

-return (Section 7.2)

policy, decision-making rule

action taken in state under deterministic policy

probability of taking action in state under stochastic policy

set of all nonterminal states

set of all states, including the terminal state

set of actions possible in state

probability of transition from state to state under action

expected immediate reward on transition from to under action

value of state under policy (expected return)

value of state under the optimal policy

, estimates of or

value of taking action in state under policy

value of taking action in state under the optimal policy

, estimates of or

vector of parameters underlying or

vector of features representing state

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node4.html (1 di 2)22/06/2005 9.05.03

Summary of Notation

temporal-difference error at

eligibility trace for state at

eligibility trace for a state-action pair

discount-rate parameter

probability of random action in -greedy policy

step-size parameters

decay-rate parameter for eligibility traces

Next: I. The Problem Up: Contents Previous: Series Forward Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node4.html (2 di 2)22/06/2005 9.05.03

I. The Problem

Next: 1. Introduction Up: Book Previous: Summary of Notation Contents

I. The Problem

Subsections

● 1. Introduction
❍ 1.1 Reinforcement Learning
❍ 1.2 Examples
❍ 1.3 Elements of Reinforcement Learning
❍ 1.4 An Extended Example: Tic-Tac-Toe
❍ 1.5 Summary
❍ 1.6 History of Reinforcement Learning
❍ 1.7 Bibliographical Remarks

● 2. Evaluative Feedback

❍ 2.1 An -Armed Bandit Problem
❍ 2.2 Action-Value Methods
❍ 2.3 Softmax Action Selection
❍ 2.4 Evaluation Versus Instruction
❍ 2.5 Incremental Implementation
❍ 2.6 Tracking a Nonstationary Problem
❍ 2.7 Optimistic Initial Values
❍ 2.8 Reinforcement Comparison
❍ 2.9 Pursuit Methods
❍ 2.10 Associative Search
❍ 2.11 Conclusions
❍ 2.12 Bibliographical and Historical Remarks

■ 2.1
■ 2.2
■ 2.3
■ 2.4
■ 2.5-6
■ 2.8
■ 2.9
■ 2.10
■ 2.11

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node5.html (1 di 2)22/06/2005 9.05.08

I. The Problem

● 3. The Reinforcement Learning Problem
❍ 3.1 The Agent-Environment Interface
❍ 3.2 Goals and Rewards
❍ 3.3 Returns
❍ 3.4 Unified Notation for Episodic and Continuing Tasks
❍ 3.5 The Markov Property
❍ 3.6 Markov Decision Processes
❍ 3.7 Value Functions
❍ 3.8 Optimal Value Functions
❍ 3.9 Optimality and Approximation
❍ 3.10 Summary
❍ 3.11 Bibliographical and Historical Remarks

■ 3.1
■ 3.3-4
■ 3.5
■ 3.6
■ 3.7-8

Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node5.html (2 di 2)22/06/2005 9.05.08

1. Introduction

Next: 1.1 Reinforcement Learning Up: I. The Problem Previous: I. The Problem Contents

1. Introduction

The idea that we learn by interacting with our environment is probably the first to occur to us when
we think about the nature of learning. When an infant plays, waves its arms, or looks about, it has no
explicit teacher, but it does have a direct sensorimotor connection to its environment. Exercising this
connection produces a wealth of information about cause and effect, about the consequences of
actions, and about what to do in order to achieve goals. Throughout our lives, such interactions are
undoubtedly a major source of knowledge about our environment and ourselves. Whether we are
learning to drive a car or to hold a conversation, we are acutely aware of how our environment
responds to what we do, and we seek to influence what happens through our behavior. Learning from
interaction is a foundational idea underlying nearly all theories of learning and intelligence.

In this book we explore a computational approach to learning from interaction. Rather than directly
theorizing about how people or animals learn, we explore idealized learning situations and evaluate
the effectiveness of various learning methods. That is, we adopt the perspective of an artificial
intelligence researcher or engineer. We explore designs for machines that are effective in solving
learning problems of scientific or economic interest, evaluating the designs through mathematical
analysis or computational experiments. The approach we explore, called reinforcement learning, is
much more focused on goal-directed learning from interaction than are other approaches to machine
learning.

Subsections

● 1.1 Reinforcement Learning
● 1.2 Examples
● 1.3 Elements of Reinforcement Learning
● 1.4 An Extended Example: Tic-Tac-Toe
● 1.5 Summary
● 1.6 History of Reinforcement Learning
● 1.7 Bibliographical Remarks

Next: 1.1 Reinforcement Learning Up: I. The Problem Previous: I. The Problem Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node6.html22/06/2005 9.05.09

1.1 Reinforcement Learning

Next: 1.2 Examples Up: 1. Introduction Previous: 1. Introduction Contents

1.1 Reinforcement Learning

Reinforcement learning is learning what to do--how to map situations to actions--so as to maximize a
numerical reward signal. The learner is not told which actions to take, as in most forms of machine
learning, but instead must discover which actions yield the most reward by trying them. In the most
interesting and challenging cases, actions may affect not only the immediate reward but also the next
situation and, through that, all subsequent rewards. These two characteristics--trial-and-error search
and delayed reward--are the two most important distinguishing features of reinforcement learning.

Reinforcement learning is defined not by characterizing learning methods, but by characterizing a
learning problem. Any method that is well suited to solving that problem, we consider to be a
reinforcement learning method. A full specification of the reinforcement learning problem in terms of
optimal control of Markov decision processes must wait until Chapter 3, but the basic idea is simply
to capture the most important aspects of the real problem facing a learning agent interacting with its
environment to achieve a goal. Clearly, such an agent must be able to sense the state of the
environment to some extent and must be able to take actions that affect the state. The agent also must
have a goal or goals relating to the state of the environment. The formulation is intended to include
just these three aspects--sensation, action, and goal--in their simplest possible forms without
trivializing any of them.

Reinforcement learning is different from supervised learning, the kind of learning studied in most
current research in machine learning, statistical pattern recognition, and artificial neural networks.
Supervised learning is learning from examples provided by a knowledgable external supervisor. This
is an important kind of learning, but alone it is not adequate for learning from interaction. In
interactive problems it is often impractical to obtain examples of desired behavior that are both
correct and representative of all the situations in which the agent has to act. In uncharted territory--
where one would expect learning to be most beneficial--an agent must be able to learn from its own
experience.

One of the challenges that arise in reinforcement learning and not in other kinds of learning is the
trade-off between exploration and exploitation. To obtain a lot of reward, a reinforcement learning
agent must prefer actions that it has tried in the past and found to be effective in producing reward.
But to discover such actions, it has to try actions that it has not selected before. The agent has to
exploit what it already knows in order to obtain reward, but it also has to explore in order to make
better action selections in the future. The dilemma is that neither exploration nor exploitation can be
pursued exclusively without failing at the task. The agent must try a variety of actions and
progressively favor those that appear to be best. On a stochastic task, each action must be tried many
times to gain a reliable estimate its expected reward. The exploration-exploitation dilemma has been
intensively studied by mathematicians for many decades (see Chapter 2). For now, we simply note
that the entire issue of balancing exploration and exploitation does not even arise in supervised
learning as it is usually defined.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node7.html (1 di 2)22/06/2005 9.05.10

1.1 Reinforcement Learning

Another key feature of reinforcement learning is that it explicitly considers the whole problem of a
goal-directed agent interacting with an uncertain environment. This is in contrast with many
approaches that consider subproblems without addressing how they might fit into a larger picture. For
example, we have mentioned that much of machine learning research is concerned with supervised
learning without explicitly specifying how such an ability would finally be useful. Other researchers
have developed theories of planning with general goals, but without considering planning's role in
real-time decision-making, or the question of where the predictive models necessary for planning
would come from. Although these approaches have yielded many useful results, their focus on
isolated subproblems is a significant limitation.

Reinforcement learning takes the opposite tack, starting with a complete, interactive, goal-seeking
agent. All reinforcement learning agents have explicit goals, can sense aspects of their environments,
and can choose actions to influence their environments. Moreover, it is usually assumed from the
beginning that the agent has to operate despite significant uncertainty about the environment it faces.
When reinforcement learning involves planning, it has to address the interplay between planning and
real-time action selection, as well as the question of how environmental models are acquired and
improved. When reinforcement learning involves supervised learning, it does so for specific reasons
that determine which capabilities are critical and which are not. For learning research to make
progress, important subproblems have to be isolated and studied, but they should be subproblems that
play clear roles in complete, interactive, goal-seeking agents, even if all the details of the complete
agent cannot yet be filled in.

One of the larger trends of which reinforcement learning is a part is that toward greater contact
between artificial intelligence and other engineering disciplines. Not all that long ago, artificial
intelligence was viewed as almost entirely separate from control theory and statistics. It had to do
with logic and symbols, not numbers. Artificial intelligence was large LISP programs, not linear
algebra, differential equations, or statistics. Over the last decades this view has gradually eroded.
Modern artificial intelligence researchers accept statistical and control algorithms, for example, as
relevant competing methods or simply as tools of their trade. The previously ignored areas lying
between artificial intelligence and conventional engineering are now among the most active,
including new fields such as neural networks, intelligent control, and our topic, reinforcement
learning. In reinforcement learning we extend ideas from optimal control theory and stochastic
approximation to address the broader and more ambitious goals of artificial intelligence.

Next: 1.2 Examples Up: 1. Introduction Previous: 1. Introduction Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node7.html (2 di 2)22/06/2005 9.05.10

1.2 Examples

Next: 1.3 Elements of Reinforcement Up: 1. Introduction Previous: 1.1 Reinforcement Learning
Contents

1.2 Examples

A good way to understand reinforcement learning is to consider some of the examples and possible
applications that have guided its development.

● A master chess player makes a move. The choice is informed both by planning--anticipating
possible replies and counterreplies--and by immediate, intuitive judgments of the desirability
of particular positions and moves.

● An adaptive controller adjusts parameters of a petroleum refinery's operation in real time. The
controller optimizes the yield/cost/quality trade-off on the basis of specified marginal costs
without sticking strictly to the set points originally suggested by engineers.

● A gazelle calf struggles to its feet minutes after being born. Half an hour later it is running at
20 miles per hour.

● A mobile robot decides whether it should enter a new room in search of more trash to collect
or start trying to find its way back to its battery recharging station. It makes its decision based
on how quickly and easily it has been able to find the recharger in the past.

● Phil prepares his breakfast. Closely examined, even this apparently mundane activity reveals a
complex web of conditional behavior and interlocking goal-subgoal relationships: walking to
the cupboard, opening it, selecting a cereal box, then reaching for, grasping, and retrieving the
box. Other complex, tuned, interactive sequences of behavior are required to obtain a bowl,
spoon, and milk jug. Each step involves a series of eye movements to obtain information and
to guide reaching and locomotion. Rapid judgments are continually made about how to carry
the objects or whether it is better to ferry some of them to the dining table before obtaining
others. Each step is guided by goals, such as grasping a spoon or getting to the refrigerator,
and is in service of other goals, such as having the spoon to eat with once the cereal is
prepared and ultimately obtaining nourishment.

These examples share features that are so basic that they are easy to overlook. All involve interaction
between an active decision-making agent and its environment, within which the agent seeks to
achieve a goal despite uncertainty about its environment. The agent's actions are permitted to affect
the future state of the environment (e.g., the next chess position, the level of reservoirs of the
refinery, the next location of the robot), thereby affecting the options and opportunities available to
the agent at later times. Correct choice requires taking into account indirect, delayed consequences of
actions, and thus may require foresight or planning.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node8.html (1 di 2)22/06/2005 9.05.11

1.2 Examples

At the same time, in all these examples the effects of actions cannot be fully predicted; thus the agent
must monitor its environment frequently and react appropriately. For example, Phil must watch the
milk he pours into his cereal bowl to keep it from overflowing. All these examples involve goals that
are explicit in the sense that the agent can judge progress toward its goal based on what it can sense
directly. The chess player knows whether or not he wins, the refinery controller knows how much
petroleum is being produced, the mobile robot knows when its batteries run down, and Phil knows
whether or not he is enjoying his breakfast.

In all of these examples the agent can use its experience to improve its performance over time. The
chess player refines the intuition he uses to evaluate positions, thereby improving his play; the gazelle
calf improves the efficiency with which it can run; Phil learns to streamline making his breakfast. The
knowledge the agent brings to the task at the start--either from previous experience with related tasks
or built into it by design or evolution--influences what is useful or easy to learn, but interaction with
the environment is essential for adjusting behavior to exploit specific features of the task.

Next: 1.3 Elements of Reinforcement Up: 1. Introduction Previous: 1.1 Reinforcement Learning
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node8.html (2 di 2)22/06/2005 9.05.11

1.3 Elements of Reinforcement Learning

Next: 1.4 An Extended Example: Up: 1. Introduction Previous: 1.2 Examples Contents

1.3 Elements of Reinforcement Learning

Beyond the agent and the environment, one can identify four main subelements of a reinforcement
learning system: a policy, a reward function, a value function, and, optionally, a model of the
environment.

A policy defines the learning agent's way of behaving at a given time. Roughly speaking, a policy is a
mapping from perceived states of the environment to actions to be taken when in those states. It
corresponds to what in psychology would be called a set of stimulus-response rules or associations.
In some cases the policy may be a simple function or lookup table, whereas in others it may involve
extensive computation such as a search process. The policy is the core of a reinforcement learning
agent in the sense that it alone is sufficient to determine behavior. In general, policies may be
stochastic.

A reward function defines the goal in a reinforcement learning problem. Roughly speaking, it maps
each perceived state (or state-action pair) of the environment to a single number, a reward, indicating
the intrinsic desirability of that state. A reinforcement learning agent's sole objective is to maximize
the total reward it receives in the long run. The reward function defines what are the good and bad
events for the agent. In a biological system, it would not be inappropriate to identify rewards with
pleasure and pain. They are the immediate and defining features of the problem faced by the agent.
As such, the reward function must necessarily be unalterable by the agent. It may, however, serve as
a basis for altering the policy. For example, if an action selected by the policy is followed by low
reward, then the policy may be changed to select some other action in that situation in the future. In
general, reward functions may be stochastic.

Whereas a reward function indicates what is good in an immediate sense, a value function specifies
what is good in the long run. Roughly speaking, the value of a state is the total amount of reward an
agent can expect to accumulate over the future, starting from that state. Whereas rewards determine
the immediate, intrinsic desirability of environmental states, values indicate the long-term desirability
of states after taking into account the states that are likely to follow, and the rewards available in
those states. For example, a state might always yield a low immediate reward but still have a high
value because it is regularly followed by other states that yield high rewards. Or the reverse could be
true. To make a human analogy, rewards are like pleasure (if high) and pain (if low), whereas values
correspond to a more refined and farsighted judgment of how pleased or displeased we are that our
environment is in a particular state. Expressed this way, we hope it is clear that value functions
formalize a basic and familiar idea.

Rewards are in a sense primary, whereas values, as predictions of rewards, are secondary. Without
rewards there could be no values, and the only purpose of estimating values is to achieve more
reward. Nevertheless, it is values with which we are most concerned when making and evaluating
decisions. Action choices are made based on value judgments. We seek actions that bring about states

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node9.html (1 di 3)22/06/2005 9.05.12

1.3 Elements of Reinforcement Learning

of highest value, not highest reward, because these actions obtain the greatest amount of reward for
us over the long run. In decision-making and planning, the derived quantity called value is the one
with which we are most concerned. Unfortunately, it is much harder to determine values than it is to
determine rewards. Rewards are basically given directly by the environment, but values must be
estimated and reestimated from the sequences of observations an agent makes over its entire lifetime.
In fact, the most important component of almost all reinforcement learning algorithms is a method for
efficiently estimating values. The central role of value estimation is arguably the most important
thing we have learned about reinforcement learning over the last few decades.

Although all the reinforcement learning methods we consider in this book are structured around
estimating value functions, it is not strictly necessary to do this to solve reinforcement learning
problems. For example, search methods such as genetic algorithms, genetic programming, simulated
annealing, and other function optimization methods have been used to solve reinforcement learning
problems. These methods search directly in the space of policies without ever appealing to value
functions. We call these evolutionary methods because their operation is analogous to the way
biological evolution produces organisms with skilled behavior even when they do not learn during
their individual lifetimes. If the space of policies is sufficiently small, or can be structured so that
good policies are common or easy to find, then evolutionary methods can be effective. In addition,
evolutionary methods have advantages on problems in which the learning agent cannot accurately
sense the state of its environment.

Nevertheless, what we mean by reinforcement learning involves learning while interacting with the
environment, which evolutionary methods do not do. It is our belief that methods able to take
advantage of the details of individual behavioral interactions can be much more efficient than
evolutionary methods in many cases. Evolutionary methods ignore much of the useful structure of the
reinforcement learning problem: they do not use the fact that the policy they are searching for is a
function from states to actions; they do not notice which states an individual passes through during its
lifetime, or which actions it selects. In some cases this information can be misleading (e.g., when
states are misperceived), but more often it should enable more efficient search. Although evolution
and learning share many features and can naturally work together, as they do in nature, we do not
consider evolutionary methods by themselves to be especially well suited to reinforcement learning
problems. For simplicity, in this book when we use the term "reinforcement learning" we do not
include evolutionary methods.

The fourth and final element of some reinforcement learning systems is a model of the environment.
This is something that mimics the behavior of the environment. For example, given a state and action,
the model might predict the resultant next state and next reward. Models are used for planning, by
which we mean any way of deciding on a course of action by considering possible future situations
before they are actually experienced. The incorporation of models and planning into reinforcement
learning systems is a relatively new development. Early reinforcement learning systems were
explicitly trial-and-error learners; what they did was viewed as almost the opposite of planning.
Nevertheless, it gradually became clear that reinforcement learning methods are closely related to
dynamic programming methods, which do use models, and that they in turn are closely related to
state-space planning methods. In Chapter 9 we explore reinforcement learning systems that
simultaneously learn by trial and error, learn a model of the environment, and use the model for
planning. Modern reinforcement learning spans the spectrum from low-level, trial-and-error learning

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node9.html (2 di 3)22/06/2005 9.05.12

1.3 Elements of Reinforcement Learning

to high-level, deliberative planning.

Next: 1.4 An Extended Example: Up: 1. Introduction Previous: 1.2 Examples Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node9.html (3 di 3)22/06/2005 9.05.12

1.4 An Extended Example: Tic-Tac-Toe

Next: 1.5 Summary Up: 1. Introduction Previous: 1.3 Elements of Reinforcement Contents

1.4 An Extended Example: Tic-Tac-Toe

To illustrate the general idea of reinforcement learning and contrast it with other approaches, we next
consider a single example in more detail.

Consider the familiar child's game of tic-tac-toe. Two players take turns playing on a three-by-three
board. One player plays Xs and the other Os until one player wins by placing three marks in a row,
horizontally, vertically, or diagonally, as the X player has in this game:

If the board fills up with neither player getting three in a row, the game is a draw. Because a skilled
player can play so as never to lose, let us assume that we are playing against an imperfect player, one
whose play is sometimes incorrect and allows us to win. For the moment, in fact, let us consider
draws and losses to be equally bad for us. How might we construct a player that will find the
imperfections in its opponent's play and learn to maximize its chances of winning?

Although this is a simple problem, it cannot readily be solved in a satisfactory way through classical
techniques. For example, the classical "minimax" solution from game theory is not correct here
because it assumes a particular way of playing by the opponent. For example, a minimax player
would never reach a game state from which it could lose, even if in fact it always won from that state
because of incorrect play by the opponent. Classical optimization methods for sequential decision
problems, such as dynamic programming, can compute an optimal solution for any opponent, but
require as input a complete specification of that opponent, including the probabilities with which the
opponent makes each move in each board state. Let us assume that this information is not available a
priori for this problem, as it is not for the vast majority of problems of practical interest. On the other
hand, such information can be estimated from experience, in this case by playing many games against
the opponent. About the best one can do on this problem is first to learn a model of the opponent's
behavior, up to some level of confidence, and then apply dynamic programming to compute an

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node10.html (1 di 6)22/06/2005 9.05.15

1.4 An Extended Example: Tic-Tac-Toe

optimal solution given the approximate opponent model. In the end, this is not that different from
some of the reinforcement learning methods we examine later in this book.

An evolutionary approach to this problem would directly search the space of possible policies for one
with a high probability of winning against the opponent. Here, a policy is a rule that tells the player
what move to make for every state of the game--every possible configuration of X s and Os on the
three-by-three board. For each policy considered, an estimate of its winning probability would be
obtained by playing some number of games against the opponent. This evaluation would then direct
which policy or policies were considered next. A typical evolutionary method would hill-climb in
policy space, successively generating and evaluating policies in an attempt to obtain incremental
improvements. Or, perhaps, a genetic-style algorithm could be used that would maintain and evaluate
a population of policies. Literally hundreds of different optimization methods could be applied. By
directly searching the policy space we mean that entire policies are proposed and compared on the
basis of scalar evaluations.

Here is how the tic-tac-toe problem would be approached using reinforcement learning and
approximate value functions. First we set up a table of numbers, one for each possible state of the
game. Each number will be the latest estimate of the probability of our winning from that state. We
treat this estimate as the state's value, and the whole table is the learned value function. State A has
higher value than state B, or is considered "better" than state B, if the current estimate of the
probability of our winning from A is higher than it is from B. Assuming we always play X s, then for
all states with three Xs in a row the probability of winning is 1, because we have already won.
Similarly, for all states with three Os in a row, or that are "filled up," the correct probability is 0, as
we cannot win from them. We set the initial values of all the other states to 0.5, representing a guess
that we have a 50% chance of winning.

We play many games against the opponent. To select our moves we examine the states that would
result from each of our possible moves (one for each blank space on the board) and look up their
current values in the table. Most of the time we move greedily, selecting the move that leads to the
state with greatest value, that is, with the highest estimated probability of winning. Occasionally,
however, we select randomly from among the other moves instead. These are called exploratory
moves because they cause us to experience states that we might otherwise never see. A sequence of
moves made and considered during a game can be diagrammed as in Figure 1.1.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node10.html (2 di 6)22/06/2005 9.05.15

1.4 An Extended Example: Tic-Tac-Toe

Figure 1.1:A sequence of tic-tac-toe moves. The solid lines represent the moves taken during a
game; the dashed lines represent moves that we (our reinforcement learning player) considered but
did not make. Our second move was an exploratory move, meaning that it was taken even though
another sibling move, the one leading to , was ranked higher. Exploratory moves do not result in
any learning, but each of our other moves does, causing backupsas suggested by the curved arrows

and detailed in the text.

While we are playing, we change the values of the states in which we find ourselves during the game.
We attempt to make them more accurate estimates of the probabilities of winning. To do this, we
"back up" the value of the state after each greedy move to the state before the move, as suggested by
the arrows in Figure 1.1. More precisely, the current value of the earlier state is adjusted to be closer
to the value of the later state. This can be done by moving the earlier state's value a fraction of the
way toward the value of the later state. If we let denote the state before the greedy move, and the

state after the move, then the update to the estimated value of , denoted , can be written as

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node10.html (3 di 6)22/06/2005 9.05.15

1.4 An Extended Example: Tic-Tac-Toe

where is a small positive fraction called the step-size parameter, which influences the rate of
learning. This update rule is an example of a temporal-difference learning method, so called because

its changes are based on a difference, , between estimates at two different times.

The method described above performs quite well on this task. For example, if the step-size parameter
is reduced properly over time, this method converges, for any fixed opponent, to the true probabilities
of winning from each state given optimal play by our player. Furthermore, the moves then taken
(except on exploratory moves) are in fact the optimal moves against the opponent. In other words, the
method converges to an optimal policy for playing the game. If the step-size parameter is not reduced
all the way to zero over time, then this player also plays well against opponents that slowly change
their way of playing.

This example illustrates the differences between evolutionary methods and methods that learn value
functions. To evaluate a policy, an evolutionary method must hold it fixed and play many games
against the opponent, or simulate many games using a model of the opponent. The frequency of wins
gives an unbiased estimate of the probability of winning with that policy, and can be used to direct
the next policy selection. But each policy change is made only after many games, and only the final
outcome of each game is used: what happens during the games is ignored. For example, if the player
wins, then all of its behavior in the game is given credit, independently of how specific moves might
have been critical to the win. Credit is even given to moves that never occurred! Value function
methods, in contrast, allow individual states to be evaluated. In the end, both evolutionary and value
function methods search the space of policies, but learning a value function takes advantage of
information available during the course of play.

This simple example illustrates some of the key features of reinforcement learning methods. First,
there is the emphasis on learning while interacting with an environment, in this case with an opponent
player. Second, there is a clear goal, and correct behavior requires planning or foresight that takes
into account delayed effects of one's choices. For example, the simple reinforcement learning player
would learn to set up multimove traps for a shortsighted opponent. It is a striking feature of the
reinforcement learning solution that it can achieve the effects of planning and lookahead without
using a model of the opponent and without conducting an explicit search over possible sequences of
future states and actions.

While this example illustrates some of the key features of reinforcement learning, it is so simple that
it might give the impression that reinforcement learning is more limited than it really is. Although tic-
tac-toe is a two-person game, reinforcement learning also applies in the case in which there is no
external adversary, that is, in the case of a "game against nature." Reinforcement learning also is not
restricted to problems in which behavior breaks down into separate episodes, like the separate games

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node10.html (4 di 6)22/06/2005 9.05.15

1.4 An Extended Example: Tic-Tac-Toe

of tic-tac-toe, with reward only at the end of each episode. It is just as applicable when behavior
continues indefinitely and when rewards of various magnitudes can be received at any time.

Tic-tac-toe has a relatively small, finite state set, whereas reinforcement learning can be used when
the state set is very large, or even infinite. For example, Gerry Tesauro (1992, 1995) combined the
algorithm described above with an artificial neural network to learn to play backgammon, which has
approximately states. With this many states it is impossible ever to experience more than a small
fraction of them. Tesauro's program learned to play far better than any previous program, and now
plays at the level of the world's best human players (see Chapter 11). The neural network provides the
program with the ability to generalize from its experience, so that in new states it selects moves based
on information saved from similar states faced in the past, as determined by its network. How well a
reinforcement learning system can work in problems with such large state sets is intimately tied to
how appropriately it can generalize from past experience. It is in this role that we have the greatest
need for supervised learning methods with reinforcement learning. Neural networks are not the only,
or necessarily the best, way to do this.

In this tic-tac-toe example, learning started with no prior knowledge beyond the rules of the game,
but reinforcement learning by no means entails a tabula rasa view of learning and intelligence. On the
contrary, prior information can be incorporated into reinforcement learning in a variety of ways that
can be critical for efficient learning. We also had access to the true state in the tic-tac-toe example,
whereas reinforcement learning can also be applied when part of the state is hidden, or when different
states appear to the learner to be the same. That case, however, is substantially more difficult, and we
do not cover it significantly in this book.

Finally, the tic-tac-toe player was able to look ahead and know the states that would result from each
of its possible moves. To do this, it had to have a model of the game that allowed it to "think about"
how its environment would change in response to moves that it might never make. Many problems
are like this, but in others even a short-term model of the effects of actions is lacking. Reinforcement
learning can be applied in either case. No model is required, but models can easily be used if they are
available or can be learned.

Exercise 1.1: Self-Play Suppose, instead of playing against a random opponent, the reinforcement
learning algorithm described above played against itself. What do you think would happen in this
case? Would it learn a different way of playing?

Exercise 1.2: Symmetries Many tic-tac-toe positions appear different but are really the same
because of symmetries. How might we amend the reinforcement learning algorithm described above
to take advantage of this? In what ways would this improve it? Now think again. Suppose the
opponent did not take advantage of symmetries. In that case, should we? Is it true, then, that
symmetrically equivalent positions should necessarily have the same value?

Exercise 1.3: Greedy Play Suppose the reinforcement learning player was greedy, that is, it always
played the move that brought it to the position that it rated the best. Would it learn to play better, or
worse, than a nongreedy player? What problems might occur?

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node10.html (5 di 6)22/06/2005 9.05.15

1.4 An Extended Example: Tic-Tac-Toe

Exercise 1.4: Learning from Exploration Suppose learning updates occurred after all moves,
including exploratory moves. If the step-size parameter is appropriately reduced over time, then the
state values would converge to a set of probabilities. What are the two sets of probabilities computed
when we do, and when we do not, learn from exploratory moves? Assuming that we do continue to
make exploratory moves, which set of probabilities might be better to learn? Which would result in
more wins?

Exercise 1.5: Other Improvements Can you think of other ways to improve the reinforcement
learning player? Can you think of any better way to solve the tic-tac-toe problem as posed?

Next: 1.5 Summary Up: 1. Introduction Previous: 1.3 Elements of Reinforcement Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node10.html (6 di 6)22/06/2005 9.05.15

1.5 Summary

Next: 1.6 History of Reinforcement Up: 1. Introduction Previous: 1.4 An Extended Example:
Contents

1.5 Summary

Reinforcement learning is a computational approach to understanding and automating goal-directed
learning and decision-making. It is distinguished from other computational approaches by its
emphasis on learning by the individual from direct interaction with its environment, without relying
on exemplary supervision or complete models of the environment. In our opinion, reinforcement
learning is the first field to seriously address the computational issues that arise when learning from
interaction with an environment in order to achieve long-term goals.

Reinforcement learning uses a formal framework defining the interaction between a learning agent
and its environment in terms of states, actions, and rewards. This framework is intended to be a
simple way of representing essential features of the artificial intelligence problem. These features
include a sense of cause and effect, a sense of uncertainty and nondeterminism, and the existence of
explicit goals.

The concepts of value and value functions are the key features of the reinforcement learning methods
that we consider in this book. We take the position that value functions are essential for efficient
search in the space of policies. Their use of value functions distinguishes reinforcement learning
methods from evolutionary methods that search directly in policy space guided by scalar evaluations
of entire policies.

Next: 1.6 History of Reinforcement Up: 1. Introduction Previous: 1.4 An Extended Example:
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node11.html22/06/2005 9.05.16

1.6 History of Reinforcement Learning

Next: 1.7 Bibliographical Remarks Up: 1. Introduction Previous: 1.5 Summary Contents

1.6 History of Reinforcement Learning

The history of reinforcement learning has two main threads, both long and rich, that were pursued
independently before intertwining in modern reinforcement learning. One thread concerns learning
by trial and error and started in the psychology of animal learning. This thread runs through some of
the earliest work in artificial intelligence and led to the revival of reinforcement learning in the early
1980s. The other thread concerns the problem of optimal control and its solution using value
functions and dynamic programming. For the most part, this thread did not involve learning.
Although the two threads have been largely independent, the exceptions revolve around a third, less
distinct thread concerning temporal-difference methods such as used in the tic-tac-toe example in this
chapter. All three threads came together in the late 1980s to produce the modern field of
reinforcement learning as we present it in this book.

The thread focusing on trial-and-error learning is the one with which we are most familiar and about
which we have the most to say in this brief history. Before doing that, however, we briefly discuss the
optimal control thread.

The term "optimal control" came into use in the late 1950s to describe the problem of designing a
controller to minimize a measure of a dynamical system's behavior over time. One of the approaches
to this problem was developed in the mid-1950s by Richard Bellman and others through extending a
nineteenth century theory of Hamilton and Jacobi. This approach uses the concepts of a dynamical
system's state and of a value function, or "optimal return function," to define a functional equation,
now often called the Bellman equation. The class of methods for solving optimal control problems by
solving this equation came to be known as dynamic programming (Bellman, 1957a). Bellman
(1957b) also introduced the discrete stochastic version of the optimal control problem known as
Markovian decision processes (MDPs), and Ron Howard (1960) devised the policy iteration method
for MDPs. All of these are essential elements underlying the theory and algorithms of modern
reinforcement learning.

Dynamic programming is widely considered the only feasible way of solving general stochastic
optimal control problems. It suffers from what Bellman called "the curse of dimensionality," meaning
that its computational requirements grow exponentially with the number of state variables, but it is
still far more efficient and more widely applicable than any other general method. Dynamic
programming has been extensively developed since the late 1950s, including extensions to partially
observable MDPs (surveyed by Lovejoy, 1991), many applications (surveyed by White, 1985, 1988,
1993), approximation methods (surveyed by Rust, 1996), and asynchronous methods (Bertsekas,
1982, 1983). Many excellent modern treatments of dynamic programming are available (e.g.,
Bertsekas, 1995; Puterman, 1994; Ross, 1983; and Whittle, 1982, 1983). Bryson (1996) provides an
authoritative history of optimal control.

In this book, we consider all of the work in optimal control also to be, in a sense, work in

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node12.html (1 di 6)22/06/2005 9.05.18

1.6 History of Reinforcement Learning

reinforcement learning. We define reinforcement learning as any effective way of solving
reinforcement learning problems, and it is now clear that these problems are closely related to
optimal control problems, particularly those formulated as MDPs. Accordingly, we must consider the
solution methods of optimal control, such as dynamic programming, also to be reinforcement
learning methods. Of course, almost all of these methods require complete knowledge of the system
to be controlled, and for this reason it feels a little unnatural to say that they are part of reinforcement
learning. On the other hand, many dynamic programming methods are incremental and iterative.
Like learning methods, they gradually reach the correct answer through successive approximations.
As we show in the rest of this book, these similarities are far more than superficial. The theories and
solution methods for the cases of complete and incomplete knowledge are so closely related that we
feel they must be considered together as part of the same subject matter.

Let us return now to the other major thread leading to the modern field of reinforcement learning, that
centered on the idea of trial-and-error learning. This thread began in psychology, where
"reinforcement" theories of learning are common. Perhaps the first to succinctly express the essence
of trial-and-error learning was Edward Thorndike. We take this essence to be the idea that actions
followed by good or bad outcomes have their tendency to be reselected altered accordingly. In
Thorndike's words:

Of several responses made to the same situation, those which are accompanied or
closely followed by satisfaction to the animal will, other things being equal, be more
firmly connected with the situation, so that, when it recurs, they will be more likely to
recur; those which are accompanied or closely followed by discomfort to the animal
will, other things being equal, have their connections with that situation weakened, so
that, when it recurs, they will be less likely to occur. The greater the satisfaction or
discomfort, the greater the strengthening or weakening of the bond. (Thorndike, 1911,
p. 244)

Thorndike called this the "Law of Effect" because it describes the effect of reinforcing events on the
tendency to select actions. Although sometimes controversial (e.g., see Kimble, 1961, 1967; Mazur,
1994), the Law of Effect is widely regarded as an obvious basic principle underlying much behavior
(e.g., Hilgard and Bower, 1975; Dennett, 1978; Campbell, 1960; Cziko, 1995).

The Law of Effect includes the two most important aspects of what we mean by trial-and-error
learning. First, it is selectional, meaning that it involves trying alternatives and selecting among them
by comparing their consequences. Second, it is associative, meaning that the alternatives found by
selection are associated with particular situations. Natural selection in evolution is a prime example
of a selectional process, but it is not associative. Supervised learning is associative, but not
selectional. It is the combination of these two that is essential to the Law of Effect and to trial-and-
error learning. Another way of saying this is that the Law of Effect is an elementary way of
combining search and memory: search in the form of trying and selecting among many actions in
each situation, and memory in the form of remembering what actions worked best, associating them
with the situations in which they were best. Combining search and memory in this way is essential to
reinforcement learning.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node12.html (2 di 6)22/06/2005 9.05.18

1.6 History of Reinforcement Learning

In early artificial intelligence, before it was distinct from other branches of engineering, several
researchers began to explore trial-and-error learning as an engineering principle. The earliest
computational investigations of trial-and-error learning were perhaps by Minsky and by Farley and
Clark, both in 1954. In his Ph.D. dissertation, Minsky discussed computational models of
reinforcement learning and described his construction of an analog machine composed of
components he called SNARCs (Stochastic Neural-Analog Reinforcement Calculators). Farley and
Clark described another neural-network learning machine designed to learn by trial and error. In the
1960s the terms "reinforcement" and "reinforcement learning" were used in the engineering literature
for the first time (e.g., Waltz and Fu, 1965; Mendel, 1966; Fu, 1970; Mendel and McClaren, 1970).
Particularly influential was Minsky's paper "Steps Toward Artificial Intelligence" (Minsky, 1961),
which discussed several issues relevant to reinforcement learning, including what he called the credit
assignment problem: How do you distribute credit for success among the many decisions that may
have been involved in producing it? All of the methods we discuss in this book are, in a sense,
directed toward solving this problem.

The interests of Farley and Clark (1954; Clark and Farley, 1955) shifted from trial-and-error learning
to generalization and pattern recognition, that is, from reinforcement learning to supervised learning.
This began a pattern of confusion about the relationship between these types of learning. Many
researchers seemed to believe that they were studying reinforcement learning when they were
actually studying supervised learning. For example, neural network pioneers such as Rosenblatt
(1962) and Widrow and Hoff (1960) were clearly motivated by reinforcement learning--they used the
language of rewards and punishments--but the systems they studied were supervised learning systems
suitable for pattern recognition and perceptual learning. Even today, researchers and textbooks often
minimize or blur the distinction between these types of learning. Some modern neural-network
textbooks use the term "trial-and-error" to describe networks that learn from training examples
because they use error information to update connection weights. This is an understandable
confusion, but it substantially misses the essential selectional character of trial-and-error learning.

Partly as a result of these confusions, research into genuine trial-and-error learning became rare in the
the 1960s and 1970s. In the next few paragraphs we discuss some of the exceptions and partial
exceptions to this trend.

One of these was the work by a New Zealand researcher named John Andreae. Andreae (1963)
developed a system called STeLLA that learned by trial and error in interaction with its environment.
This system included an internal model of the world and, later, an "internal monologue" to deal with
problems of hidden state (Andreae, 1969a). Andreae's later work (1977) placed more emphasis on
learning from a teacher, but still included trial and error. Unfortunately, his pioneering research was
not well known, and did not greatly impact subsequent reinforcement learning research.

More influential was the work of Donald Michie. In 1961 and 1963 he described a simple trial-and-
error learning system for learning how to play tic-tac-toe (or naughts and crosses) called MENACE
(for Matchbox Educable Naughts and Crosses Engine). It consisted of a matchbox for each possible
game position, each matchbox containing a number of colored beads, a different color for each
possible move from that position. By drawing a bead at random from the matchbox corresponding to
the current game position, one could determine MENACE's move. When a game was over, beads
were added to or removed from the boxes used during play to reinforce or punish MENACE's

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node12.html (3 di 6)22/06/2005 9.05.18

1.6 History of Reinforcement Learning

decisions. Michie and Chambers (1968) described another tic-tac-toe reinforcement learner called
GLEE (Game Learning Expectimaxing Engine) and a reinforcement learning controller called
BOXES. They applied BOXES to the task of learning to balance a pole hinged to a movable cart on
the basis of a failure signal occurring only when the pole fell or the cart reached the end of a track.
This task was adapted from the earlier work of Widrow and Smith (1964), who used supervised
learning methods, assuming instruction from a teacher already able to balance the pole. Michie and
Chambers's version of pole-balancing is one of the best early examples of a reinforcement learning
task under conditions of incomplete knowledge. It influenced much later work in reinforcement
learning, beginning with some of our own studies (Barto, Sutton, and Anderson, 1983; Sutton, 1984).
Michie has consistently emphasized the role of trial and error and learning as essential aspects of
artificial intelligence (Michie, 1974).

Widrow, Gupta, and Maitra (1973) modified the LMS algorithm of Widrow and Hoff (1960) to
produce a reinforcement learning rule that could learn from success and failure signals instead of
from training examples. They called this form of learning "selective bootstrap adaptation" and
described it as "learning with a critic" instead of "learning with a teacher." They analyzed this rule
and showed how it could learn to play blackjack. This was an isolated foray into reinforcement
learning by Widrow, whose contributions to supervised learning were much more influential.

Research on learning automata had a more direct influence on the trial-and-error thread leading to
modern reinforcement learning research. These are methods for solving a nonassociative, purely
selectional learning problem known as the -armed bandit by analogy to a slot machine, or "one-
armed bandit," except with levers (see Chapter 2). Learning automata are simple, low-memory
machines for solving this problem. Learning automata originated in Russia with the work of Tsetlin
(1973) and has been extensively developed since then within engineering (see Narendra and
Thathachar, 1974, 1989). Barto and Anandan (1985) extended these methods to the associative case.

John Holland (1975) outlined a general theory of adaptive systems based on selectional principles.
His early work concerned trial and error primarily in its nonassociative form, as in evolutionary
methods and the -armed bandit. In 1986 he introduced classifier systems, true reinforcement
learning systems including association and value functions. A key component of Holland's classifier
systems was always a genetic algorithm, an evolutionary method whose role was to evolve useful
representations. Classifier systems have been extensively developed by many researchers to form a
major branch of reinforcement learning research (e.g., see Goldberg, 1989; Wilson, 1994), but
genetic algorithms--which by themselves are not reinforcement learning systems--have received
much more attention.

The individual most responsible for reviving the trial-and-error thread to reinforcement learning
within artificial intelligence was Harry Klopf (1972, 1975, 1982). Klopf recognized that essential
aspects of adaptive behavior were being lost as learning researchers came to focus almost exclusively
on supervised learning. What was missing, according to Klopf, were the hedonic aspects of behavior,
the drive to achieve some result from the environment, to control the environment toward desired
ends and away from undesired ends. This is the essential idea of trial-and-error learning. Klopf's ideas
were especially influential on the authors because our assessment of them (Barto and Sutton, 1981a)
led to our appreciation of the distinction between supervised and reinforcement learning, and to our

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node12.html (4 di 6)22/06/2005 9.05.18

1.6 History of Reinforcement Learning

eventual focus on reinforcement learning. Much of the early work that we and colleagues
accomplished was directed toward showing that reinforcement learning and supervised learning were
indeed different (Barto, Sutton, and Brouwer, 1981; Barto and Sutton, 1981b; Barto and Anandan,
1985). Other studies showed how reinforcement learning could address important problems in neural
network learning, in particular, how it could produce learning algorithms for multilayer networks
(Barto, Anderson, and Sutton, 1982; Barto and Anderson, 1985; Barto and Anandan, 1985; Barto,
1985, 1986; Barto and Jordan, 1987).

We turn now to the third thread to the history of reinforcement learning, that concerning temporal-
difference learning. Temporal-difference learning methods are distinctive in being driven by the
difference between temporally successive estimates of the same quantity--for example, of the
probability of winning in the tic-tac-toe example. This thread is smaller and less distinct than the
other two, but it has played a particularly important role in the field, in part because temporal-
difference methods seem to be new and unique to reinforcement learning.

The origins of temporal-difference learning are in part in animal learning psychology, in particular, in
the notion of secondary reinforcers. A secondary reinforcer is a stimulus that has been paired with a
primary reinforcer such as food or pain and, as a result, has come to take on similar reinforcing
properties. Minsky (1954) may have been the first to realize that this psychological principle could be
important for artificial learning systems. Arthur Samuel (1959) was the first to propose and
implement a learning method that included temporal-difference ideas, as part of his celebrated
checkers-playing program. Samuel made no reference to Minsky's work or to possible connections to
animal learning. His inspiration apparently came from Claude Shannon's (1950) suggestion that a
computer could be programmed to use an evaluation function to play chess, and that it might be able
to to improve its play by modifying this function on-line. (It is possible that these ideas of Shannon's
also influenced Bellman, but we know of no evidence for this.) Minsky (1961) extensively discussed
Samuel's work in his "Steps" paper, suggesting the connection to secondary reinforcement theories,
both natural and artificial.

As we have discussed, in the decade following the work of Minsky and Samuel, little computational
work was done on trial-and-error learning, and apparently no computational work at all was done on
temporal-difference learning. In 1972, Klopf brought trial-and-error learning together with an
important component of temporal-difference learning. Klopf was interested in principles that would
scale to learning in large systems, and thus was intrigued by notions of local reinforcement, whereby
subcomponents of an overall learning system could reinforce one another. He developed the idea of
"generalized reinforcement," whereby every component (nominally, every neuron) views all of its
inputs in reinforcement terms: excitatory inputs as rewards and inhibitory inputs as punishments. This
is not the same idea as what we now know as temporal-difference learning, and in retrospect it is
farther from it than was Samuel's work. On the other hand, Klopf linked the idea with trial-and-error
learning and related it to the massive empirical database of animal learning psychology.

Sutton (1978a, 1978b, 1978c) developed Klopf's ideas further, particularly the links to animal
learning theories, describing learning rules driven by changes in temporally successive predictions.
He and Barto refined these ideas and developed a psychological model of classical conditioning
based on temporal-difference learning (Sutton and Barto, 1981a; Barto and Sutton, 1982). There
followed several other influential psychological models of classical conditioning based on temporal-

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node12.html (5 di 6)22/06/2005 9.05.18

1.6 History of Reinforcement Learning

difference learning (e.g., Klopf, 1988; Moore et al., 1986; Sutton and Barto, 1987, 1990). Some
neuroscience models developed at this time are well interpreted in terms of temporal-difference
learning (Hawkins and Kandel, 1984; Byrne, Gingrich, and Baxter, 1990; Gelperin, Hopfield, and
Tank, 1985; Tesauro, 1986; Friston et al., 1994), although in most cases there was no historical
connection. A recent summary of links between temporal-difference learning and neuroscience ideas
is provided by Schultz, Dayan, and Montague (1997).

Our early work on temporal-difference learning was strongly influenced by animal learning theories
and by Klopf's work. Relationships to Minsky's "Steps" paper and to Samuel's checkers players
appear to have been recognized only afterward. By 1981, however, we were fully aware of all the
prior work mentioned above as part of the temporal-difference and trial-and-error threads. At this
time we developed a method for using temporal-difference learning in trial-and-error learning, known
as the actor-critic architecture, and applied this method to Michie and Chambers's pole-balancing
problem (Barto, Sutton, and Anderson, 1983). This method was extensively studied in Sutton's (1984)
Ph.D. dissertation and extended to use backpropagation neural networks in Anderson's (1986) Ph.D.
dissertation. Around this time, Holland (1986) incorporated temporal-difference ideas explicitly into
his classifier systems. A key step was taken by Sutton in 1988 by separating temporal-difference
learning from control, treating it as a general prediction method. That paper also introduced the TD(

) algorithm and proved some of its convergence properties.

As we were finalizing our work on the actor-critic architecture in 1981, we discovered a paper by Ian
Witten (1977) that contains the earliest known publication of a temporal-difference learning rule. He
proposed the method that we now call tabular TD(0) for use as part of an adaptive controller for
solving MDPs. Witten's work was a descendant of Andreae's early experiments with STeLLA and
other trial-and-error learning systems. Thus, Witten's 1977 paper spanned both major threads of
reinforcement learning research--trial-and-error learning and optimal control--while making a distinct
early contribution to temporal-difference learning.

Finally, the temporal-difference and optimal control threads were fully brought together in 1989 with
Chris Watkins's development of Q-learning. This work extended and integrated prior work in all three
threads of reinforcement learning research. Paul Werbos (1987) contributed to this integration by
arguing for the convergence of trial-and-error learning and dynamic programming since 1977. By the
time of Watkins's work there had been tremendous growth in reinforcement learning research,
primarily in the machine learning subfield of artificial intelligence, but also in neural networks and
artificial intelligence more broadly. In 1992, the remarkable success of Gerry Tesauro's backgammon
playing program, TD-Gammon, brought additional attention to the field. Other important
contributions made in the recent history of reinforcement learning are too numerous to mention in
this brief account; we cite these at the end of the individual chapters in which they arise.

Next: 1.7 Bibliographical Remarks Up: 1. Introduction Previous: 1.5 Summary Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node12.html (6 di 6)22/06/2005 9.05.18

1.7 Bibliographical Remarks

Next: 2. Evaluative Feedback Up: 1. Introduction Previous: 1.6 History of Reinforcement
Contents

1.7 Bibliographical Remarks

For additional general coverage of reinforcement learning, we refer the reader to the books by
Bertsekas and Tsitsiklis (1996) and Kaelbling (1993a). Two special issues of the journal Machine
Learning focus on reinforcement learning: Sutton (1992) and Kaelbling (1996). Useful surveys are
provided by Barto (1995b); Kaelbling, Littman, and Moore (1996); and Keerthi and Ravindran
(1997).

The example of Phil's breakfast in this chapter was inspired by Agre (1988). We direct the reader to
Chapter 6 for references to the kind of temporal-difference method we used in the tic-tac-toe
example.

Modern attempts to relate the kinds of algorithms used in reinforcement learning to the nervous
system are made by Hampson (1989), Friston et al. (1994), Barto (1995a), Houk, Adams, and Barto
(1995), Montague, Dayan, and Sejnowski (1996), and Schultz, Dayan, and Montague (1997).

Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node13.html22/06/2005 9.05.18

2. Evaluative Feedback

Next: 2.1 An -Armed Bandit Up: I. The Problem Previous: 1.7 Bibliographical Remarks
Contents

2. Evaluative Feedback

The most important feature distinguishing reinforcement learning from other types of learning is that
it uses training information that evaluates the actions taken rather than instructs by giving correct
actions. This is what creates the need for active exploration, for an explicit trial-and-error search for
good behavior. Purely evaluative feedback indicates how good the action taken is, but not whether it
is the best or the worst action possible. Evaluative feedback is the basis of methods for function
optimization, including evolutionary methods. Purely instructive feedback, on the other hand,
indicates the correct action to take, independently of the action actually taken. This kind of feedback
is the basis of supervised learning, which includes large parts of pattern classification, artificial neural
networks, and system identification. In their pure forms, these two kinds of feedback are quite
distinct: evaluative feedback depends entirely on the action taken, whereas instructive feedback is
independent of the action taken. There are also interesting intermediate cases in which evaluation and
instruction blend together.

In this chapter we study the evaluative aspect of reinforcement learning in a simplified setting, one
that does not involve learning to act in more than one situation. This nonassociative setting is the one
in which most prior work involving evaluative feedback has been done, and it avoids much of the
complexity of the full reinforcement learning problem. Studying this case will enable us to see most
clearly how evaluative feedback differs from, and yet can be combined with, instructive feedback.

The particular nonassociative, evaluative feedback problem that we explore is a simple version of the
-armed bandit problem. We use this problem to introduce a number of basic learning methods

which we extend in later chapters to apply to the full reinforcement learning problem. At the end of
this chapter, we take a step closer to the full reinforcement learning problem by discussing what
happens when the bandit problem becomes associative, that is, when actions are taken in more than
one situation.

Subsections

● 2.1 An -Armed Bandit Problem
● 2.2 Action-Value Methods
● 2.3 Softmax Action Selection
● 2.4 Evaluation Versus Instruction
● 2.5 Incremental Implementation
● 2.6 Tracking a Nonstationary Problem
● 2.7 Optimistic Initial Values

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node14.html (1 di 2)22/06/2005 9.05.20

2. Evaluative Feedback

● 2.8 Reinforcement Comparison
● 2.9 Pursuit Methods
● 2.10 Associative Search
● 2.11 Conclusions
● 2.12 Bibliographical and Historical Remarks

❍ 2.1
❍ 2.2
❍ 2.3
❍ 2.4
❍ 2.5-6
❍ 2.8
❍ 2.9
❍ 2.10
❍ 2.11

Next: 2.1 An -Armed Bandit Up: I. The Problem Previous: 1.7 Bibliographical Remarks
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node14.html (2 di 2)22/06/2005 9.05.20

2.1 An -Armed Bandit Problem

-Armed Bandit Problem">
Next: 2.2 Action-Value Methods Up: 2. Evaluative Feedback Previous: 2. Evaluative Feedback
Contents

2.1 An -Armed Bandit Problem

Consider the following learning problem. You are faced repeatedly with a choice among different
options, or actions. After each choice you receive a numerical reward chosen from a stationary
probability distribution that depends on the action you selected. Your objective is to maximize the
expected total reward over some time period, for example, over 1000 action selections. Each action
selection is called a play.

This is the original form of the -armed bandit problem, so named by analogy to a slot machine, or
"one-armed bandit," except that it has levers instead of one. Each action selection is like a play of
one of the slot machine's levers, and the rewards are the payoffs for hitting the jackpot. Through
repeated plays you are to maximize your winnings by concentrating your plays on the best levers.
Another analogy is that of a doctor choosing between experimental treatments for a series of
seriously ill patients. Each play is a treatment selection, and each reward is the survival or well-being
of the patient. Today the term " -armed bandit problem" is often used for a generalization of the
problem described above, but in this book we use it to refer just to this simple case.

In our -armed bandit problem, each action has an expected or mean reward given that that action is
selected; let us call this the value of that action. If you knew the value of each action, then it would be
trivial to solve the -armed bandit problem: you would always select the action with highest value.
We assume that you do not know the action values with certainty, although you may have estimates.

If you maintain estimates of the action values, then at any time there is at least one action whose
estimated value is greatest. We call this a greedy action. If you select a greedy action, we say that you
are exploiting your current knowledge of the values of the actions. If instead you select one of the
nongreedy actions, then we say you are exploring because this enables you to improve your estimate
of the nongreedy action's value. Exploitation is the right thing to do to maximize the expected reward
on the one play, but exploration may produce the greater total reward in the long run. For example,
suppose the greedy action's value is known with certainty, while several other actions are estimated to
be nearly as good but with substantial uncertainty. The uncertainty is such that at least one of these
other actions probably is actually better than the greedy action, but you don't know which one. If you
have many plays yet to make, then it may be better to explore the nongreedy actions and discover
which of them are better than the greedy action. Reward is lower in the short run, during exploration,
but higher in the long run because after you have discovered the better actions, you can exploit them.
Because it is not possible both to explore and to exploit with any single action selection, one often
refers to the "conflict" between exploration and exploitation.

In any specific case, whether it is better to explore or exploit depends in a complex way on the
precise values of the estimates, uncertainties, and the number of remaining plays. There are many
sophisticated methods for balancing exploration and exploitation for particular mathematical

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node15.html (1 di 2)22/06/2005 9.05.21

2.1 An -Armed Bandit Problem

formulations of the -armed bandit and related problems. However, most of these methods make
strong assumptions about stationarity and prior knowledge that are either violated or impossible to
verify in applications and in the full reinforcement learning problem that we consider in subsequent
chapters. The guarantees of optimality or bounded loss for these methods are of little comfort when
the assumptions of their theory do not apply.

In this book we do not worry about balancing exploration and exploitation in a sophisticated way; we
worry only about balancing them at all. In this chapter we present several simple balancing methods
for the -armed bandit problem and show that they work much better than methods that always
exploit. In addition, we point out that supervised learning methods (or rather the methods closest to
supervised learning methods when adapted to this problem) perform poorly on this problem because
they do not balance exploration and exploitation at all. The need to balance exploration and
exploitation is a distinctive challenge that arises in reinforcement learning; the simplicity of the -
armed bandit problem enables us to show this in a particularly clear form.

Next: 2.2 Action-Value Methods Up: 2. Evaluative Feedback Previous: 2. Evaluative Feedback
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node15.html (2 di 2)22/06/2005 9.05.21

2.2 Action-Value Methods

Next: 2.3 Softmax Action Selection Up: 2. Evaluative Feedback Previous: 2.1 An -Armed Bandit
Contents

2.2 Action-Value Methods

We begin by looking more closely at some simple methods for estimating the values of actions and for
using the estimates to make action selection decisions. In this chapter, we denote the true (actual) value

of action as , and the estimated value at the th play as . Recall that the true value of an
action is the mean reward received when that action is selected. One natural way to estimate this is by
averaging the rewards actually received when the action was selected. In other words, if at the th play
action has been chosen times prior to , yielding rewards , then its value is estimated
to be

(2.1)

If , then we define instead as some default value, such as . As , by

the law of large numbers converges to . We call this the sample-average method for
estimating action values because each estimate is a simple average of the sample of relevant rewards. Of
course this is just one way to estimate action values, and not necessarily the best one. Nevertheless, for
now let us stay with this simple estimation method and turn to the question of how the estimates might
be used to select actions.

The simplest action selection rule is to select the action (or one of the actions) with highest estimated
action value, that is, to select on play one of the greedy actions, , for which

. This method always exploits current knowledge to maximize immediate
reward; it spends no time at all sampling apparently inferior actions to see if they might really be better.
A simple alternative is to behave greedily most of the time, but every once in a while, say with small

probability , instead select an action at random, uniformly, independently of the action-value

estimates. We call methods using this near-greedy action selection rule -greedy methods. An
advantage of these methods is that, in the limit as the number of plays increases, every action will be
sampled an infinite number of times, guaranteeing that for all , and thus ensuring that all the

 converge to . This of course implies that the probability of selecting the optimal action
converges to greater than , that is, to near certainty. These are just asymptotic guarantees, however,
and say little about the practical effectiveness of the methods.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node16.html (1 di 3)22/06/2005 9.05.26

2.2 Action-Value Methods

To roughly assess the relative effectiveness of the greedy and -greedy methods, we compared them
numerically on a suite of test problems. This is a set of 2000 randomly generated -armed bandit tasks
with . For each action, , the rewards were selected from a normal (Gaussian) probability

distribution with mean and variance . The 2000 -armed bandit tasks were generated by

reselecting the 2000 times, each according to a normal distribution with mean and variance .
Averaging over tasks, we can plot the performance and behavior of various methods as they improve
with experience over 1000 plays, as in Figure 2.1. We call this suite of test tasks the 10-armed testbed.

Figure 2.1:Average performance of -greedy action-value methods on the 10-armed testbed. These
data are averages over 2000 tasks. All methods used sample averages as their action-value estimates.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node16.html (2 di 3)22/06/2005 9.05.26

2.2 Action-Value Methods

Figure 2.1 compares a greedy method with two -greedy methods (and), as
described above, on the 10-armed testbed. Both methods formed their action-value estimates using the
sample-average technique. The upper graph shows the increase in expected reward with experience. The
greedy method improved slightly faster than the other methods at the very beginning, but then leveled
off at a lower level. It achieved a reward per step of only about 1, compared with the best possible of
about 1.55 on this testbed. The greedy method performs significantly worse in the long run because it
often gets stuck performing suboptimal actions. The lower graph shows that the greedy method found
the optimal action in only approximately one-third of the tasks. In the other two-thirds, its initial samples

of the optimal action were disappointing, and it never returned to it. The -greedy methods eventually
perform better because they continue to explore, and to improve their chances of recognizing the optimal
action. The method explores more, and usually finds the optimal action earlier, but never
selects it more than 91% of the time. The method improves more slowly, but eventually

performs better than the method on both performance measures. It is also possible to reduce
over time to try to get the best of both high and low values.

The advantage of -greedy over greedy methods depends on the task. For example, suppose the reward
variance had been larger, say 10 instead of 1. With noisier rewards it takes more exploration to find the

optimal action, and -greedy methods should fare even better relative to the greedy method. On the
other hand, if the reward variances were zero, then the greedy method would know the true value of each
action after trying it once. In this case the greedy method might actually perform best because it would
soon find the optimal action and then never explore. But even in the deterministic case, there is a large
advantage to exploring if we weaken some of the other assumptions. For example, suppose the bandit
task were nonstationary, that is, that the true values of the actions changed over time. In this case
exploration is needed even in the deterministic case to make sure one of the nongreedy actions has not
changed to become better than the greedy one. As we will see in the next few chapters, effective
nonstationarity is the case most commonly encountered in reinforcement learning. Even if the underlying
task is stationary and deterministic, the learner faces a set of banditlike decision tasks each of which
changes over time due to the learning process itself. Reinforcement learning requires a balance between
exploration and exploitation.

Exercise 2.1 In the comparison shown in Figure 2.1, which method will perform best in the long run in
terms of cumulative reward and cumulative probability of selecting the best action? How much better
will it be?

Next: 2.3 Softmax Action Selection Up: 2. Evaluative Feedback Previous: 2.1 An -Armed Bandit
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node16.html (3 di 3)22/06/2005 9.05.26

2.3 Softmax Action Selection

Next: 2.4 Evaluation Versus Instruction Up: 2. Evaluative Feedback Previous: 2.2 Action-Value
Methods Contents

2.3 Softmax Action Selection

Although -greedy action selection is an effective and popular means of balancing exploration and
exploitation in reinforcement learning, one drawback is that when it explores it chooses equally
among all actions. This means that it is as likely to choose the worst-appearing action as it is to
choose the next-to-best action. In tasks where the worst actions are very bad, this may be
unsatisfactory. The obvious solution is to vary the action probabilities as a graded function of
estimated value. The greedy action is still given the highest selection probability, but all the others
are ranked and weighted according to their value estimates. These are called softmax action selection
rules. The most common softmax method uses a Gibbs, or Boltzmann, distribution. It chooses action

 on the th play with probability

 (2.2)

where is a positive parameter called the temperature. High temperatures cause the actions to be all
(nearly) equiprobable. Low temperatures cause a greater difference in selection probability for
actions that differ in their value estimates. In the limit as , softmax action selection becomes
the same as greedy action selection. Of course, the softmax effect can be produced in a large number
of ways other than by a Gibbs distribution. For example, one could simply add a random number

from a long-tailed distribution to each and then pick the action whose sum was largest.

Whether softmax action selection or -greedy action selection is better is unclear and may depend
on the task and on human factors. Both methods have only one parameter that must be set. Most

people find it easier to set the parameter with confidence; setting requires knowledge of the
likely action values and of powers of . We know of no careful comparative studies of these two
simple action-selection rules.

Exercise 2.2 (programming) How does the softmax action selection method using the Gibbs
distribution fare on the 10-armed testbed? Implement the method and run it at several temperatures to

produce graphs similar to those in Figure 2.1. To verify your code, first implement the -greedy
methods and reproduce some specific aspect of the results in Figure 2.1.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node17.html (1 di 2)22/06/2005 9.05.28

2.3 Softmax Action Selection

Exercise 2.3 Show that in the case of two actions, the softmax operation using the Gibbs
distribution becomes the logistic, or sigmoid, function commonly used in artificial neural networks.
What effect does the temperature parameter have on the function?

Next: 2.4 Evaluation Versus Instruction Up: 2. Evaluative Feedback Previous: 2.2 Action-Value
Methods Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node17.html (2 di 2)22/06/2005 9.05.28

2.4 Evaluation Versus Instruction

Next: 2.5 Incremental Implementation Up: 2. Evaluative Feedback Previous: 2.3 Softmax Action
Selection Contents

2.4 Evaluation Versus Instruction

The -armed bandit problem we considered above is a case in which the feedback is purely evaluative.
The reward received after each action gives some information about how good the action was, but it says
nothing at all about whether the action was correct or incorrect, that is, whether it was a best action or
not. Here, correctness is a relative property of actions that can be determined only by trying them all and
comparing their rewards. In this sense the problem is inherently one requiring explicit search among the
alternative actions. You have to perform some form of the generate-and-test method whereby you try
actions, observe the outcomes, and selectively retain those that are the most effective. This is learning by
selection, in contrast to learning by instruction, and all reinforcement learning methods have to use it in
one form or another.

This contrasts sharply with supervised learning, where the feedback from the environment directly
indicates what the correct action should have been. In this case there is no need to search: whatever
action you try, you will be told what the right one would have been. There is no need to try a variety of
actions; the instructive "feedback" is typically independent of the action selected (so is not really
feedback at all). It might still be necessary to search in the parameter space of the supervised learning
system (e.g., the weight space of a neural network), but searching in the space of actions is not required.

Of course, supervised learning is usually applied to problems that are much more complex in some ways
than the -armed bandit. In supervised learning there is not one situation in which action is taken, but a
large set of different situations, each of which must be responded to correctly. The main problem facing
a supervised learning system is to construct a mapping from situations to actions that mimics the correct
actions specified by the environment and that generalizes correctly to new situations. A supervised
learning system cannot be said to learn to control its environment because it follows, rather than
influences, the instructive information it receives. Instead of trying to make its environment behave in a
certain way, it tries to make itself behave as instructed by its environment.

Focusing on the special case of a single situation that is encountered repeatedly helps make plain the
distinction between evaluation and instruction. Suppose there are 100 possible actions and you select
action number 32. Evaluative feedback would give you a score, say 7.2, for that action, whereas
instructive training information would say what other action, say action number 67, would actually have
been correct. The latter is clearly much more informative training information. Even if instructional
information is noisy, it is still more informative than evaluative feedback. It is always true that a single
instruction can be used to advantage to direct changes in the action selection rule, whereas evaluative
feedback must be compared with that of other actions before any inferences can be made about action
selection.2.1

The difference between evaluative feedback and instructive information remains significant even if there

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node18.html (1 di 5)22/06/2005 9.05.32

2.4 Evaluation Versus Instruction

are only two actions and two possible rewards. For these binary bandit tasks, let us call the two rewards
success and failure. If you received success, then you might reasonably infer that whatever action you
selected was correct, and if you received failure, then you might infer that whatever action you did not
select was correct. You could then keep a tally of how often each action was (inferred to be) correct and
select the action that was correct most often. Let us call this the supervised algorithm because it
corresponds most closely to what a supervised learning method might do in the case of a single input
pattern. If the rewards are deterministic, then the inferences of the supervised algorithm are all correct
and it performs excellently. If the rewards are stochastic, then the picture is more complicated.

In the stochastic case, a particular binary bandit task is defined by two numbers, the probabilities of
success for each possible action. The space of all possible tasks is thus a unit square, as shown in Figure
2.2. The upper-left and lower-right quadrants correspond to relatively easy tasks for which the
supervised algorithm would work well. For these, the probability of success for the better action is
greater than and the probability of success for the poorer action is less than . For these tasks, the
action inferred to be correct (as described above) will actually be the correct action more than half the
time.

Figure 2.2:The easy and difficult regions in the space of all binary bandit tasks.

However, binary bandit tasks in the other two quadrants of Figure 2.2 are more difficult and cannot be
solved effectively by the supervised algorithm. For example, consider a task with success probabilities
0.1 and 0.2, corresponding to point A in the lower-left difficult quadrant of Figure 2.2. Because both
actions produce failure at least 80% of the time, any method that takes failure as an indication that the
other action was correct will oscillate between the two actions, never settling on the better one. Now
consider a task with success probabilities 0.8 and 0.9, corresponding to point B in the upper-right
difficult quadrant of Figure 2.2. In this case both actions produce success almost all the time. Any
method that takes success as an indication of correctness can easily become stuck selecting the wrong

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node18.html (2 di 5)22/06/2005 9.05.32

2.4 Evaluation Versus Instruction

action.

Figure 2.3 shows the average behavior of the supervised algorithm and several other algorithms on the
binary bandit tasks corresponding to points A and B. For comparison, also shown is the behavior of an

-greedy action-value method () as described in Section 2.2. In both tasks, the supervised
algorithm learned to select the better action only slightly more than half the time.

Figure 2.3:Performance of selected algorithms on the binary bandit tasks corresponding to points A
and B in Figure 2.2. These data are averages over 2000 runs.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node18.html (3 di 5)22/06/2005 9.05.32

2.4 Evaluation Versus Instruction

The graphs in Figure 2.3 also show the average behavior of two other algorithms, known as and

. These are classical methods from the field of learning automata that follow a logic similar to
that of the supervised algorithm. Both methods are stochastic, updating the probabilities of selecting

each action, denoted and . The method infers the correct action just as the supervised
algorithm does, and then adjusts its probabilities as follows. If the action inferred to be correct on play

was , then is incremented a fraction, , of the way from its current value toward 1:

(2.3)

The probability of the other action is adjusted inversely, so that the two probabilities sum to 1. For the
results shown in Figure 2.3, was . The idea of is similar to that of the supervised algorithm,

only it is stochastic. Rather than committing totally to the action inferred to be best, gradually
increases its probability.2.2

The name stands for "linear, reward-penalty," meaning that the update (2.3) is linear in the
probabilities and that the update is performed on both success (reward) plays and failure (penalty) plays.
The name stands for "linear, reward-inaction." This algorithm is identical to except that it
updates its probabilities only upon success plays; failure plays are ignored entirely. The results in
Figure 2.3 show that performs little, if any, better than the supervised algorithm on the binary

bandit tasks corresponding to points A and B in Figure 2.2. eventually performs very well on the
A task, but not on the B task, and learns slowly in both cases.

Binary bandit tasks are an instructive special case blending aspects of supervised and reinforcement
learning problems. Because the rewards are binary, it is possible to infer something about the correct
action given just a single reward. In some instances of such problems, these inferences are quite
reasonable and lead to effective algorithms. In other instances, however, such inferences are less
appropriate and lead to poor behavior. In bandit tasks with nonbinary rewards, such as in the 10-armed
testbed, it is not at all clear how the ideas behind these inferences could be applied to produce effective
algorithms. All of these are very simple problems, but already we see the need for capabilities beyond
those of supervised learning methods.

Exercise 2.4 Consider a class of simplified supervised learning tasks in which there is only one
situation (input pattern) and two actions. One action, say , is correct and the other, , is incorrect. The
instruction signal is noisy: it instructs the wrong action with probability ; that is, with probability it
says that is correct. You can think of these tasks as binary bandit tasks if you treat agreeing with the
(possibly wrong) instruction signal as success, and disagreeing with it as failure. Discuss the resulting
class of binary bandit tasks. Is anything special about these tasks? How does the supervised algorithm
perform on these tasks?

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node18.html (4 di 5)22/06/2005 9.05.32

2.4 Evaluation Versus Instruction

Next: 2.5 Incremental Implementation Up: 2. Evaluative Feedback Previous: 2.3 Softmax Action
Selection Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node18.html (5 di 5)22/06/2005 9.05.32

2.5 Incremental Implementation

Next: 2.6 Tracking a Nonstationary Up: 2. Evaluative Feedback Previous: 2.4 Evaluation Versus Instruction Contents

2.5 Incremental Implementation

The action-value methods we have discussed so far all estimate action values as sample averages of observed rewards. The obvious
implementation is to maintain, for each action , a record of all the rewards that have followed the selection of that action. Then,
when the estimate of the value of action a is needed at time , it can be computed according to (2.1), which we repeat here:

where are all the rewards received following all selections of action prior to play . A problem with this straightforward
implementation is that its memory and computational requirements grow over time without bound. That is, each additional reward
following a selection of action requires more memory to store it and results in more computation being required to determine

.

As you might suspect, this is not really necessary. It is easy to devise incremental update formulas for computing averages with small,

constant computation required to process each new reward. For some action, let denote the average of its first rewards (not to be

confused with , the average for action at the th play). Given this average and a st reward, , then the average of
all rewards can be computed by

 (2.4)

which holds even for , obtaining for arbitrary . This implementation requires memory only for and , and only
the small computation (2.4) for each new reward.

The update rule (2.4) is of a form that occurs frequently throughout this book. The general form is

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node19.html (1 di 2)22/06/2005 9.05.37

2.5 Incremental Implementation

(2.5)

The expression is an error in the estimate. It is reduced by taking a step toward the "Target." The target
is presumed to indicate a desirable direction in which to move, though it may be noisy. In the case above, for example, the target is

the reward.

Note that the step-size parameter () used in the incremental method described above changes from time step to time step.

In processing the th reward for action , that method uses a step-size parameter of . In this book we denote the step-size parameter

by the symbol or, more generally, by . For example, the above incremental implementation of the sample-average method is

described by the equation . Accordingly, we sometimes use the informal shorthand to refer to this case, leaving
the action dependence implicit.

Exercise 2.5 Give pseudocode for a complete algorithm for the -armed bandit problem. Use greedy action selection and

incremental computation of action values with step-size parameter. Assume a function that takes an action and
returns a reward. Use arrays and variables; do not subscript anything by the time index . Indicate how the action values are initialized
and updated after each reward.

Next: 2.6 Tracking a Nonstationary Up: 2. Evaluative Feedback Previous: 2.4 Evaluation Versus Instruction Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node19.html (2 di 2)22/06/2005 9.05.37

2.6 Tracking a Nonstationary Problem

Next: 2.7 Optimistic Initial Values Up: 2. Evaluative Feedback Previous: 2.5 Incremental
Implementation Contents

2.6 Tracking a Nonstationary Problem

The averaging methods discussed so far are appropriate in a stationary environment, but not if the
bandit is changing over time. As noted earlier, we often encounter reinforcement learning problems
that are effectively nonstationary. In such cases it makes sense to weight recent rewards more heavily
than long-past ones. One of the most popular ways of doing this is to use a constant step-size

parameter. For example, the incremental update rule (2.4) for updating an average of the past
rewards is modified to be

(2.6)

where the step-size parameter, , , is constant. This results in being a weighted

average of past rewards and the initial estimate :

 (2.7)

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node20.html (1 di 3)22/06/2005 9.05.42

2.6 Tracking a Nonstationary Problem

We call this a weighted average because the sum of the weights is

, as you can check yourself. Note that the weight,

, given to the reward depends on how many rewards ago, , it was observed.
The quantity is less than , and thus the weight given to decreases as the number of
intervening rewards increases. In fact, the weight decays exponentially according to the exponent on

. Accordingly, this is sometimes called an exponential, recency-weighted average.

Sometimes it is convenient to vary the step-size parameter from step to step. Let denote the
step-size parameter used to process the reward received after the th selection of action . As we have

noted, the choice results in the sample-average method, which is guaranteed to converge
to the true action values by the law of large numbers. But of course convergence is not guaranteed for

all choices of the sequence . A well-known result in stochastic approximation theory gives
us the conditions required to assure convergence with probability 1:

(2.8)

The first condition is required to guarantee that the steps are large enough to eventually overcome
any initial conditions or random fluctuations. The second condition guarantees that eventually the
steps become small enough to assure convergence.

Note that both convergence conditions are met for the sample-average case, , but not for

the case of constant step-size parameter, . In the latter case, the second condition is not
met, indicating that the estimates never completely converge but continue to vary in response to the
most recently received rewards. As we mentioned above, this is actually desirable in a nonstationary
environment, and problems that are effectively nonstationary are the norm in reinforcement learning.
In addition, sequences of step-size parameters that meet the conditions (2.8) often converge very
slowly or need considerable tuning in order to obtain a satisfactory convergence rate. Although
sequences of step-size parameters that meet these convergence conditions are often used in
theoretical work, they are seldom used in applications and empirical research.

Exercise 2.6 If the step-size parameters, , are not constant, then the estimate is a
weighted average of previously received rewards with a weighting different from that given by (2.7).
What is the weighting on each prior reward for the general case?

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node20.html (2 di 3)22/06/2005 9.05.42

2.6 Tracking a Nonstationary Problem

Exercise 2.7 (programming) Design and conduct an experiment to demonstrate the difficulties that
sample-average methods have for nonstationary problems. Use a modified version of the 10-armed

testbed in which all the start out equal and then take independent random walks. Prepare plots
like Figure 2.1 for an action-value method using sample averages, incrementally computed by

, and another action-value method using a a constant step-size parameter, . Use
 and, if necessary, runs longer than 1000 plays.

Next: 2.7 Optimistic Initial Values Up: 2. Evaluative Feedback Previous: 2.5 Incremental
Implementation Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node20.html (3 di 3)22/06/2005 9.05.42

2.7 Optimistic Initial Values

Next: 2.8 Reinforcement Comparison Up: 2. Evaluative Feedback Previous: 2.6 Tracking a
Nonstationary Contents

2.7 Optimistic Initial Values

All the methods we have discussed so far are dependent to some extent on the initial action-value

estimates, . In the language of statistics, these methods are biased by their initial estimates. For
the sample-average methods, the bias disappears once all actions have been selected at least once, but for
methods with constant , the bias is permanent, though decreasing over time as given by (2.7). In
practice, this kind of bias is usually not a problem, and can sometimes be very helpful. The downside is
that the initial estimates become, in effect, a set of parameters that must be picked by the user, if only to
set them all to zero. The upside is that they provide an easy way to supply some prior knowledge about
what level of rewards can be expected.

Initial action values can also be used as a simple way of encouraging exploration. Suppose that instead
of setting the initial action values to zero, as we did in the 10-armed testbed, we set them all to +5.

Recall that the in this problem are selected from a normal distribution with mean 0 and variance
1. An initial estimate of +5 is thus wildly optimistic. But this optimism encourages action-value methods
to explore. Whichever actions are initially selected, the reward is less than the starting estimates; the
learner switches to other actions, being "disappointed" with the rewards it is receiving. The result is that
all actions are tried several times before the value estimates converge. The system does a fair amount of
exploration even if greedy actions are selected all the time.

Figure 2.4:The effect of optimistic initial action-value estimates on the 10-armed testbed.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node21.html (1 di 2)22/06/2005 9.05.44

2.7 Optimistic Initial Values

Figure 2.4 shows the performance on the 10-armed bandit testbed of a greedy method using

, for all . For comparison, also shown is an -greedy method with . Both
methods used a constant step-size parameter, . Initially, the optimistic method performs worse
because it explores more, but eventually it performs better because its exploration decreases with time.
We call this technique for encouraging exploration optimistic initial values. We regard it as a simple
trick that can be quite effective on stationary problems, but it is far from being a generally useful
approach to encouraging exploration. For example, it is not well suited to nonstationary problems
because its drive for exploration is inherently temporary. If the task changes, creating a renewed need for
exploration, this method cannot help. Indeed, any method that focuses on the initial state in any special
way is unlikely to help with the general nonstationary case. The beginning of time occurs only once, and
thus we should not focus on it too much. This criticism applies as well to the sample-average methods,
which also treat the beginning of time as a special event, averaging all subsequent rewards with equal
weights. Nevertheless, all of these methods are very simple, and one of them or some simple
combination of them is often adequate in practice. In the rest of this book we make frequent use of
several of these simple exploration techniques.

Exercise 2.8 The results shown in Figure 2.4 should be quite reliable because they are averages over
2000 individual, randomly chosen 10-armed bandit tasks. Why, then, are there oscillations and spikes in
the early part of the curve for the optimistic method? What might make this method perform particularly
better or worse, on average, on particular early plays?

Next: 2.8 Reinforcement Comparison Up: 2. Evaluative Feedback Previous: 2.6 Tracking a
Nonstationary Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node21.html (2 di 2)22/06/2005 9.05.44

2.8 Reinforcement Comparison

Next: 2.9 Pursuit Methods Up: 2. Evaluative Feedback Previous: 2.7 Optimistic Initial Values
Contents

2.8 Reinforcement Comparison

A central intuition underlying reinforcement learning is that actions followed by large rewards should be
made more likely to recur, whereas actions followed by small rewards should be made less likely to
recur. But how is the learner to know what constitutes a large or a small reward? If an action is taken and
the environment returns a reward of 5, is that large or small? To make such a judgment one must
compare the reward with some standard or reference level, called the reference reward. A natural choice
for the reference reward is an average of previously received rewards. In other words, a reward is
interpreted as large if it is higher than average, and small if it is lower than average. Learning methods
based on this idea are called reinforcement comparison methods. These methods are sometimes more
effective than action-value methods. They are also the precursors to actor-critic methods, a class of
methods for solving the full reinforcement learning problem that we present later.

Reinforcement comparison methods typically do not maintain estimates of action values, but only of an
overall reward level. In order to pick among the actions, they maintain a separate measure of their

preference for each action. Let us denote the preference for action on play by . The preferences
might be used to determine action-selection probabilities according to a softmax relationship, such as

(2.9)

where denotes the probability of selecting action on the th play. The reinforcement comparison
idea is used in updating the action preferences. After each play, the preference for the action selected on
that play, , is incremented by the difference between the reward, , and the reference reward, :

(2.10)

where is a positive step-size parameter. This equation implements the idea that high rewards should
increase the probability of reselecting the action taken, and low rewards should decrease its probability.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node22.html (1 di 3)22/06/2005 9.05.47

2.8 Reinforcement Comparison

The reference reward is an incremental average of all recently received rewards, whichever actions were
taken. After the update (2.10), the reference reward is updated:

(2.11)

where , , is a step-size parameter as usual. The initial value of the reference reward, , can
be set either optimistically, to encourage exploration, or according to prior knowledge. The initial values

of the action preferences can all be set to zero. Constant is a good choice here because the
distribution of rewards is changing over time as action selection improves. We see here the first case in
which the learning problem is effectively nonstationary even though the underlying problem is
stationary.

Figure 2.5:Reinforcement comparison methods versus action-value methods on the 10-armed testbed.

Reinforcement comparison methods can be very effective, sometimes performing even better than action-
value methods. Figure 2.5 shows the performance of the above algorithm () on the 10-armed

testbed. The performances of -greedy () action-value methods with and are
also shown for comparison.

Exercise 2.9 The softmax action-selection rule given for reinforcement comparison methods (2.9) lacks
the temperature parameter, , used in the earlier softmax equation (2.2). Why do you think this was
done? Has any important flexibility been lost here by omitting ?

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node22.html (2 di 3)22/06/2005 9.05.47

2.8 Reinforcement Comparison

Exercise 2.10 The reinforcement comparison methods described here have two step-size parameters,

 and . Could we, in general, reduce this to one parameter by choosing ? What would be lost
by doing this?

Exercise 2.11 (programming) Suppose the initial reference reward, , is far too low. Whatever action
is selected first will then probably increase in its probability of selection. Thus it is likely to be selected
again, and increased in probability again. In this way an early action that is no better than any other
could crowd out all other actions for a long time. To counteract this effect, it is common to add a factor

of to the increment in (2.10). Design and implement an experiment to determine whether
or not this really improves the performance of the algorithm.

Next: 2.9 Pursuit Methods Up: 2. Evaluative Feedback Previous: 2.7 Optimistic Initial Values
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node22.html (3 di 3)22/06/2005 9.05.47

2.9 Pursuit Methods

Next: 2.10 Associative Search Up: 2. Evaluative Feedback Previous: 2.8 Reinforcement Comparison
Contents

2.9 Pursuit Methods

Another class of effective learning methods for the -armed bandit problem are pursuit methods. Pursuit
methods maintain both action-value estimates and action preferences, with the preferences continually
"pursuing" the action that is greedy according to the current action-value estimates. In the simplest pursuit

method, the action preferences are the probabilities, , with which each action, , is selected on play .

After each play, the probabilities are updated so as to make the greedy action more likely to be selected. After

the th play, let denote the greedy action (or a random sample from the greedy

actions if there are more than one) for the ()st play. Then the probability of selecting is

incremented a fraction, , of the way toward 1:

(2.12)

while the probabilities of selecting the other actions are decremented toward zero:

(2.13)

The action values, , are updated in one of the ways discussed in the preceding sections, for example,
to be sample averages of the observed rewards, using (2.1).

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node23.html (1 di 3)22/06/2005 9.05.50

2.9 Pursuit Methods

Figure 2.6:Performance of the pursuit method vis-á-vis action-value and reinforcement comparison methods
on the 10-armed testbed.

Figure 2.6 shows the performance of the pursuit algorithm described above when the action values are

estimated using sample averages (incrementally computed using). In these results, the initial action

probabilities were , for all , and the parameter was 0.01. For comparison, we also show the

performance of an -greedy method () with action values also estimated using sample averages. The
performance of the reinforcement comparison algorithm from the previous section is also shown. Although the
pursuit algorithm performs the best of these three on this task at these parameter settings, the ordering could
well be different in other cases. All three of these methods appear to have their uses and advantages.

Exercise 2.12 An -greedy method always selects a random action on a fraction of the time steps. How
about the pursuit algorithm? Will it eventually select the optimal action with probability approaching 1?

Exercise 2.13 For many of the problems we will encounter later in this book it is not feasible to update action
probabilities directly. To use pursuit methods in these cases it is necessary to modify them to use action
preferences that are not probabilities but that determine action probabilities according to a softmax relationship
such as the Gibbs distribution (2.9). How can the pursuit algorithm described above be modified to be used in
this way? Specify a complete algorithm, including the equations for action values, preferences, and
probabilities at each play.

Exercise 2.14 (programming) How well does the algorithm you proposed in Exercise 2.13 perform? Design
and run an experiment assessing the performance of your method. Discuss the role of parameter settings in
your experiment.

Exercise 2.15 The pursuit algorithm described above is suited only for stationary environments because the

action probabilities converge, albeit slowly, to certainty. How could you combine the pursuit idea with the -
greedy idea to obtain a method with performance close to that of the pursuit algorithm, but that always
continues to explore to some small degree?

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node23.html (2 di 3)22/06/2005 9.05.50

2.9 Pursuit Methods

Next: 2.10 Associative Search Up: 2. Evaluative Feedback Previous: 2.8 Reinforcement Comparison
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node23.html (3 di 3)22/06/2005 9.05.50

2.10 Associative Search

Next: 2.11 Conclusions Up: 2. Evaluative Feedback Previous: 2.9 Pursuit Methods Contents

2.10 Associative Search

So far in this chapter we have considered only nonassociative tasks, in which there is no need to
associate different actions with different situations. In these tasks the learner either tries to find a
single best action when the task is stationary, or tries to track the best action as it changes over time
when the task is nonstationary. However, in a general reinforcement learning task there is more than
one situation, and the goal is to learn a policy: a mapping from situations to the actions that are best
in those situations. To set the stage for the full problem, we briefly discuss the simplest way in which
nonassociative tasks extend to the associative setting.

As an example, suppose there are several different -armed bandit tasks, and that on each play you
confront one of these chosen at random. Thus, the bandit task changes randomly from play to play.
This would appear to you as a single, nonstationary -armed bandit task whose true action values
change randomly from play to play. You could try using one of the methods described in this chapter
that can handle nonstationarity, but unless the true action values change slowly, these methods will
not work very well. Now suppose, however, that when a bandit task is selected for you, you are given
some distinctive clue about its identity (but not its action values). Maybe you are facing an actual slot
machine that changes the color of its display as it changes its action values. Now you can learn a
policy associating each task, signaled by the color you see, with the best action to take when facing
that task--for instance, if red, play arm 1; if green, play arm 2. With the right policy you can usually
do much better than you could in the absence of any information distinguishing one bandit task from
another.

This is an example of an associative search task, so called because it involves both trial-and-error
learning in the form of search for the best actions and association of these actions with the situations
in which they are best. Associative search tasks are intermediate between the -armed bandit
problem and the full reinforcement learning problem. They are like the full reinforcement learning
problem in that they involve learning a policy, but like our version of the -armed bandit problem in
that each action affects only the immediate reward. If actions are allowed to affect the next situation
as well as the reward, then we have the full reinforcement learning problem. We present this problem
in the next chapter and consider its ramifications throughout the rest of the book.

Exercise 2.16 Suppose you face a binary bandit task whose true action values change randomly
from play to play. Specifically, suppose that for any play the true values of actions and are
respectively 0.1 and 0.2 with probability 0.5 (case A), and 0.9 and 0.8 with probability 0.5 (case B).
If you are not able to tell which case you face at any play, what is the best expectation of success you
can achieve and how should you behave to achieve it? Now suppose that on each play you are told if
you are facing case A or case B (although you still don't know the true action values). This is an
associative search task. What is the best expectation of success you can achieve in this task, and how
should you behave to achieve it?

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node24.html (1 di 2)22/06/2005 9.05.51

2.10 Associative Search

Next: 2.11 Conclusions Up: 2. Evaluative Feedback Previous: 2.9 Pursuit Methods Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node24.html (2 di 2)22/06/2005 9.05.51

2.11 Conclusions

Next: 2.12 Bibliographical and Historical Up: 2. Evaluative Feedback Previous: 2.10 Associative
Search Contents

2.11 Conclusions

We have presented in this chapter some simple ways of balancing exploration and exploitation. The

-greedy methods choose randomly a small fraction of the time, the softmax methods grade their
action probabilities according to the current action-value estimates, and the pursuit methods keep
taking steps toward the current greedy action. Are these simple methods really the best we can do in
terms of practically useful algorithms? So far, the answer appears to be "yes." Despite their
simplicity, in our opinion the methods presented in this chapter can fairly be considered the state of
the art. There are more sophisticated methods, but their complexity and assumptions make them
impractical for the full reinforcement learning problem that is our real focus. Starting in Chapter 5 we
present learning methods for solving the full reinforcement learning problem that use in part the
simple methods explored in this chapter.

Although the simple methods explored in this chapter may be the best we can do at present, they are
far from a fully satisfactory solution to the problem of balancing exploration and exploitation. We
conclude this chapter with a brief look at some of the current ideas that, while not yet practically
useful, may point the way toward better solutions.

One promising idea is to use estimates of the uncertainty of the action-value estimates to direct and
encourage exploration. For example, suppose there are two actions estimated to have values slightly
less than that of the greedy action, but that differ greatly in their degree of uncertainty. One estimate
is nearly certain; perhaps that action has been tried many times and many rewards have been
observed. The uncertainty for this action's estimated value is so low that its true value is very unlikely
to be higher than the value of the greedy action. The other action is known less well, and the estimate
of its value is very uncertain. The true value of this action could easily be better than that of the
greedy action. Obviously, it makes more sense to explore the second action than the first.

This line of thought leads to interval estimation methods. These methods estimate for each action a
confidence interval of the action's value. That is, rather than learning that the action's value is
approximately 10, they learn that it is between 9 and 11 with, say, 95% confidence. The action
selected is then the action whose confidence interval has the highest upper limit. This encourages
exploration of actions that are uncertain and have a chance of ultimately being the best action. In
some cases one can obtain guarantees that the optimal action has been found with confidence equal to
the confidence factor (e.g., the 95%). Unfortunately, interval estimation methods are problematic in
practice because of the complexity of the statistical methods used to estimate the confidence
intervals. Moreover, the underlying statistical assumptions required by these methods are often not
satisfied. Nevertheless, the idea of using confidence intervals, or some other measure of uncertainty,
to encourage exploration of particular actions is sound and appealing.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node25.html (1 di 2)22/06/2005 9.05.52

2.11 Conclusions

There is also a well-known algorithm for computing the Bayes optimal way to balance exploration
and exploitation. This method is computationally intractable when done exactly, but there may be
efficient ways to approximate it. In this method we assume that we know the distribution of problem
instances, that is, the probability of each possible set of true action values. Given any action selection,
we can then compute the probability of each possible immediate reward and the resultant posterior
probability distribution over action values. This evolving distribution becomes the information state
of the problem. Given a horizon, say 1000 plays, one can consider all possible actions, all possible
resulting rewards, all possible next actions, all next rewards, and so on for all 1000 plays. Given the
assumptions, the rewards and probabilities of each possible chain of events can be determined, and
one need only pick the best. But the tree of possibilities grows extremely rapidly; even if there are
only two actions and two rewards, the tree will have leaves. This approach effectively turns the
bandit problem into an instance of the full reinforcement learning problem. In the end, we may be
able to use reinforcement learning methods to approximate this optimal solution. But that is a topic
for current research and beyond the scope of this introductory book.

The classical solution to balancing exploration and exploitation in -armed bandit problems is to
compute special functions called Gittins indices. These provide an optimal solution to a certain kind
of bandit problem more general than that considered here but that assumes the prior distribution of
possible problems is known. Unfortunately, neither the theory nor the computational tractability of
this method appear to generalize to the full reinforcement learning problem that we consider in the
rest of the book.

Next: 2.12 Bibliographical and Historical Up: 2. Evaluative Feedback Previous: 2.10 Associative
Search Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node25.html (2 di 2)22/06/2005 9.05.52

2.12 Bibliographical and Historical Remarks

Next: 3. The Reinforcement Learning Up: 2. Evaluative Feedback Previous: 2.11 Conclusions
Contents

Subsections

● 2.1
● 2.2
● 2.3
● 2.4
● 2.5-6
● 2.8
● 2.9
● 2.10
● 2.11

2.12 Bibliographical and Historical Remarks

2.1

Bandit problems have been studied in statistics, engineering, and psychology. In statistics, bandit
problems fall under the heading "sequential design of experiments," introduced by Thompson (1933,
1934) and Robbins (1952), and studied by Bellman (1956). Berry and Fristedt (1985) provide an
extensive treatment of bandit problems from the perspective of statistics. Narendra and Thathachar
(1989) treat bandit problems from the engineering perspective, providing a good discussion of the
various theoretical traditions that have focused on them. In psychology, bandit problems have played
roles in statistical learning theory (e.g., Bush and Mosteller, 1955; Estes, 1950).

The term greedy is often used in the heuristic search literature (e.g., Pearl, 1984). The conflict
between exploration and exploitation is known in control engineering as the conflict between
identification (or estimation) and control (e.g., Witten, 1976). Feldbaum (1965) called it the dual
control problem, referring to the need to solve the two problems of identification and control
simultaneously when trying to control a system under uncertainty. In discussing aspects of genetic
algorithms, Holland (1975) emphasized the importance of this conflict, referring to it as the conflict
between the need to exploit and the need for new information.

2.2

Action-value methods for our -armed bandit problem were first proposed by Thathachar and Sastry
(1985). These are often called estimator algorithms in the learning automata literature. The term

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node26.html (1 di 3)22/06/2005 9.05.54

2.12 Bibliographical and Historical Remarks

action value is due to Watkins (1989). The first to use -greedy methods may also have been
Watkins (1989, p. 187), but the idea is so simple that some earlier use seems likely.

2.3

The term softmax for the action selection rule (2.2) is due to Bridle (1990). This rule appears to have
been first proposed by Luce (1959). The parameter is called temperature in simulated annealing
algorithms (Kirkpatrick, Gelatt, and Vecchi, 1983).

2.4

The main argument and results in this section were first presented by Sutton (1984). Further analysis
of the relationship between evaluation and instruction has been presented by Barto (1985, 1991,
1992), and Barto and Anandan (1985). The unit-square representation of a binary bandit task used in
Figure 2.2 has been called a contingency space in experimental psychology (e.g., Staddon, 1983).

Narendra and Thathachar (1989) provide a comprehensive treatment of modern learning automata
theory and its applications. They also discuss similar algorithms from the statistical learning theory of
psychology. Other methods based on converting reinforcement learning experience into target actions
were developed by Widrow, Gupta, and Maitra (1973) and by Gällmo and Asplund (1995).

2.5-6

This material falls under the general heading of stochastic iterative algorithms, which is well covered
by Bertsekas and Tsitsiklis (1996).

2.8

Reinforcement comparison methods were extensively developed by Sutton (1984) and further refined
by Williams (1986, 1992), Kaelbling (1993a), and Dayan (1991). These authors analyzed many
variations of the idea, including other eligibility terms that may significantly improve performance.
Perhaps the earliest use of reinforcement comparison was by Barto, Sutton, and Brouwer (1981).

2.9

The pursuit algorithm is due to Thathachar and Sastry (1985).

2.10

The term associative search and the corresponding problem were introduced by Barto, Sutton, and
Brouwer (1981). The term associative reinforcement learning has also been used for associative
search (Barto and Anandan, 1985), but we prefer to reserve that term as a synonym for the full

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node26.html (2 di 3)22/06/2005 9.05.54

2.12 Bibliographical and Historical Remarks

reinforcement learning problem (as in Sutton, 1984). We note that Thorndike's Law of Effect (quoted
in Chapter 1) describes associative search by referring to the formation of associative links between
situations (states) and actions. According to the terminology of operant, or instrumental, conditioning
(e.g., Skinner, 1938), a discriminative stimulus is a stimulus that signals the presence of a particular
reinforcement contingency. In our terms, different discriminative stimuli correspond to different
states.

2.11

Interval estimation methods are due to Lai (1987) and Kaelbling (1993a). Bellman (1956) was the
first to show how dynamic programming could be used to compute the optimal balance between
exploration and exploitation within a Bayesian formulation of the problem. The survey by Kumar
(1985) provides a good discussion of Bayesian and non-Bayesian approaches to these problems. The
term information state comes from the literature on partially observable MDPs; see, e.g., Lovejoy
(1991). The Gittins index approach is due to Gittins and Jones (1974). Duff (1995) showed how it is
possible to learn Gittins indices for bandit problems through reinforcement learning.

Next: 3. The Reinforcement Learning Up: 2. Evaluative Feedback Previous: 2.11 Conclusions
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node26.html (3 di 3)22/06/2005 9.05.54

3. The Reinforcement Learning Problem

Next: 3.1 The Agent-Environment Interface Up: I. The Problem Previous: 2.12 Bibliographical and
Historical Contents

3. The Reinforcement Learning Problem

In this chapter we introduce the problem that we try to solve in the rest of the book. For us, this
problem defines the field of reinforcement learning: any method that is suited to solving this problem
we consider to be a reinforcement learning method.

Our objective in this chapter is to describe the reinforcement learning problem in a broad sense. We
try to convey the wide range of possible applications that can be framed as reinforcement learning
tasks. We also describe mathematically idealized forms of the reinforcement learning problem for
which precise theoretical statements can be made. We introduce key elements of the problem's
mathematical structure, such as value functions and Bellman equations. As in all of artificial
intelligence, there is a tension between breadth of applicability and mathematical tractability. In this
chapter we introduce this tension and discuss some of the trade-offs and challenges that it implies.

Subsections

● 3.1 The Agent-Environment Interface
● 3.2 Goals and Rewards
● 3.3 Returns
● 3.4 Unified Notation for Episodic and Continuing Tasks
● 3.5 The Markov Property
● 3.6 Markov Decision Processes
● 3.7 Value Functions
● 3.8 Optimal Value Functions
● 3.9 Optimality and Approximation
● 3.10 Summary
● 3.11 Bibliographical and Historical Remarks

❍ 3.1
❍ 3.3-4
❍ 3.5
❍ 3.6
❍ 3.7-8

Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node27.html22/06/2005 9.05.55

3.1 The Agent-Environment Interface

Next: 3.2 Goals and Rewards Up: 3. The Reinforcement Learning Previous: 3. The Reinforcement
Learning Contents

3.1 The Agent-Environment Interface

The reinforcement learning problem is meant to be a straightforward framing of the problem of
learning from interaction to achieve a goal. The learner and decision-maker is called the agent. The
thing it interacts with, comprising everything outside the agent, is called the environment. These
interact continually, the agent selecting actions and the environment responding to those actions and
presenting new situations to the agent.3.1 The environment also gives rise to rewards, special
numerical values that the agent tries to maximize over time. A complete specification of an
environment defines a task, one instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence of discrete time steps,
.3.2 At each time step , the agent receives some representation of the

environment's state, , where is the set of possible states, and on that basis selects an action,

, where is the set of actions available in state . One time step later, in part as a

consequence of its action, the agent receives a numerical reward, , and finds itself in a new
state, .3.3 Figure 3.1 diagrams the agent-environment interaction.

Figure 3.1:The agent-environment interaction in reinforcement learning.

At each time step, the agent implements a mapping from states to probabilities of selecting each

possible action. This mapping is called the agent's policy and is denoted , where is the
probability that if . Reinforcement learning methods specify how the agent changes its
policy as a result of its experience. The agent's goal, roughly speaking, is to maximize the total
amount of reward it receives over the long run.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node28.html (1 di 4)22/06/2005 9.05.57

3.1 The Agent-Environment Interface

This framework is abstract and flexible and can be applied to many different problems in many
different ways. For example, the time steps need not refer to fixed intervals of real time; they can
refer to arbitrary successive stages of decision-making and acting. The actions can be low-level
controls, such as the voltages applied to the motors of a robot arm, or high-level decisions, such as
whether or not to have lunch or to go to graduate school. Similarly, the states can take a wide variety
of forms. They can be completely determined by low-level sensations, such as direct sensor readings,
or they can be more high-level and abstract, such as symbolic descriptions of objects in a room. Some
of what makes up a state could be based on memory of past sensations or even be entirely mental or
subjective. For example, an agent could be in "the state" of not being sure where an object is, or of
having just been "surprised" in some clearly defined sense. Similarly, some actions might be totally
mental or computational. For example, some actions might control what an agent chooses to think
about, or where it focuses its attention. In general, actions can be any decisions we want to learn how
to make, and the states can be anything we can know that might be useful in making them.

In particular, the boundary between agent and environment is not often the same as the physical
boundary of a robot's or animal's body. Usually, the boundary is drawn closer to the agent than that.
For example, the motors and mechanical linkages of a robot and its sensing hardware should usually
be considered parts of the environment rather than parts of the agent. Similarly, if we apply the
framework to a person or animal, the muscles, skeleton, and sensory organs should be considered part
of the environment. Rewards, too, presumably are computed inside the physical bodies of natural and
artificial learning systems, but are considered external to the agent.

The general rule we follow is that anything that cannot be changed arbitrarily by the agent is
considered to be outside of it and thus part of its environment. We do not assume that everything in
the environment is unknown to the agent. For example, the agent often knows quite a bit about how
its rewards are computed as a function of its actions and the states in which they are taken. But we
always consider the reward computation to be external to the agent because it defines the task facing
the agent and thus must be beyond its ability to change arbitrarily. In fact, in some cases the agent
may know everything about how its environment works and still face a difficult reinforcement
learning task, just as we may know exactly how a puzzle like Rubik's cube works, but still be unable
to solve it. The agent-environment boundary represents the limit of the agent's absolute control, not
of its knowledge.

The agent-environment boundary can be located at different places for different purposes. In a
complicated robot, many different agents may be operating at once, each with its own boundary. For
example, one agent may make high-level decisions which form part of the states faced by a lower-
level agent that implements the high-level decisions. In practice, the agent-environment boundary is
determined once one has selected particular states, actions, and rewards, and thus has identified a
specific decision-making task of interest.

The reinforcement learning framework is a considerable abstraction of the problem of goal-directed
learning from interaction. It proposes that whatever the details of the sensory, memory, and control
apparatus, and whatever objective one is trying to achieve, any problem of learning goal-directed
behavior can be reduced to three signals passing back and forth between an agent and its
environment: one signal to represent the choices made by the agent (the actions), one signal to
represent the basis on which the choices are made (the states), and one signal to define the agent's

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node28.html (2 di 4)22/06/2005 9.05.57

3.1 The Agent-Environment Interface

goal (the rewards). This framework may not be sufficient to represent all decision-learning problems
usefully, but it has proved to be widely useful and applicable.

Of course, the particular states and actions vary greatly from application to application, and how they
are represented can strongly affect performance. In reinforcement learning, as in other kinds of
learning, such representational choices are at present more art than science. In this book we offer
some advice and examples regarding good ways of representing states and actions, but our primary
focus is on general principles for learning how to behave once the representations have been selected.

Example 3.1: Bioreactor Suppose reinforcement learning is being applied to determine moment-by-
moment temperatures and stirring rates for a bioreactor (a large vat of nutrients and bacteria used to
produce useful chemicals). The actions in such an application might be target temperatures and target
stirring rates that are passed to lower-level control systems that, in turn, directly activate heating
elements and motors to attain the targets. The states are likely to be thermocouple and other sensory
readings, perhaps filtered and delayed, plus symbolic inputs representing the ingredients in the vat
and the target chemical. The rewards might be moment-by-moment measures of the rate at which the
useful chemical is produced by the bioreactor. Notice that here each state is a list, or vector, of sensor
readings and symbolic inputs, and each action is a vector consisting of a target temperature and a
stirring rate. It is typical of reinforcement learning tasks to have states and actions with such
structured representations. Rewards, on the other hand, are always single numbers.

Example 3.2: Pick-and-Place Robot Consider using reinforcement learning to control the motion
of a robot arm in a repetitive pick-and-place task. If we want to learn movements that are fast and
smooth, the learning agent will have to control the motors directly and have low-latency information
about the current positions and velocities of the mechanical linkages. The actions in this case might
be the voltages applied to each motor at each joint, and the states might be the latest readings of joint
angles and velocities. The reward might be for each object successfully picked up and placed. To
encourage smooth movements, on each time step a small, negative reward can be given as a function
of the moment-to-moment "jerkiness" of the motion.

Example 3.3: Recycling Robot A mobile robot has the job of collecting empty soda cans in an
office environment. It has sensors for detecting cans, and an arm and gripper that can pick them up
and place them in an onboard bin; it runs on a rechargeable battery. The robot's control system has
components for interpreting sensory information, for navigating, and for controlling the arm and
gripper. High-level decisions about how to search for cans are made by a reinforcement learning
agent based on the current charge level of the battery. This agent has to decide whether the robot
should (1) actively search for a can for a certain period of time, (2) remain stationary and wait for
someone to bring it a can, or (3) head back to its home base to recharge its battery. This decision has
to be made either periodically or whenever certain events occur, such as finding an empty can. The
agent therefore has three actions, and its state is determined by the state of the battery. The rewards
might be zero most of the time, but then become positive when the robot secures an empty can, or
large and negative if the battery runs all the way down. In this example, the reinforcement learning
agent is not the entire robot. The states it monitors describe conditions within the robot itself, not
conditions of the robot's external environment. The agent's environment therefore includes the rest of

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node28.html (3 di 4)22/06/2005 9.05.57

3.1 The Agent-Environment Interface

the robot, which might contain other complex decision-making systems, as well as the robot's
external environment.

Exercise 3.1 Devise three example tasks of your own that fit into the reinforcement learning
framework, identifying for each its states, actions, and rewards. Make the three examples as different
from each other as possible. The framework is abstract and flexible and can be applied in many
different ways. Stretch its limits in some way in at least one of your examples.

Exercise 3.2 Is the reinforcement learning framework adequate to usefully represent all goal-
directed learning tasks? Can you think of any clear exceptions?

Exercise 3.3 Consider the problem of driving. You could define the actions in terms of the
accelerator, steering wheel, and brake, that is, where your body meets the machine. Or you could
define them farther out--say, where the rubber meets the road, considering your actions to be tire
torques. Or you could define them farther in--say, where your brain meets your body, the actions
being muscle twitches to control your limbs. Or you could go to a really high level and say that your
actions are your choices of where to drive. What is the right level, the right place to draw the line
between agent and environment? On what basis is one location of the line to be preferred over
another? Is there any fundamental reason for preferring one location over another, or is it a free
choice?

Next: 3.2 Goals and Rewards Up: 3. The Reinforcement Learning Previous: 3. The Reinforcement
Learning Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node28.html (4 di 4)22/06/2005 9.05.57

3.2 Goals and Rewards

Next: 3.3 Returns Up: 3. The Reinforcement Learning Previous: 3.1 The Agent-Environment
Interface Contents

3.2 Goals and Rewards

In reinforcement learning, the purpose or goal of the agent is formalized in terms of a special reward
signal passing from the environment to the agent. At each time step, the reward is a simple number,

. Informally, the agent's goal is to maximize the total amount of reward it receives. This
means maximizing not immediate reward, but cumulative reward in the long run.

The use of a reward signal to formalize the idea of a goal is one of the most distinctive features of
reinforcement learning. Although this way of formulating goals might at first appear limiting, in
practice it has proved to be flexible and widely applicable. The best way to see this is to consider
examples of how it has been, or could be, used. For example, to make a robot learn to walk,
researchers have provided reward on each time step proportional to the robot's forward motion. In
making a robot learn how to escape from a maze, the reward is often zero until it escapes, when it
becomes . Another common approach in maze learning is to give a reward of for every time
step that passes prior to escape; this encourages the agent to escape as quickly as possible. To make a
robot learn to find and collect empty soda cans for recycling, one might give it a reward of zero most
of the time, and then a reward of for each can collected (and confirmed as empty). One might also
want to give the robot negative rewards when it bumps into things or when somebody yells at it. For
an agent to learn to play checkers or chess, the natural rewards are for winning, for losing,
and 0 for drawing and for all nonterminal positions.

You can see what is happening in all of these examples. The agent always learns to maximize its
reward. If we want it to do something for us, we must provide rewards to it in such a way that in
maximizing them the agent will also achieve our goals. It is thus critical that the rewards we set up
truly indicate what we want accomplished. In particular, the reward signal is not the place to impart
to the agent prior knowledge about how to achieve what we want it to do.3.4For example, a chess-
playing agent should be rewarded only for actually winning, not for achieving subgoals such taking
its opponent's pieces or gaining control of the center of the board. If achieving these sorts of subgoals
were rewarded, then the agent might find a way to achieve them without achieving the real goal. For
example, it might find a way to take the opponent's pieces even at the cost of losing the game. The
reward signal is your way of communicating to the robot what you want it to achieve, not how you
want it achieved.

Newcomers to reinforcement learning are sometimes surprised that the rewards--which define of the
goal of learning--are computed in the environment rather than in the agent. Certainly most ultimate
goals for animals are recognized by computations occurring inside their bodies, for example, by
sensors for recognizing food, hunger, pain, and pleasure. Nevertheless, as we discussed in the
previous section, one can redraw the agent-environment interface in such a way that these parts of the
body are considered to be outside of the agent (and thus part of the agent's environment). For
example, if the goal concerns a robot's internal energy reservoirs, then these are considered to be part

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node29.html (1 di 2)22/06/2005 9.05.59

3.2 Goals and Rewards

of the environment; if the goal concerns the positions of the robot's limbs, then these too are
considered to be part of the environment--that is, the agent's boundary is drawn at the interface
between the limbs and their control systems. These things are considered internal to the robot but
external to the learning agent. For our purposes, it is convenient to place the boundary of the learning
agent not at the limit of its physical body, but at the limit of its control.

The reason we do this is that the agent's ultimate goal should be something over which it has
imperfect control: it should not be able, for example, to simply decree that the reward has been
received in the same way that it might arbitrarily change its actions. Therefore, we place the reward
source outside of the agent. This does not preclude the agent from defining for itself a kind of internal
reward, or a sequence of internal rewards. Indeed, this is exactly what many reinforcement learning
methods do.

Next: 3.3 Returns Up: 3. The Reinforcement Learning Previous: 3.1 The Agent-Environment
Interface Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node29.html (2 di 2)22/06/2005 9.05.59

3.3 Returns

Next: 3.4 Unified Notation for Up: 3. The Reinforcement Learning Previous: 3.2 Goals and
Rewards Contents

3.3 Returns

So far we have been imprecise regarding the objective of learning. We have said that the agent's goal
is to maximize the reward it receives in the long run. How might this be formally defined? If the
sequence of rewards received after time step is denoted , then what precise
aspect of this sequence do we wish to maximize? In general, we seek to maximize the expected
return, where the return, , is defined as some specific function of the reward sequence. In the
simplest case the return is the sum of the rewards:

(3.1)

where is a final time step. This approach makes sense in applications in which there is a natural
notion of final time step, that is, when the agent-environment interaction breaks naturally into
subsequences, which we call episodes,3.5 such as plays of a game, trips through a maze, or any sort of
repeated interactions. Each episode ends in a special state called the terminal state, followed by a
reset to a standard starting state or to a sample from a standard distribution of starting states. Tasks
with episodes of this kind are called episodic tasks. In episodic tasks we sometimes need to
distinguish the set of all nonterminal states, denoted , from the set of all states plus the terminal
state, denoted .

On the other hand, in many cases the agent-environment interaction does not break naturally into
identifiable episodes, but goes on continually without limit. For example, this would be the natural
way to formulate a continual process-control task, or an application to a robot with a long life span.
We call these continuing tasks. The return formulation (3.1) is problematic for continuing tasks
because the final time step would be , and the return, which is what we are trying to
maximize, could itself easily be infinite. (For example, suppose the agent receives a reward of at
each time step.) Thus, in this book we usually use a definition of return that is slightly more complex
conceptually but much simpler mathematically.

The additional concept that we need is that of discounting. According to this approach, the agent tries
to select actions so that the sum of the discounted rewards it receives over the future is maximized. In
particular, it chooses to maximize the expected discounted return:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node30.html (1 di 3)22/06/2005 9.06.03

3.3 Returns

 (3.2)

where is a parameter, , called the discount rate.

The discount rate determines the present value of future rewards: a reward received time steps in

the future is worth only times what it would be worth if it were received immediately. If

, the infinite sum has a finite value as long as the reward sequence is bounded. If ,
the agent is "myopic" in being concerned only with maximizing immediate rewards: its objective in
this case is to learn how to choose so as to maximize only . If each of the agent's actions
happened to influence only the immediate reward, not future rewards as well, then a myopic agent
could maximize (3.2) by separately maximizing each immediate reward. But in general, acting to
maximize immediate reward can reduce access to future rewards so that the return may actually be
reduced. As approaches 1, the objective takes future rewards into account more strongly: the agent
becomes more farsighted.

Figure 3.2:The pole-balancing task.

Example 3.4: Pole-Balancing Figure 3.2 shows a task that served as an early illustration of
reinforcement learning. The objective here is to apply forces to a cart moving along a track so as to
keep a pole hinged to the cart from falling over. A failure is said to occur if the pole falls past a given
angle from vertical or if the cart runs off the track. The pole is reset to vertical after each failure. This
task could be treated as episodic, where the natural episodes are the repeated attempts to balance the
pole. The reward in this case could be for every time step on which failure did not occur, so that
the return at each time would be the number of steps until failure. Alternatively, we could treat pole-

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node30.html (2 di 3)22/06/2005 9.06.03

3.3 Returns

balancing as a continuing task, using discounting. In this case the reward would be on each failure

and zero at all other times. The return at each time would then be related to , where is the
number of time steps before failure. In either case, the return is maximized by keeping the pole
balanced for as long as possible.

Exercise 3.4 Suppose you treated pole-balancing as an episodic task but also used discounting, with
all rewards zero except for upon failure. What then would the return be at each time? How does
this return differ from that in the discounted, continuing formulation of this task?

Exercise 3.5 Imagine that you are designing a robot to run a maze. You decide to give it a reward of
 for escaping from the maze and a reward of zero at all other times. The task seems to break down

naturally into episodes--the successive runs through the maze--so you decide to treat it as an episodic
task, where the goal is to maximize expected total reward (3.1). After running the learning agent for a
while, you find that it is showing no improvement in escaping from the maze. What is going wrong?
Have you effectively communicated to the agent what you want it to achieve?

Next: 3.4 Unified Notation for Up: 3. The Reinforcement Learning Previous: 3.2 Goals and
Rewards Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node30.html (3 di 3)22/06/2005 9.06.03

3.4 Unified Notation for Episodic and Continuing Tasks

Next: 3.5 The Markov Property Up: 3. The Reinforcement Learning Previous: 3.3 Returns
Contents

3.4 Unified Notation for Episodic and
Continuing Tasks

In the preceding section we described two kinds of reinforcement learning tasks, one in which the
agent-environment interaction naturally breaks down into a sequence of separate episodes (episodic
tasks), and one in which it does not (continuing tasks). The former case is mathematically easier
because each action affects only the finite number of rewards subsequently received during the
episode. In this book we consider sometimes one kind of problem and sometimes the other, but often
both. It is therefore useful to establish one notation that enables us to talk precisely about both cases
simultaneously.

To be precise about episodic tasks requires some additional notation. Rather than one long sequence
of time steps, we need to consider a series of episodes, each of which consists of a finite sequence of
time steps. We number the time steps of each episode starting anew from zero. Therefore, we have to
refer not just to , the state representation at time , but to , the state representation at time of
episode (and similarly for , , , , etc.). However, it turns out that, when we discuss
episodic tasks we will almost never have to distinguish between different episodes. We will almost
always be considering a particular single episode, or stating something that is true for all episodes.
Accordingly, in practice we will almost always abuse notation slightly by dropping the explicit
reference to episode number. That is, we will write to refer to , and so on.

We need one other convention to obtain a single notation that covers both episodic and continuing
tasks. We have defined the return as a sum over a finite number of terms in one case (3.1) and as a
sum over an infinite number of terms in the other (3.2). These can be unified by considering episode
termination to be the entering of a special absorbing state that transitions only to itself and that
generates only rewards of zero. For example, consider the state transition diagram

Here the solid square represents the special absorbing state corresponding to the end of an episode.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node31.html (1 di 2)22/06/2005 9.06.06

3.4 Unified Notation for Episodic and Continuing Tasks

Starting from , we get the reward sequence . Summing these, we get the
same return whether we sum over the first rewards (here) or over the full infinite sequence.
This remains true even if we introduce discounting. Thus, we can define the return, in general,
according to (3.2), using the convention of omitting episode numbers when they are not needed, and

including the possibility that if the sum remains defined (e.g., because all episodes terminate).
Alternatively, we can also write the return as

 (3.3)

including the possibility that or (but not both3.6). We use these conventions
throughout the rest of the book to simplify notation and to express the close parallels between
episodic and continuing tasks.

Next: 3.5 The Markov Property Up: 3. The Reinforcement Learning Previous: 3.3 Returns
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node31.html (2 di 2)22/06/2005 9.06.06

3.5 The Markov Property

Next: 3.6 Markov Decision Processes Up: 3. The Reinforcement Learning Previous: 3.4 Unified Notation for
Contents

3.5 The Markov Property

In the reinforcement learning framework, the agent makes its decisions as a function of a signal from the
environment called the environment's state. In this section we discuss what is required of the state signal, and what
kind of information we should and should not expect it to provide. In particular, we formally define a property of
environments and their state signals that is of particular interest, called the Markov property.

In this book, by "the state" we mean whatever information is available to the agent. We assume that the state is
given by some preprocessing system that is nominally part of the environment. We do not address the issues of
constructing, changing, or learning the state signal in this book. We take this approach not because we consider
state representation to be unimportant, but in order to focus fully on the decision-making issues. In other words, our
main concern is not with designing the state signal, but with deciding what action to take as a function of whatever
state signal is available.

Certainly the state signal should include immediate sensations such as sensory measurements, but it can contain
much more than that. State representations can be highly processed versions of original sensations, or they can be
complex structures built up over time from the sequence of sensations. For example, we can move our eyes over a
scene, with only a tiny spot corresponding to the fovea visible in detail at any one time, yet build up a rich and
detailed representation of a scene. Or, more obviously, we can look at an object, then look away, and know that it is
still there. We can hear the word "yes" and consider ourselves to be in totally different states depending on the
question that came before and which is no longer audible. At a more mundane level, a control system can measure
position at two different times to produce a state representation including information about velocity. In all of these
cases the state is constructed and maintained on the basis of immediate sensations together with the previous state
or some other memory of past sensations. In this book, we do not explore how that is done, but certainly it can be
and has been done. There is no reason to restrict the state representation to immediate sensations; in typical
applications we should expect the state representation to be able to inform the agent of more than that.

On the other hand, the state signal should not be expected to inform the agent of everything about the environment,
or even everything that would be useful to it in making decisions. If the agent is playing blackjack, we should not
expect it to know what the next card in the deck is. If the agent is answering the phone, we should not expect it to
know in advance who the caller is. If the agent is a paramedic called to a road accident, we should not expect it to
know immediately the internal injuries of an unconscious victim. In all of these cases there is hidden state
information in the environment, and that information would be useful if the agent knew it, but the agent cannot
know it because it has never received any relevant sensations. In short, we don't fault an agent for not knowing
something that matters, but only for having known something and then forgotten it!

What we would like, ideally, is a state signal that summarizes past sensations compactly, yet in such a way that all
relevant information is retained. This normally requires more than the immediate sensations, but never more than
the complete history of all past sensations. A state signal that succeeds in retaining all relevant information is said to
be Markov, or to have the Markov property (we define this formally below). For example, a checkers position--the
current configuration of all the pieces on the board--would serve as a Markov state because it summarizes
everything important about the complete sequence of positions that led to it. Much of the information about the
sequence is lost, but all that really matters for the future of the game is retained. Similarly, the current position and
velocity of a cannonball is all that matters for its future flight. It doesn't matter how that position and velocity came
about. This is sometimes also referred to as an "independence of path" property because all that matters is in the
current state signal; its meaning is independent of the "path," or history, of signals that have led up to it.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node32.html (1 di 4)22/06/2005 9.06.08

3.5 The Markov Property

We now formally define the Markov property for the reinforcement learning problem. To keep the mathematics
simple, we assume here that there are a finite number of states and reward values. This enables us to work in terms
of sums and probabilities rather than integrals and probability densities, but the argument can easily be extended to
include continuous states and rewards. Consider how a general environment might respond at time to the
action taken at time . In the most general, causal case this response may depend on everything that has happened
earlier. In this case the dynamics can be defined only by specifying the complete probability distribution:

(3.4)

for all , , and all possible values of the past events: . If the state signal has the Markov
property, on the other hand, then the environment's response at depends only on the state and action
representations at , in which case the environment's dynamics can be defined by specifying only

(3.5)

for all , , , and . In other words, a state signal has the Markov property, and is a Markov state, if and only if
(3.5) is equal to (3.4) for all , , and histories, . In this case, the environment and task as
a whole are also said to have the Markov property.

If an environment has the Markov property, then its one-step dynamics (3.5) enable us to predict the next state and
expected next reward given the current state and action. One can show that, by iterating this equation, one can
predict all future states and expected rewards from knowledge only of the current state as well as would be possible
given the complete history up to the current time. It also follows that Markov states provide the best possible basis
for choosing actions. That is, the best policy for choosing actions as a function of a Markov state is just as good as
the best policy for choosing actions as a function of complete histories.

Even when the state signal is non-Markov, it is still appropriate to think of the state in reinforcement learning as an
approximation to a Markov state. In particular, we always want the state to be a good basis for predicting future
rewards and for selecting actions. In cases in which a model of the environment is learned (see Chapter 9), we also
want the state to be a good basis for predicting subsequent states. Markov states provide an unsurpassed basis for
doing all of these things. To the extent that the state approaches the ability of Markov states in these ways, one will
obtain better performance from reinforcement learning systems. For all of these reasons, it is useful to think of the
state at each time step as an approximation to a Markov state, although one should remember that it may not fully
satisfy the Markov property.

The Markov property is important in reinforcement learning because decisions and values are assumed to be a
function only of the current state. In order for these to be effective and informative, the state representation must be
informative. All of the theory presented in this book assumes Markov state signals. This means that not all the
theory strictly applies to cases in which the Markov property does not strictly apply. However, the theory developed
for the Markov case still helps us to understand the behavior of the algorithms, and the algorithms can be
successfully applied to many tasks with states that are not strictly Markov. A full understanding of the theory of the

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node32.html (2 di 4)22/06/2005 9.06.08

3.5 The Markov Property

Markov case is an essential foundation for extending it to the more complex and realistic non-Markov case. Finally,
we note that the assumption of Markov state representations is not unique to reinforcement learning but is also
present in most if not all other approaches to artificial intelligence.

Example 3.5: Pole-Balancing State In the pole-balancing task introduced earlier, a state signal would be Markov
if it specified exactly, or made it possible to reconstruct exactly, the position and velocity of the cart along the track,
the angle between the cart and the pole, and the rate at which this angle is changing (the angular velocity). In an
idealized cart-pole system, this information would be sufficient to exactly predict the future behavior of the cart and
pole, given the actions taken by the controller. In practice, however, it is never possible to know this information
exactly because any real sensor would introduce some distortion and delay in its measurements. Furthermore, in any
real cart-pole system there are always other effects, such as the bending of the pole, the temperatures of the wheel
and pole bearings, and various forms of backlash, that slightly affect the behavior of the system. These factors
would cause violations of the Markov property if the state signal were only the positions and velocities of the cart
and the pole.

However, often the positions and velocities serve quite well as states. Some early studies of learning to solve the
pole-balancing task used a coarse state signal that divided cart positions into three regions: right, left, and middle
(and similar rough quantizations of the other three intrinsic state variables). This distinctly non-Markov state was
sufficient to allow the task to be solved easily by reinforcement learning methods. In fact, this coarse representation
may have facilitated rapid learning by forcing the learning agent to ignore fine distinctions that would not have been
useful in solving the task.

Example 3.6: Draw Poker In draw poker, each player is dealt a hand of five cards. There is a round of betting, in
which each player exchanges some of his cards for new ones, and then there is a final round of betting. At each
round, each player must match or exceed the highest bets of the other players, or else drop out (fold). After the
second round of betting, the player with the best hand who has not folded is the winner and collects all the bets.

The state signal in draw poker is different for each player. Each player knows the cards in his own hand, but can
only guess at those in the other players' hands. A common mistake is to think that a Markov state signal should
include the contents of all the players' hands and the cards remaining in the deck. In a fair game, however, we
assume that the players are in principle unable to determine these things from their past observations. If a player did
know them, then she could predict some future events (such as the cards one could exchange for) better than by
remembering all past observations.

In addition to knowledge of one's own cards, the state in draw poker should include the bets and the numbers of
cards drawn by the other players. For example, if one of the other players drew three new cards, you may suspect he
retained a pair and adjust your guess of the strength of his hand accordingly. The players' bets also influence your
assessment of their hands. In fact, much of your past history with these particular players is part of the Markov
state. Does Ellen like to bluff, or does she play conservatively? Does her face or demeanor provide clues to the
strength of her hand? How does Joe's play change when it is late at night, or when he has already won a lot of
money?

Although everything ever observed about the other players may have an effect on the probabilities that they are
holding various kinds of hands, in practice this is far too much to remember and analyze, and most of it will have no
clear effect on one's predictions and decisions. Very good poker players are adept at remembering just the key
clues, and at sizing up new players quickly, but no one remembers everything that is relevant. As a result, the state
representations people use to make their poker decisions are undoubtedly non-Markov, and the decisions
themselves are presumably imperfect. Nevertheless, people still make very good decisions in such tasks. We
conclude that the inability to have access to a perfect Markov state representation is probably not a severe problem
for a reinforcement learning agent.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node32.html (3 di 4)22/06/2005 9.06.08

3.5 The Markov Property

Exercise 3.6: Broken Vision System Imagine that you are a vision system. When you are first turned on for the
day, an image floods into your camera. You can see lots of things, but not all things. You can't see objects that are
occluded, and of course you can't see objects that are behind you. After seeing that first scene, do you have access
to the Markov state of the environment? Suppose your camera was broken that day and you received no images at
all, all day. Would you have access to the Markov state then?

Next: 3.6 Markov Decision Processes Up: 3. The Reinforcement Learning Previous: 3.4 Unified Notation for
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node32.html (4 di 4)22/06/2005 9.06.08

3.6 Markov Decision Processes

Next: 3.7 Value Functions Up: 3. The Reinforcement Learning Previous: 3.5 The Markov Property
Contents

3.6 Markov Decision Processes

A reinforcement learning task that satisfies the Markov property is called a Markov decision process,
or MDP. If the state and action spaces are finite, then it is called a finite Markov decision process
(finite MDP). Finite MDPs are particularly important to the theory of reinforcement learning. We
treat them extensively throughout this book; they are all you need to understand 90% of modern
reinforcement learning.

A particular finite MDP is defined by its state and action sets and by the one-step dynamics of the
environment. Given any state and action, and , the probability of each possible next state, , is

(3.6)

These quantities are called transition probabilities. Similarly, given any current state and action,
and , together with any next state, , the expected value of the next reward is

(3.7)

These quantities, and , completely specify the most important aspects of the dynamics of a
finite MDP (only information about the distribution of rewards around the expected value is lost).
Most of the theory we present in the rest of this book implicitly assumes the environment is a finite
MDP.

Example 3.7: Recycling Robot MDP The recycling robot (Example 3.3) can be turned into a
simple example of an MDP by simplifying it and providing some more details. (Our aim is to produce
a simple example, not a particularly realistic one.) Recall that the agent makes a decision at times
determined by external events (or by other parts of the robot's control system). At each such time the
robot decides whether it should (1) actively search for a can, (2) remain stationary and wait for
someone to bring it a can, or (3) go back to home base to recharge its battery. Suppose the
environment works as follows. The best way to find cans is to actively search for them, but this runs

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node33.html (1 di 4)22/06/2005 9.06.15

3.6 Markov Decision Processes

down the robot's battery, whereas waiting does not. Whenever the robot is searching, the possibility
exists that its battery will become depleted. In this case the robot must shut down and wait to be
rescued (producing a low reward).

The agent makes its decisions solely as a function of the energy level of the battery. It can distinguish

two levels, high and low, so that the state set is . Let us call the possible
decisions--the agent's actions--wait, search, and recharge. When the energy level is high,
recharging would always be foolish, so we do not include it in the action set for this state. The agent's
action sets are

If the energy level is high, then a period of active search can always be completed without risk of
depleting the battery. A period of searching that begins with a high energy level leaves the energy
level high with probability and reduces it to low with probability . On the other hand, a

period of searching undertaken when the energy level is low leaves it low with probability and

depletes the battery with probability . In the latter case, the robot must be rescued, and the
battery is then recharged back to high. Each can collected by the robot counts as a unit reward,
whereas a reward of results whenever the robot has to be rescued. Let and , with

, respectively denote the expected number of cans the robot will collect (and hence
the expected reward) while searching and while waiting. Finally, to keep things simple, suppose that
no cans can be collected during a run home for recharging, and that no cans can be collected on a step
in which the battery is depleted. This system is then a finite MDP, and we can write down the
transition probabilities and the expected rewards, as in Table 3.1.

Table 3.1:Transition probabilities and expected rewards
for the finite MDP of the recycling robot example.

There is a row for each possible combination of current
state, , next state, , and action possible in the current

state, .

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node33.html (2 di 4)22/06/2005 9.06.15

3.6 Markov Decision Processes

high high search

high low search

low high search

low low search

high high wait

high low wait

low high wait

low low wait

low high recharge

low low recharge .

A transition graph is a useful way to summarize the dynamics of a finite MDP. Figure 3.3 shows the
transition graph for the recycling robot example. There are two kinds of nodes: state nodes and action
nodes. There is a state node for each possible state (a large open circle labeled by the name of the
state), and an action node for each state-action pair (a small solid circle labeled by the name of the
action and connected by a line to the state node). Starting in state and taking action moves you

along the line from state node to action node . Then the environment responds with a

transition to the next state's node via one of the arrows leaving action node . Each arrow

corresponds to a triple , where is the next state, and we label the arrow with the transition

probability, , and the expected reward for that transition, . Note that the transition
probabilities labeling the arrows leaving an action node always sum to 1.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node33.html (3 di 4)22/06/2005 9.06.15

3.6 Markov Decision Processes

Figure 3.3:Transition graph for the recycling robot example.

Exercise 3.7 Assuming a finite MDP with a finite number of reward values, write an equation for
the transition probabilities and the expected rewards in terms of the joint conditional distribution in
(3.5).

Next: 3.7 Value Functions Up: 3. The Reinforcement Learning Previous: 3.5 The Markov Property
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node33.html (4 di 4)22/06/2005 9.06.15

3.7 Value Functions

Next: 3.8 Optimal Value Functions Up: 3. The Reinforcement Learning Previous: 3.6 Markov Decision Processes Contents

3.7 Value Functions

Almost all reinforcement learning algorithms are based on estimating value functions--functions of states (or of state-action pairs)
that estimate how good it is for the agent to be in a given state (or how good it is to perform a given action in a given state). The
notion of "how good" here is defined in terms of future rewards that can be expected, or, to be precise, in terms of expected return.
Of course the rewards the agent can expect to receive in the future depend on what actions it will take. Accordingly, value functions
are defined with respect to particular policies.

Recall that a policy, , is a mapping from each state, , and action, , to the probability of taking action

when in state . Informally, the value of a state under a policy , denoted , is the expected return when starting in and

following thereafter. For MDPs, we can define formally as

(3.8)

where denotes the expected value given that the agent follows policy , and is any time step. Note that the value of the
terminal state, if any, is always zero. We call the function the state-value function for policy .

Similarly, we define the value of taking action in state under a policy , denoted , as the expected return starting from
, taking the action , and thereafter following policy :

(3.9)

We call the action-value function for policy .

The value functions and can be estimated from experience. For example, if an agent follows policy and maintains an
average, for each state encountered, of the actual returns that have followed that state, then the average will converge to the state's

value, , as the number of times that state is encountered approaches infinity. If separate averages are kept for each action

taken in a state, then these averages will similarly converge to the action values, . We call estimation methods of this kind
Monte Carlo methods because they involve averaging over many random samples of actual returns. These kinds of methods are
presented in Chapter 5. Of course, if there are very many states, then it may not be practical to keep separate averages for each state

individually. Instead, the agent would have to maintain and as parameterized functions and adjust the parameters to better
match the observed returns. This can also produce accurate estimates, although much depends on the nature of the parameterized
function approximator (Chapter 8).

A fundamental property of value functions used throughout reinforcement learning and dynamic programming is that they satisfy
particular recursive relationships. For any policy and any state , the following consistency condition holds between the value of
and the value of its possible successor states:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node34.html (1 di 5)22/06/2005 9.06.27

3.7 Value Functions

 (3.10)

where it is implicit that the actions, , are taken from the set , and the next states, , are taken from the set , or from in
the case of an episodic problem. Equation (3.10) is the Bellman equation for . It expresses a relationship between the value of a
state and the values of its successor states. Think of looking ahead from one state to its possible successor states, as suggested by
Figure 3.4a. Each open circle represents a state and each solid circle represents a state-action pair. Starting from state , the root
node at the top, the agent could take any of some set of actions--three are shown in Figure 3.4a. From each of these, the
environment could respond with one of several next states, , along with a reward, . The Bellman equation (3.10) averages over all
the possibilities, weighting each by its probability of occurring. It states that the value of the start state must equal the (discounted)
value of the expected next state, plus the reward expected along the way.

The value function is the unique solution to its Bellman equation. We show in subsequent chapters how this Bellman equation
forms the basis of a number of ways to compute, approximate, and learn . We call diagrams like those shown in Figure 3.4
backup diagrams because they diagram relationships that form the basis of the update or backup operations that are at the heart of
reinforcement learning methods. These operations transfer value information back to a state (or a state-action pair) from its
successor states (or state-action pairs). We use backup diagrams throughout the book to provide graphical summaries of the
algorithms we discuss. (Note that unlike transition graphs, the state nodes of backup diagrams do not necessarily represent distinct
states; for example, a state might be its own successor. We also omit explicit arrowheads because time always flows downward in a
backup diagram.)

Figure 3.4:Backup diagrams for (a) and (b) .

Example 3.8: Gridworld Figure 3.5a uses a rectangular grid to illustrate value functions for a simple finite MDP. The cells of the
grid correspond to the states of the environment. At each cell, four actions are possible: north, south, east, and west, which

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node34.html (2 di 5)22/06/2005 9.06.27

3.7 Value Functions

deterministically cause the agent to move one cell in the respective direction on the grid. Actions that would take the agent off the
grid leave its location unchanged, but also result in a reward of . Other actions result in a reward of 0, except those that move the
agent out of the special states A and B. From state A, all four actions yield a reward of and take the agent to . From state B,
all actions yield a reward of and take the agent to .

Figure 3.5:Grid example: (a) exceptional reward dynamics; (b) state-value function for the equiprobable random policy.

Suppose the agent selects all four actions with equal probability in all states. Figure 3.5b shows the value function, , for this

policy, for the discounted reward case with . This value function was computed by solving the system of equations (3.10).
Notice the negative values near the lower edge; these are the result of the high probability of hitting the edge of the grid there under
the random policy. State A is the best state to be in under this policy, but its expected return is less than 10, its immediate reward,
because from A the agent is taken to , from which it is likely to run into the edge of the grid. State B, on the other hand, is valued
more than 5, its immediate reward, because from B the agent is taken to , which has a positive value. From the expected
penalty (negative reward) for possibly running into an edge is more than compensated for by the expected gain for possibly
stumbling onto A or B.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node34.html (3 di 5)22/06/2005 9.06.27

3.7 Value Functions

Figure 3.6:A golf example: the state-value function for putting (above) and the optimal action-value function for using the driver
(below).

Example 3.9: Golf To formulate playing a hole of golf as a reinforcement learning task, we count a penalty (negative reward) of
 for each stroke until we hit the ball into the hole. The state is the location of the ball. The value of a state is the negative of the

number of strokes to the hole from that location. Our actions are how we aim and swing at the ball, of course, and which club we
select. Let us take the former as given and consider just the choice of club, which we assume is either a putter or a driver. The upper

part of Figure 3.6 shows a possible state-value function, , for the policy that always uses the putter. The terminal state in-
the-hole has a value of . From anywhere on the green we assume we can make a putt; these states have value . Off the green we
cannot reach the hole by putting, and the value is greater. If we can reach the green from a state by putting, then that state must have
value one less than the green's value, that is, . For simplicity, let us assume we can putt very precisely and deterministically, but
with a limited range. This gives us the sharp contour line labeled in the figure; all locations between that line and the green
require exactly two strokes to complete the hole. Similarly, any location within putting range of the contour line must have a
value of , and so on to get all the contour lines shown in the figure. Putting doesn't get us out of sand traps, so they have a value
of . Overall, it takes us six strokes to get from the tee to the hole by putting.

Exercise 3.8 What is the Bellman equation for action values, that is, for ? It must give the action value in terms of the

action values, , of possible successors to the state-action pair . As a hint, the backup diagram corresponding to this
equation is given in Figure 3.4b. Show the sequence of equations analogous to (3.10), but for action values.

Exercise 3.9 The Bellman equation (3.10) must hold for each state for the value function shown in Figure 3.5b. As an

example, show numerically that this equation holds for the center state, valued at , with respect to its four neighboring states,
valued at , , , and . (These numbers are accurate only to one decimal place.)

Exercise 3.10 In the gridworld example, rewards are positive for goals, negative for running into the edge of the world, and zero
the rest of the time. Are the signs of these rewards important, or only the intervals between them? Prove, using (3.2), that adding a
constant to all the rewards adds a constant, , to the values of all states, and thus does not affect the relative values of any states
under any policies. What is in terms of and ?

Exercise 3.11 Now consider adding a constant to all the rewards in an episodic task, such as maze running. Would this have any
effect, or would it leave the task unchanged as in the continuing task above? Why or why not? Give an example.

Exercise 3.12 The value of a state depends on the the values of the actions possible in that state and on how likely each action is to
be taken under the current policy. We can think of this in terms of a small backup diagram rooted at the state and considering each
possible action:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node34.html (4 di 5)22/06/2005 9.06.27

3.7 Value Functions

Give the equation corresponding to this intuition and diagram for the value at the root node, , in terms of the value at the

expected leaf node, , given . This expectation depends on the policy, . Then give a second equation in which the

expected value is written out explicitly in terms of such that no expected value notation appears in the equation.

Exercise 3.13 The value of an action, , can be divided into two parts, the expected next reward, which does not depend on
the policy , and the expected sum of the remaining rewards, which depends on the next state and the policy. Again we can think of
this in terms of a small backup diagram, this one rooted at an action (state-action pair) and branching to the possible next states:

Give the equation corresponding to this intuition and diagram for the action value, , in terms of the expected next reward,

, and the expected next state value, , given that and . Then give a second equation, writing out the

expected value explicitly in terms of and , defined respectively by (3.6) and (3.7), such that no expected value notation
appears in the equation.

Next: 3.8 Optimal Value Functions Up: 3. The Reinforcement Learning Previous: 3.6 Markov Decision Processes Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node34.html (5 di 5)22/06/2005 9.06.27

3.8 Optimal Value Functions

Next: 3.9 Optimality and Approximation Up: 3. The Reinforcement Learning Previous: 3.7 Value Functions
Contents

3.8 Optimal Value Functions

Solving a reinforcement learning task means, roughly, finding a policy that achieves a lot of reward over the
long run. For finite MDPs, we can precisely define an optimal policy in the following way. Value functions
define a partial ordering over policies. A policy is defined to be better than or equal to a policy if its

expected return is greater than or equal to that of for all states. In other words, if and only if

 for all . There is always at least one policy that is better than or equal to all other
policies. This is an optimal policy. Although there may be more than one, we denote all the optimal policies by

. They share the same state-value function, called the optimal state-value function, denoted , and defined
as

 (3.11)

for all .

Optimal policies also share the same optimal action-value function, denoted , and defined as

(3.12)

for all and . For the state-action pair , this function gives the expected return for taking

action in state and thereafter following an optimal policy. Thus, we can write in terms of as follows:

(3.13)

Example 3.10: Optimal Value Functions for Golf The lower part of Figure 3.6 shows the contours of a

possible optimal action-value function . These are the values of each state if we first play a
stroke with the driver and afterward select either the driver or the putter, whichever is better. The driver enables
us to hit the ball farther, but with less accuracy. We can reach the hole in one shot using the driver only if we

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node35.html (1 di 6)22/06/2005 9.06.37

3.8 Optimal Value Functions

are already very close; thus the contour for covers only a small portion of the green. If we
have two strokes, however, then we can reach the hole from much farther away, as shown by the contour. In
this case we don't have to drive all the way to within the small contour, but only to anywhere on the green;
from there we can use the putter. The optimal action-value function gives the values after committing to a
particular first action, in this case, to the driver, but afterward using whichever actions are best. The contour
is still farther out and includes the starting tee. From the tee, the best sequence of actions is two drives and one
putt, sinking the ball in three strokes.

Because is the value function for a policy, it must satisfy the self-consistency condition given by the
Bellman equation for state values (3.10). Because it is the optimal value function, however, 's consistency
condition can be written in a special form without reference to any specific policy. This is the Bellman equation
for , or the Bellman optimality equation. Intuitively, the Bellman optimality equation expresses the fact that
the value of a state under an optimal policy must equal the expected return for the best action from that state:

 (3.14)

 (3.15)

The last two equations are two forms of the Bellman optimality equation for . The Bellman optimality

equation for is

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node35.html (2 di 6)22/06/2005 9.06.37

3.8 Optimal Value Functions

The backup diagrams in Figure 3.7 show graphically the spans of future states and actions considered in the

Bellman optimality equations for and . These are the same as the backup diagrams for and except
that arcs have been added at the agent's choice points to represent that the maximum over that choice is taken
rather than the expected value given some policy. Figure 3.7a graphically represents the Bellman optimality
equation (3.15).

Figure 3.7:Backup diagrams for (a) and (b)

For finite MDPs, the Bellman optimality equation (3.15) has a unique solution independent of the policy. The
Bellman optimality equation is actually a system of equations, one for each state, so if there are states, then

there are equations in unknowns. If the dynamics of the environment are known (and), then in
principle one can solve this system of equations for using any one of a variety of methods for solving

systems of nonlinear equations. One can solve a related set of equations for .

Once one has , it is relatively easy to determine an optimal policy. For each state , there will be one or more
actions at which the maximum is obtained in the Bellman optimality equation. Any policy that assigns nonzero
probability only to these actions is an optimal policy. You can think of this as a one-step search. If you have the
optimal value function, , then the actions that appear best after a one-step search will be optimal actions.
Another way of saying this is that any policy that is greedy with respect to the optimal evaluation function is
an optimal policy. The term greedy is used in computer science to describe any search or decision procedure
that selects alternatives based only on local or immediate considerations, without considering the possibility that
such a selection may prevent future access to even better alternatives. Consequently, it describes policies that
select actions based only on their short-term consequences. The beauty of is that if one uses it to evaluate the
short-term consequences of actions--specifically, the one-step consequences--then a greedy policy is actually
optimal in the long-term sense in which we are interested because already takes into account the reward
consequences of all possible future behavior. By means of , the optimal expected long-term return is turned

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node35.html (3 di 6)22/06/2005 9.06.37

3.8 Optimal Value Functions

into a quantity that is locally and immediately available for each state. Hence, a one-step-ahead search yields the
long-term optimal actions.

Having makes choosing optimal actions still easier. With , the agent does not even have to do a one-step-

ahead search: for any state , it can simply find any action that maximizes . The action-value function
effectively caches the results of all one-step-ahead searches. It provides the optimal expected long-term return
as a value that is locally and immediately available for each state-action pair. Hence, at the cost of representing
a function of state-action pairs, instead of just of states, the optimal action-value function allows optimal actions
to be selected without having to know anything about possible successor states and their values, that is, without
having to know anything about the environment's dynamics.

Example 3.11: Bellman Optimality Equations for the Recycling Robot Using (3.15), we can explicitly give
the the Bellman optimality equation for the recycling robot example. To make things more compact, we
abbreviate the states high and low, and the actions search, wait, and recharge respectively by h, l, s,
w, and re. Since there are only two states, the Bellman optimality equation consists of two equations. The

equation for can be written as follows:

Following the same procedure for yields the equation

For any choice of , , , , and , with , , there is exactly one pair of numbers,

 and , that simultaneously satisfy these two nonlinear equations.

Example 3.12: Solving the Gridworld Suppose we solve the Bellman equation for for the simple grid
task introduced in Example 3.8 and shown again in Figure 3.8a. Recall that state A is followed by a reward of

 and transition to state , while state B is followed by a reward of and transition to state . Figure

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node35.html (4 di 6)22/06/2005 9.06.37

3.8 Optimal Value Functions

3.8b shows the optimal value function, and Figure 3.8c shows the corresponding optimal policies. Where there
are multiple arrows in a cell, any of the corresponding actions is optimal.

Figure 3.8:Optimal solutions to the gridworld example.

Explicitly solving the Bellman optimality equation provides one route to finding an optimal policy, and thus to
solving the reinforcement learning problem. However, this solution is rarely directly useful. It is akin to an
exhaustive search, looking ahead at all possibilities, computing their probabilities of occurrence and their
desirabilities in terms of expected rewards. This solution relies on at least three assumptions that are rarely true
in practice: (1) we accurately know the dynamics of the environment; (2) we have enough computational
resources to complete the computation of the solution; and (3) the Markov property. For the kinds of tasks in
which we are interested, one is generally not able to implement this solution exactly because various
combinations of these assumptions are violated. For example, although the first and third assumptions present
no problems for the game of backgammon, the second is a major impediment. Since the game has about
states, it would take thousands of years on today's fastest computers to solve the Bellman equation for , and

the same is true for finding . In reinforcement learning one typically has to settle for approximate solutions.

Many different decision-making methods can be viewed as ways of approximately solving the Bellman
optimality equation. For example, heuristic search methods can be viewed as expanding the right-hand side of
(3.15) several times, up to some depth, forming a "tree'' of possibilities, and then using a heuristic evaluation
function to approximate at the "leaf'' nodes. (Heuristic search methods such as are almost always based
on the episodic case.) The methods of dynamic programming can be related even more closely to the Bellman
optimality equation. Many reinforcement learning methods can be clearly understood as approximately solving
the Bellman optimality equation, using actual experienced transitions in place of knowledge of the expected
transitions. We consider a variety of such methods in the following chapters.

Exercise 3.14 Draw or describe the optimal state-value function for the golf example.

Exercise 3.15 Draw or describe the contours of the optimal action-value function for putting,

, for the golf example.

Exercise 3.16 Give the Bellman equation for for the recycling robot.

Exercise 3.17 Figure 3.8 gives the optimal value of the best state of the gridworld as 24.4, to one decimal
place. Use your knowledge of the optimal policy and (3.2) to express this value symbolically, and then to
compute it to three decimal places.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node35.html (5 di 6)22/06/2005 9.06.37

3.8 Optimal Value Functions

Next: 3.9 Optimality and Approximation Up: 3. The Reinforcement Learning Previous: 3.7 Value Functions
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node35.html (6 di 6)22/06/2005 9.06.37

3.9 Optimality and Approximation

Next: 3.10 Summary Up: 3. The Reinforcement Learning Previous: 3.8 Optimal Value Functions
Contents

3.9 Optimality and Approximation

We have defined optimal value functions and optimal policies. Clearly, an agent that learns an
optimal policy has done very well, but in practice this rarely happens. For the kinds of tasks in which
we are interested, optimal policies can be generated only with extreme computational cost. A well-
defined notion of optimality organizes the approach to learning we describe in this book and provides
a way to understand the theoretical properties of various learning algorithms, but it is an ideal that
agents can only approximate to varying degrees. As we discussed above, even if we have a complete
and accurate model of the environment's dynamics, it is usually not possible to simply compute an
optimal policy by solving the Bellman optimality equation. For example, board games such as chess
are a tiny fraction of human experience, yet large, custom-designed computers still cannot compute
the optimal moves. A critical aspect of the problem facing the agent is always the computational
power available to it, in particular, the amount of computation it can perform in a single time step.

The memory available is also an important constraint. A large amount of memory is often required to
build up approximations of value functions, policies, and models. In tasks with small, finite state sets,
it is possible to form these approximations using arrays or tables with one entry for each state (or
state-action pair). This we call the tabular case, and the corresponding methods we call tabular
methods. In many cases of practical interest, however, there are far more states than could possibly be
entries in a table. In these cases the functions must be approximated, using some sort of more
compact parameterized function representation.

Our framing of the reinforcement learning problem forces us to settle for approximations. However,
it also presents us with some unique opportunities for achieving useful approximations. For example,
in approximating optimal behavior, there may be many states that the agent faces with such a low
probability that selecting suboptimal actions for them has little impact on the amount of reward the
agent receives. Tesauro's backgammon player, for example, plays with exceptional skill even though
it might make very bad decisions on board configurations that never occur in games against experts.
In fact, it is possible that TD-Gammon makes bad decisions for a large fraction of the game's state
set. The on-line nature of reinforcement learning makes it possible to approximate optimal policies in
ways that put more effort into learning to make good decisions for frequently encountered states, at
the expense of less effort for infrequently encountered states. This is one key property that
distinguishes reinforcement learning from other approaches to approximately solving MDPs.

Next: 3.10 Summary Up: 3. The Reinforcement Learning Previous: 3.8 Optimal Value Functions
Contents

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node36.html (1 di 2)22/06/2005 9.06.38

3.9 Optimality and Approximation

Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node36.html (2 di 2)22/06/2005 9.06.38

3.10 Summary

Next: 3.11 Bibliographical and Historical Up: 3. The Reinforcement Learning Previous: 3.9
Optimality and Approximation Contents

3.10 Summary

Let us summarize the elements of the reinforcement learning problem that we have presented in this
chapter. Reinforcement learning is about learning from interaction how to behave in order to achieve
a goal. The reinforcement learning agent and its environment interact over a sequence of discrete
time steps. The specification of their interface defines a particular task: the actions are the choices
made by the agent; the states are the basis for making the choices; and the rewards are the basis for
evaluating the choices. Everything inside the agent is completely known and controllable by the
agent; everything outside is incompletely controllable but may or may not be completely known. A
policy is a stochastic rule by which the agent selects actions as a function of states. The agent's
objective is to maximize the amount of reward it receives over time.

The return is the function of future rewards that the agent seeks to maximize. It has several different
definitions depending upon the nature of the task and whether one wishes to discount delayed reward.
The undiscounted formulation is appropriate for episodic tasks, in which the agent-environment
interaction breaks naturally into episodes; the discounted formulation is appropriate for continuing
tasks, in which the interaction does not naturally break into episodes but continues without limit.

An environment satisfies the Markov property if its state signal compactly summarizes the past
without degrading the ability to predict the future. This is rarely exactly true, but often nearly so; the
state signal should be chosen or constructed so that the Markov property holds as nearly as possible.
In this book we assume that this has already been done and focus on the decision-making problem:
how to decide what to do as a function of whatever state signal is available. If the Markov property
does hold, then the environment is called a Markov decision process (MDP). A finite MDP is an
MDP with finite state and action sets. Most of the current theory of reinforcement learning is
restricted to finite MDPs, but the methods and ideas apply more generally.

A policy's value functions assign to each state, or state-action pair, the expected return from that state,
or state-action pair, given that the agent uses the policy. The optimal value functions assign to each
state, or state-action pair, the largest expected return achievable by any policy. A policy whose value
functions are optimal is an optimal policy. Whereas the optimal value functions for states and state-
action pairs are unique for a given MDP, there can be many optimal policies. Any policy that is
greedy with respect to the optimal value functions must be an optimal policy. The Bellman optimality
equations are special consistency condition that the optimal value functions must satisfy and that can,
in principle, be solved for the optimal value functions, from which an optimal policy can be
determined with relative ease.

A reinforcement learning problem can be posed in a variety of different ways depending on
assumptions about the level of knowledge initially available to the agent. In problems of complete
knowledge, the agent has a complete and accurate model of the environment's dynamics. If the

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node37.html (1 di 2)22/06/2005 9.06.39

3.10 Summary

environment is an MDP, then such a model consists of the one-step transition probabilities and
expected rewards for all states and their allowable actions. In problems of incomplete knowledge, a
complete and perfect model of the environment is not available.

Even if the agent has a complete and accurate environment model, the agent is typically unable to
perform enough computation per time step to fully use it. The memory available is also an important
constraint. Memory may be required to build up accurate approximations of value functions, policies,
and models. In most cases of practical interest there are far more states than could possibly be entries
in a table, and approximations must be made.

A well-defined notion of optimality organizes the approach to learning we describe in this book and
provides a way to understand the theoretical properties of various learning algorithms, but it is an
ideal that reinforcement learning agents can only approximate to varying degrees. In reinforcement
learning we are very much concerned with cases in which optimal solutions cannot be found but must
be approximated in some way.

Next: 3.11 Bibliographical and Historical Up: 3. The Reinforcement Learning Previous: 3.9
Optimality and Approximation Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node37.html (2 di 2)22/06/2005 9.06.39

3.11 Bibliographical and Historical Remarks

Next: II. Elementary Solution Methods Up: 3. The Reinforcement Learning Previous: 3.10
Summary Contents

Subsections

● 3.1
● 3.3-4
● 3.5
● 3.6
● 3.7-8

3.11 Bibliographical and Historical Remarks

The reinforcement learning problem is deeply indebted to the idea of Markov decision processes
(MDPs) from the field of optimal control. These historical influences and other major influences from
psychology are described in the brief history given in Chapter 1. Reinforcement learning adds to
MDPs a focus on approximation and incomplete information for realistically large problems. MDPs
and the reinforcement learning problem are only weakly linked to traditional learning and decision-
making problems in artificial intelligence. However, artificial intelligence is now vigorously
exploring MDP formulations for planning and decision-making from a variety of perspectives. MDPs
are more general than previous formulations used in artificial intelligence in that they permit more
general kinds of goals and uncertainty.

Our presentation of the reinforcement learning problem was influenced by Watkins (1989).

3.1

The bioreactor example is based on the work of Ungar (1990) and Miller and Williams (1992). The
recycling robot example was inspired by the can-collecting robot built by Jonathan Connell (1989).

3.3-4

The terminology of episodic and continuing tasks is different from that usually used in the MDP
literature. In that literature it is common to distinguish three types of tasks: (1) finite-horizon tasks, in
which interaction terminates after a particular fixed number of time steps; (2) indefinite-horizon tasks,
in which interaction can last arbitrarily long but must eventually terminate; and (3) infinite-horizon
tasks, in which interaction does not terminate. Our episodic and continuing tasks are similar to
indefinite-horizon and infinite-horizon tasks, respectively, but we prefer to emphasize the difference
in the nature of the interaction. This difference seems more fundamental than the difference in the

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node38.html (1 di 4)22/06/2005 9.06.41

3.11 Bibliographical and Historical Remarks

objective functions emphasized by the usual terms. Often episodic tasks use an indefinite-horizon
objective function and continuing tasks an infinite-horizon objective function, but we see this as a
common coincidence rather than a fundamental difference.

The pole-balancing example is from Michie and Chambers (1968) and Barto, Sutton, and Anderson
(1983).

3.5

For further discussion of the concept of state, see Minsky (1967).

3.6

The theory of MDPs is treated by, e.g., Bertsekas (1995), Ross (1983), White (1969), and Whittle
(1982, 1983). This theory is also studied under the heading of stochastic optimal control, where
adaptive optimal control methods are most closely related to reinforcement learning (e.g., Kumar,
1985; Kumar and Varaiya, 1986).

The theory of MDPs evolved from efforts to understand the problem of making sequences of
decisions under uncertainty, where each decision can depend on the previous decisions and their
outcomes. It is sometimes called the theory of multistage decision processes, or sequential decision
processes, and has roots in the statistical literature on sequential sampling beginning with the papers
by Thompson (1933, 1934) and Robbins (1952) that we cited in Chapter 2 in connection with bandit
problems (which are prototypical MDPs if formulated as multiple-situation problems).

The earliest instance of which we are aware in which reinforcement learning was discussed using the
MDP formalism is Andreae's (1969b) description of a unified view of learning machines. Witten and
Corbin (1973) experimented with a reinforcement learning system later analyzed by Witten (1977)
using the MDP formalism. Although he did not explicitly mention MDPs, Werbos (1977) suggested
approximate solution methods for stochastic optimal control problems that are related to modern
reinforcement learning methods (see also Werbos, 1982, 1987, 1988, 1989, 1992). Although
Werbos's ideas were not widely recognized at the time, they were prescient in emphasizing the
importance of approximately solving optimal control problems in a variety of domains, including
artificial intelligence. The most influential integration of reinforcement learning and MDPs is due to
Watkins (1989). His treatment of reinforcement learning using the MDP formalism has been widely
adopted.

Our characterization of the reward dynamics of an MDP in terms of is slightly unusual. It is
more common in the MDP literature to describe the reward dynamics in terms of the expected next

reward given just the current state and action, that is, by . This

quantity is related to our as follows:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node38.html (2 di 4)22/06/2005 9.06.41

3.11 Bibliographical and Historical Remarks

In conventional MDP theory, always appears in an expected value sum like this one, and

therefore it is easier to use . In reinforcement learning, however, we more often have to refer to

individual actual or sample outcomes. In teaching reinforcement learning, we have found the
notation to be more straightforward conceptually and easier to understand.

3.7-8

Assigning value on the basis of what is good or bad in the long run has ancient roots. In control
theory, mapping states to numerical values representing the long-term consequences of control
decisions is a key part of optimal control theory, which was developed in the 1950s by extending
nineteenth century state-function theories of classical mechanics (see, e.g., Schultz and Melsa, 1967).
In describing how a computer could be programmed to play chess, Shannon (1950) suggested using
an evaluation function that took into account the long-term advantages and disadvantages of chess
positions.

Watkins's (1989) Q-learning algorithm for estimating (Chapter 6) made action-value functions an
important part of reinforcement learning, and consequently these functions are often called Q-
functions. But the idea of an action-value function is much older than this. Shannon (1950) suggested

that a function could be used by a chess-playing program to decide whether a move in
position is worth exploring. Michie's (1961, 1963) MENACE system and Michie and Chambers's
(1968) BOXES system can be understood as estimating action-value functions. In classical physics,
Hamilton's principal function is an action-value function; Newtonian dynamics are greedy with
respect to this function (e.g., Goldstein, 1957). Action-value functions also played a central role in
Denardo's (1967) theoretical treatment of DP in terms of contraction mappings.

What we call the Bellman equation for was first introduced by Richard Bellman (1957a), who
called it the "basic functional equation." The counterpart of the Bellman optimality equation for
continuous time and state problems is known as the Hamilton-Jacobi-Bellman equation (or often just
the Hamilton-Jacobi equation), indicating its roots in classical physics (e.g., Schultz and Melsa,
1967).

The golf example was suggested by Chris Watkins.

Next: II. Elementary Solution Methods Up: 3. The Reinforcement Learning Previous: 3.10

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node38.html (3 di 4)22/06/2005 9.06.41

3.11 Bibliographical and Historical Remarks

Summary Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node38.html (4 di 4)22/06/2005 9.06.41

II. Elementary Solution Methods

Next: 4. Dynamic Programming Up: Book Previous: 3.11 Bibliographical and Historical Contents

II. Elementary Solution Methods

In this part of the book we describe three fundamental classes of methods for solving the
reinforcement learning problem: dynamic programming, Monte Carlo methods, and temporal-
difference learning. All of these methods solve the full version of the problem, including delayed
rewards.

Each class of methods has its strengths and weaknesses. Dynamic programming methods are well
developed mathematically, but require a complete and accurate model of the environment. Monte
Carlo methods don't require a model and are conceptually simple, but are not suited for step-by-step
incremental computation. Finally, temporal-difference methods require no model and are fully
incremental, but are more complex to analyze. The methods also differ in several ways with respect
to their efficiency and speed of convergence. In the third part of the book we explore how these
methods can be combined so as to obtain the best features of each of them.

Subsections

● 4. Dynamic Programming
❍ 4.1 Policy Evaluation
❍ 4.2 Policy Improvement
❍ 4.3 Policy Iteration
❍ 4.4 Value Iteration
❍ 4.5 Asynchronous Dynamic Programming
❍ 4.6 Generalized Policy Iteration
❍ 4.7 Efficiency of Dynamic Programming
❍ 4.8 Summary
❍ 4.9 Bibliographical and Historical Remarks

■ 4.1-4
■ 4.5
■ 4.7

● 5. Monte Carlo Methods

❍ 5.1 Monte Carlo Policy Evaluation
❍ 5.2 Monte Carlo Estimation of Action Values
❍ 5.3 Monte Carlo Control
❍ 5.4 On-Policy Monte Carlo Control
❍ 5.5 Evaluating One Policy While Following Another

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node39.html (1 di 2)22/06/2005 9.06.42

II. Elementary Solution Methods

❍ 5.6 Off-Policy Monte Carlo Control
❍ 5.7 Incremental Implementation
❍ 5.8 Summary
❍ 5.9 Bibliographical and Historical Remarks

● 6. Temporal-Difference Learning

❍ 6.1 TD Prediction
❍ 6.2 Advantages of TD Prediction Methods
❍ 6.3 Optimality of TD(0)
❍ 6.4 Sarsa: On-Policy TD Control
❍ 6.5 Q-Learning: Off-Policy TD Control
❍ 6.6 Actor-Critic Methods
❍ 6.7 R-Learning for Undiscounted Continuing Tasks
❍ 6.8 Games, Afterstates, and Other Special Cases
❍ 6.9 Summary
❍ 6.10 Bibliographical and Historical Remarks

■ 6.1-2
■ 6.3
■ 6.4
■ 6.5
■ 6.6
■ 6.7

Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node39.html (2 di 2)22/06/2005 9.06.42

4. Dynamic Programming

Next: 4.1 Policy Evaluation Up: II. Elementary Solution Methods Previous: II. Elementary Solution
Methods Contents

4. Dynamic Programming

The term dynamic programming (DP) refers to a collection of algorithms that can be used to compute
optimal policies given a perfect model of the environment as a Markov decision process (MDP). Classical
DP algorithms are of limited utility in reinforcement learning both because of their assumption of a perfect
model and because of their great computational expense, but they are still important theoretically. DP
provides an essential foundation for the understanding of the methods presented in the rest of this book. In
fact, all of these methods can be viewed as attempts to achieve much the same effect as DP, only with less
computation and without assuming a perfect model of the environment.

Starting with this chapter, we usually assume that the environment is a finite MDP. That is, we assume that

its state and action sets, and , for , are finite, and that its dynamics are given by a set of

transition probabilities, , and expected immediate rewards,

, for all , , and (is plus a
terminal state if the problem is episodic). Although DP ideas can be applied to problems with continuous
state and action spaces, exact solutions are possible only in special cases. A common way of obtaining
approximate solutions for tasks with continuous states and actions is to quantize the state and action spaces
and then apply finite-state DP methods. The methods we explore in Chapter 8 are applicable to continuous
problems and are a significant extension of that approach.

The key idea of DP, and of reinforcement learning generally, is the use of value functions to organize and
structure the search for good policies. In this chapter we show how DP can be used to compute the value
functions defined in Chapter 3. As discussed there, we can easily obtain optimal policies once we have

found the optimal value functions, or , which satisfy the Bellman optimality equations:

 (4.1)

or

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node40.html (1 di 2)22/06/2005 9.06.46

4. Dynamic Programming

 (4.2)

for all , , and . As we shall see, DP algorithms are obtained by turning Bellman
equations such as these into assignments, that is, into update rules for improving approximations of the
desired value functions.

Subsections

● 4.1 Policy Evaluation
● 4.2 Policy Improvement
● 4.3 Policy Iteration
● 4.4 Value Iteration
● 4.5 Asynchronous Dynamic Programming
● 4.6 Generalized Policy Iteration
● 4.7 Efficiency of Dynamic Programming
● 4.8 Summary
● 4.9 Bibliographical and Historical Remarks

❍ 4.1-4
❍ 4.5
❍ 4.7

Next: 4.1 Policy Evaluation Up: II. Elementary Solution Methods Previous: II. Elementary Solution
Methods Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node40.html (2 di 2)22/06/2005 9.06.46

4.1 Policy Evaluation

Next: 4.2 Policy Improvement Up: 4. Dynamic Programming Previous: 4. Dynamic Programming
Contents

4.1 Policy Evaluation

First we consider how to compute the state-value function for an arbitrary policy . This is called
policy evaluation in the DP literature. We also refer to it as the prediction problem. Recall from
Chapter 3 that, for all ,

 (4.3)

 (4.4)

where is the probability of taking action in state under policy , and the expectations are
subscripted by to indicate that they are conditional on being followed. The existence and

uniqueness of are guaranteed as long as either or eventual termination is guaranteed from
all states under the policy .

If the environment's dynamics are completely known, then (4.4) is a system of simultaneous

linear equations in unknowns (the ,). In principle, its solution is a straightforward, if
tedious, computation. For our purposes, iterative solution methods are most suitable. Consider a

sequence of approximate value functions , each mapping to . The initial
approximation, , is chosen arbitrarily (except that the terminal state, if any, must be given value 0),
and each successive approximation is obtained by using the Bellman equation for (3.10) as an
update rule:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node41.html (1 di 5)22/06/2005 9.06.55

4.1 Policy Evaluation

 (4.5)

for all . Clearly, is a fixed point for this update rule because the Bellman equation

for assures us of equality in this case. Indeed, the sequence can be shown in general to
converge to as under the same conditions that guarantee the existence of . This
algorithm is called iterative policy evaluation.

To produce each successive approximation, from , iterative policy evaluation applies the
same operation to each state : it replaces the old value of with a new value obtained from the old
values of the successor states of , and the expected immediate rewards, along all the one-step
transitions possible under the policy being evaluated. We call this kind of operation a full backup.
Each iteration of iterative policy evaluation backs up the value of every state once to produce the new

approximate value function . There are several different kinds of full backups, depending on
whether a state (as here) or a state-action pair is being backed up, and depending on the precise way
the estimated values of the successor states are combined. All the backups done in DP algorithms are
called full backups because they are based on all possible next states rather than on a sample next
state. The nature of a backup can be expressed in an equation, as above, or in a backup diagram like
those introduced in Chapter 3. For example, Figure 3.4a is the backup diagram corresponding to the
full backup used in iterative policy evaluation.

To write a sequential computer program to implement iterative policy evaluation, as given by (4.5),

you would have to use two arrays, one for the old values, , and one for the new values,

. This way, the new values can be computed one by one from the old values without the old
values being changed. Of course it is easier to use one array and update the values "in place," that is,
with each new backed-up value immediately overwriting the old one. Then, depending on the order in
which the states are backed up, sometimes new values are used instead of old ones on the right-hand
side of (4.5). This slightly different algorithm also converges to ; in fact, it usually converges
faster than the two-array version, as you might expect, since it uses new data as soon as they are
available. We think of the backups as being done in a sweep through the state space. For the in-place
algorithm, the order in which states are backed up during the sweep has a significant influence on the
rate of convergence. We usually have the in-place version in mind when we think of DP algorithms.

Another implementation point concerns the termination of the algorithm. Formally, iterative policy
evaluation converges only in the limit, but in practice it must be halted short of this. A typical

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node41.html (2 di 5)22/06/2005 9.06.55

4.1 Policy Evaluation

stopping condition for iterative policy evaluation is to test the quantity
after each sweep and stop when it is sufficiently small. Figure 4.1 gives a complete algorithm for
iterative policy evaluation with this stopping criterion.

Figure 4.1:Iterative policy evaluation.

Example 4.1 Consider the gridworld shown below.

The nonterminal states are . There are four actions possible in each state,

, which deterministically cause the corresponding state
transitions, except that actions that would take the agent off the grid in fact leave the state unchanged.

Thus, for instance, , , and . This is an undiscounted, episodic
task. The reward is on all transitions until the terminal state is reached. The terminal state is

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node41.html (3 di 5)22/06/2005 9.06.55

4.1 Policy Evaluation

shaded in the figure (although it is shown in two places, it is formally one state). The expected reward

function is thus for all states and actions . Suppose the agent follows the
equiprobable random policy (all actions equally likely). The left side of Figure 4.2 shows the

sequence of value functions computed by iterative policy evaluation. The final estimate is in
fact , which in this case gives for each state the negation of the expected number of steps from that
state until termination.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node41.html (4 di 5)22/06/2005 9.06.55

4.1 Policy Evaluation

Figure 4.2:Convergence of iterative policy evaluation on a small gridworld. The left column is the
sequence of approximations of the state-value function for the random policy (all actions equal). The

right column is the sequence of greedy policies corresponding to the value function estimates
(arrows are shown for all actions achieving the maximum). The last policy is guaranteed only to be
an improvement over the random policy, but in this case it, and all policies after the third iteration,

are optimal.

Exercise 4.1 If is the equiprobable random policy, what is ? What is

?

Exercise 4.2 Suppose a new state 15 is added to the gridworld just below state 13, and its actions,
left, up, right, and down, take the agent to states 12, 13, 14, and 15, respectively. Assume that

the transitions from the original states are unchanged. What, then, is for the equiprobable
random policy? Now suppose the dynamics of state 13 are also changed, such that action down from

state 13 takes the agent to the new state 15. What is for the equiprobable random policy in
this case?

Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for the action-value function

 and its successive approximation by a sequence of functions ?

Exercise 4.4 In some undiscounted episodic tasks there may be policies for which eventual
termination is not guaranteed. For example, in the grid problem above it is possible to go back and

forth between two states forever. In a task that is otherwise perfectly sensible, may be
negative infinity for some policies and states, in which case the algorithm for iterative policy
evaluation given in Figure 4.1 will not terminate. As a purely practical matter, how might we amend
this algorithm to assure termination even in this case? Assume that eventual termination is guaranteed
under the optimal policy.

Next: 4.2 Policy Improvement Up: 4. Dynamic Programming Previous: 4. Dynamic Programming
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node41.html (5 di 5)22/06/2005 9.06.55

4.2 Policy Improvement

Next: 4.3 Policy Iteration Up: 4. Dynamic Programming Previous: 4.1 Policy Evaluation Contents

4.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better policies. Suppose we have
determined the value function for an arbitrary deterministic policy . For some state we would like

to know whether or not we should change the policy to deterministically choose an action .

We know how good it is to follow the current policy from --that is --but would it be better or
worse to change to the new policy? One way to answer this question is to consider selecting in and
thereafter following the existing policy, . The value of this way of behaving is

 (4.6)

The key criterion is whether this is greater than or less than . If it is greater--that is, if it is better
to select once in and thereafter follow than it would be to follow all the time--then one would
expect it to be better still to select every time is encountered, and that the new policy would in fact be
a better one overall.

That this is true is a special case of a general result called the policy improvement theorem. Let and
be any pair of deterministic policies such that, for all ,

(4.7)

Then the policy must be as good as, or better than, . That is, it must obtain greater or equal expected
return from all states :

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node42.html (1 di 4)22/06/2005 9.07.03

4.2 Policy Improvement

 (4.8)

Moreover, if there is strict inequality of (4.7) at any state, then there must be strict inequality of (4.8) at
at least one state. This result applies in particular to the two policies that we considered in the previous
paragraph, an original deterministic policy, , and a changed policy, , that is identical to except that

. Obviously, (4.7) holds at all states other than . Thus, if , then
the changed policy is indeed better than .

The idea behind the proof of the policy improvement theorem is easy to understand. Starting from (4.7),

we keep expanding the side and reapplying (4.7) until we get :

So far we have seen how, given a policy and its value function, we can easily evaluate a change in the
policy at a single state to a particular action. It is a natural extension to consider changes at all states and

to all possible actions, selecting at each state the action that appears best according to . In other
words, to consider the new greedy policy, , given by

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node42.html (2 di 4)22/06/2005 9.07.03

4.2 Policy Improvement

 (4.9)

where denotes the value of at which the expression that follows is maximized (with ties
broken arbitrarily). The greedy policy takes the action that looks best in the short term--after one step of
lookahead--according to . By construction, the greedy policy meets the conditions of the policy
improvement theorem (4.7), so we know that it is as good as, or better than, the original policy. The
process of making a new policy that improves on an original policy, by making it greedy with respect to
the value function of the original policy, is called policy improvement.

Suppose the new greedy policy, , is as good as, but not better than, the old policy . Then ,
and from (4.9) it follows that for all :

But this is the same as the Bellman optimality equation (4.1), and therefore, must be , and both
and must be optimal policies. Policy improvement thus must give us a strictly better policy except
when the original policy is already optimal.

So far in this section we have considered the special case of deterministic policies. In the general case, a

stochastic policy specifies probabilities, , for taking each action, , in each state, . We will not
go through the details, but in fact all the ideas of this section extend easily to stochastic policies. In
particular, the policy improvement theorem carries through as stated for the stochastic case, under the
natural definition:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node42.html (3 di 4)22/06/2005 9.07.03

4.2 Policy Improvement

In addition, if there are ties in policy improvement steps such as (4.9)--that is, if there are several actions
at which the maximum is achieved--then in the stochastic case we need not select a single action from
among them. Instead, each maximizing action can be given a portion of the probability of being selected
in the new greedy policy. Any apportioning scheme is allowed as long as all submaximal actions are
given zero probability.

The last row of Figure 4.2 shows an example of policy improvement for stochastic policies. Here the
original policy, , is the equiprobable random policy, and the new policy, , is greedy with respect to

. The value function is shown in the bottom-left diagram and the set of possible is shown in
the bottom-right diagram. The states with multiple arrows in the diagram are those in which several
actions achieve the maximum in (4.9); any apportionment of probability among these actions is

permitted. The value function of any such policy, , can be seen by inspection to be either , ,

or at all states, , whereas is at most . Thus, , for all ,
illustrating policy improvement. Although in this case the new policy happens to be optimal, in
general only an improvement is guaranteed.

Next: 4.3 Policy Iteration Up: 4. Dynamic Programming Previous: 4.1 Policy Evaluation Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node42.html (4 di 4)22/06/2005 9.07.03

4.3 Policy Iteration

Next: 4.4 Value Iteration Up: 4. Dynamic Programming Previous: 4.2 Policy Improvement Contents

4.3 Policy Iteration

Once a policy, , has been improved using to yield a better policy, , we can then compute and improve
it again to yield an even better . We can thus obtain a sequence of monotonically improving policies and value
functions:

where denotes a policy evaluation and denotes a policy improvement. Each policy is guaranteed to be a
strict improvement over the previous one (unless it is already optimal). Because a finite MDP has only a finite
number of policies, this process must converge to an optimal policy and optimal value function in a finite number
of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is given in Figure 4.3. Note
that each policy evaluation, itself an iterative computation, is started with the value function for the previous
policy. This typically results in a great increase in the speed of convergence of policy evaluation (presumably
because the value function changes little from one policy to the next).

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node43.html (1 di 4)22/06/2005 9.07.07

4.3 Policy Iteration

Figure 4.3:Policy iteration (using iterative policy evaluation) for . In the " " step in 3, it is assumed
that ties are broken in a consistent order.

Policy iteration often converges in surprisingly few iterations. This is illustrated by the example in Figure 4.2. The
bottom-left diagram shows the value function for the equiprobable random policy, and the bottom-right diagram
shows a greedy policy for this value function. The policy improvement theorem assures us that these policies are
better than the original random policy. In this case, however, these policies are not just better, but optimal,
proceeding to the terminal states in the minimum number of steps. In this example, policy iteration would find the
optimal policy after just one iteration.

Example 4.2: Jack's Car Rental Jack manages two locations for a nationwide car rental company. Each day,
some number of customers arrive at each location to rent cars. If Jack has a car available, he rents it out and is
credited $10 by the national company. If he is out of cars at that location, then the business is lost. Cars become
available for renting the day after they are returned. To help ensure that cars are available where they are needed,
Jack can move them between the two locations overnight, at a cost of $2 per car moved. We assume that the
number of cars requested and returned at each location are Poisson random variables, meaning that the probability

that the number is is , where is the expected number. Suppose is 3 and 4 for rental requests at the
first and second locations and 3 and 2 for returns. To simplify the problem slightly, we assume that there can be no
more than 20 cars at each location (any additional cars are returned to the nationwide company, and thus disappear
from the problem) and a maximum of five cars can be moved from one location to the other in one night. We take

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node43.html (2 di 4)22/06/2005 9.07.07

4.3 Policy Iteration

the discount rate to be and formulate this as a continuing finite MDP, where the time steps are days, the
state is the number of cars at each location at the end of the day, and the actions are the net numbers of cars moved
between the two locations overnight. Figure 4.4 shows the sequence of policies found by policy iteration starting
from the policy that never moves any cars.

Figure 4.4:The sequence of policies found by policy iteration on Jack's car rental problem, and the final state-
value function. The first five diagrams show, for each number of cars at each location at the end of the day, the
number of cars to be moved from the first location to the second (negative numbers indicate transfers from the

second location to the first). Each successive policy is a strict improvement over the previous policy, and the last
policy is optimal.

Exercise 4.5 (programming) Write a program for policy iteration and re-solve Jack's car rental problem with the
following changes. One of Jack's employees at the first location rides a bus home each night and lives near the
second location. She is happy to shuttle one car to the second location for free. Each additional car still costs $2, as
do all cars moved in the other direction. In addition, Jack has limited parking space at each location. If more than
10 cars are kept overnight at a location (after any moving of cars), then an additional cost of $4 must be incurred to
use a second parking lot (independent of how many cars are kept there). These sorts of nonlinearities and arbitrary
dynamics often occur in real problems and cannot easily be handled by optimization methods other than dynamic
programming. To check your program, first replicate the results given for the original problem. If your computer is
too slow for the full problem, cut all the numbers of cars in half.

Exercise 4.6 How would policy iteration be defined for action values? Give a complete algorithm for computing

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node43.html (3 di 4)22/06/2005 9.07.07

4.3 Policy Iteration

, analogous to Figure 4.3 for computing . Please pay special attention to this exercise, because the ideas
involved will be used throughout the rest of the book.

Exercise 4.7 Suppose you are restricted to considering only policies that are -soft, meaning that the probability

of selecting each action in each state, , is at least . Describe qualitatively the changes that would be
required in each of the steps 3, 2, and 1, in that order, of the policy iteration algorithm for (Figure 4.3).

Next: 4.4 Value Iteration Up: 4. Dynamic Programming Previous: 4.2 Policy Improvement Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node43.html (4 di 4)22/06/2005 9.07.07

4.4 Value Iteration

Next: 4.5 Asynchronous Dynamic Programming Up: 4. Dynamic Programming Previous: 4.3 Policy
Iteration Contents

4.4 Value Iteration

One drawback to policy iteration is that each of its iterations involves policy evaluation, which may itself
be a protracted iterative computation requiring multiple sweeps through the state set. If policy evaluation is
done iteratively, then convergence exactly to occurs only in the limit. Must we wait for exact
convergence, or can we stop short of that? The example in Figure 4.2 certainly suggests that it may be
possible to truncate policy evaluation. In that example, policy evaluation iterations beyond the first three
have no effect on the corresponding greedy policy.

In fact, the policy evaluation step of policy iteration can be truncated in several ways without losing the
convergence guarantees of policy iteration. One important special case is when policy evaluation is
stopped after just one sweep (one backup of each state). This algorithm is called value iteration. It can be
written as a particularly simple backup operation that combines the policy improvement and truncated
policy evaluation steps:

 (4.10)

for all . For arbitrary , the sequence can be shown to converge to under the same
conditions that guarantee the existence of .

Another way of understanding value iteration is by reference to the Bellman optimality equation (4.1).
Note that value iteration is obtained simply by turning the Bellman optimality equation into an update rule.
Also note how the value iteration backup is identical to the policy evaluation backup (4.5) except that it
requires the maximum to be taken over all actions. Another way of seeing this close relationship is to
compare the backup diagrams for these algorithms: Figure 3.4a shows the backup diagram for policy
evaluation and Figure 3.7a shows the backup diagram for value iteration. These two are the natural backup
operations for computing and .

Finally, let us consider how value iteration terminates. Like policy evaluation, value iteration formally
requires an infinite number of iterations to converge exactly to . In practice, we stop once the value
function changes by only a small amount in a sweep. Figure 4.5 gives a complete value iteration algorithm
with this kind of termination condition.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node44.html (1 di 4)22/06/2005 9.07.11

4.4 Value Iteration

Value iteration effectively combines, in each of its sweeps, one sweep of policy evaluation and one sweep
of policy improvement. Faster convergence is often achieved by interposing multiple policy evaluation
sweeps between each policy improvement sweep. In general, the entire class of truncated policy iteration
algorithms can be thought of as sequences of sweeps, some of which use policy evaluation backups and
some of which use value iteration backups. Since the max operation in (4.10) is the only difference
between these backups, this just means that the max operation is added to some sweeps of policy
evaluation. All of these algorithms converge to an optimal policy for discounted finite MDPs.

Figure 4.5:Value iteration.

Example 4.3: Gambler's Problem A gambler has the opportunity to make bets on the outcomes of a
sequence of coin flips. If the coin comes up heads, he wins as many dollars as he has staked on that flip; if
it is tails, he loses his stake. The game ends when the gambler wins by reaching his goal of $100, or loses
by running out of money. On each flip, the gambler must decide what portion of his capital to stake, in
integer numbers of dollars. This problem can be formulated as an undiscounted, episodic, finite MDP. The

state is the gambler's capital, and the actions are stakes,

. The reward is zero on all transitions except those on which the
gambler reaches his goal, when it is . The state-value function then gives the probability of winning
from each state. A policy is a mapping from levels of capital to stakes. The optimal policy maximizes the
probability of reaching the goal. Let denote the probability of the coin coming up heads. If is known,
then the entire problem is known and it can be solved, for instance, by value iteration. Figure 4.6 shows
the change in the value function over successive sweeps of value iteration, and the final policy found, for
the case of .

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node44.html (2 di 4)22/06/2005 9.07.11

4.4 Value Iteration

Figure 4.6:The solution to the gambler's problem for . The upper graph shows the value function
found by successive sweeps of value iteration. The lower graph shows the final policy.

Exercise 4.8 Why does the optimal policy for the gambler's problem have such a curious form? In
particular, for capital of 50 it bets it all on one flip, but for capital of 51 it does not. Why is this a good
policy?

Exercise 4.9 (programming) Implement value iteration for the gambler's problem and solve it for
 and . In programming, you may find it convenient to introduce two dummy states

corresponding to termination with capital of 0 and 100, giving them values of 0 and 1 respectively. Show

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node44.html (3 di 4)22/06/2005 9.07.11

4.4 Value Iteration

your results graphically, as in Figure 4.6. Are your results stable as ?

Exercise 4.10 What is the analog of the value iteration backup (4.10) for action values, ?

Next: 4.5 Asynchronous Dynamic Programming Up: 4. Dynamic Programming Previous: 4.3 Policy
Iteration Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node44.html (4 di 4)22/06/2005 9.07.11

4.5 Asynchronous Dynamic Programming

Next: 4.6 Generalized Policy Iteration Up: 4. Dynamic Programming Previous: 4.4 Value Iteration
Contents

4.5 Asynchronous Dynamic Programming

A major drawback to the DP methods that we have discussed so far is that they involve operations
over the entire state set of the MDP, that is, they require sweeps of the state set. If the state set is very
large, then even a single sweep can be prohibitively expensive. For example, the game of
backgammon has over states. Even if we could perform the value iteration backup on a million
states per second, it would take over a thousand years to complete a single sweep.

Asynchronous DP algorithms are in-place iterative DP algorithms that are not organized in terms of
systematic sweeps of the state set. These algorithms back up the values of states in any order
whatsoever, using whatever values of other states happen to be available. The values of some states
may be backed up several times before the values of others are backed up once. To converge
correctly, however, an asynchronous algorithm must continue to backup the values of all the states: it
can't ignore any state after some point in the computation. Asynchronous DP algorithms allow great
flexibility in selecting states to which backup operations are applied.

For example, one version of asynchronous value iteration backs up the value, in place, of only one

state, , on each step, , using the value iteration backup (4.10). If , asymptotic

convergence to is guaranteed given only that all states occur in the sequence an infinite
number of times. (In the undiscounted episodic case, it is possible that there are some orderings of
backups that do not result in convergence, but it is relatively easy to avoid these.) Similarly, it is
possible to intermix policy evaluation and value iteration backups to produce a kind of asynchronous
truncated policy iteration. Although the details of this and other more unusual DP algorithms are
beyond the scope of this book, it is clear that a few different backups form building blocks that can be
used flexibly in a wide variety of sweepless DP algorithms.

Of course, avoiding sweeps does not necessarily mean that we can get away with less computation. It
just means that an algorithm does not need to get locked into any hopelessly long sweep before it can
make progress improving a policy. We can try to take advantage of this flexibility by selecting the
states to which we apply backups so as to improve the algorithm's rate of progress. We can try to
order the backups to let value information propagate from state to state in an efficient way. Some
states may not need their values backed up as often as others. We might even try to skip backing up
some states entirely if they are not relevant to optimal behavior. Some ideas for doing this are
discussed in Chapter 9.

Asynchronous algorithms also make it easier to intermix computation with real-time interaction. To
solve a given MDP, we can run an iterative DP algorithm at the same time that an agent is actually
experiencing the MDP. The agent's experience can be used to determine the states to which the DP
algorithm applies its backups. At the same time, the latest value and policy information from the DP

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node45.html (1 di 2)22/06/2005 9.07.12

4.5 Asynchronous Dynamic Programming

algorithm can guide the agent's decision-making. For example, we can apply backups to states as the
agent visits them. This makes it possible to focus the DP algorithm's backups onto parts of the state
set that are most relevant to the agent. This kind of focusing is a repeated theme in reinforcement
learning.

Next: 4.6 Generalized Policy Iteration Up: 4. Dynamic Programming Previous: 4.4 Value Iteration
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node45.html (2 di 2)22/06/2005 9.07.12

4.6 Generalized Policy Iteration

Next: 4.7 Efficiency of Dynamic Up: 4. Dynamic Programming Previous: 4.5 Asynchronous
Dynamic Programming Contents

4.6 Generalized Policy Iteration

Policy iteration consists of two simultaneous, interacting processes, one making the value function
consistent with the current policy (policy evaluation), and the other making the policy greedy with
respect to the current value function (policy improvement). In policy iteration, these two processes
alternate, each completing before the other begins, but this is not really necessary. In value iteration,
for example, only a single iteration of policy evaluation is performed in between each policy
improvement. In asynchronous DP methods, the evaluation and improvement processes are
interleaved at an even finer grain. In some cases a single state is updated in one process before
returning to the other. As long as both processes continue to update all states, the ultimate result is
typically the same--convergence to the optimal value function and an optimal policy.

We use the term generalized policy iteration (GPI) to refer to the general idea of letting policy
evaluation and policy improvement processes interact, independent of the granularity and other
details of the two processes. Almost all reinforcement learning methods are well described as GPI.
That is, all have identifiable policies and value functions, with the policy always being improved with
respect to the value function and the value function always being driven toward the value function for
the policy. This overall schema for GPI is illustrated in Figure 4.7.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node46.html (1 di 3)22/06/2005 9.07.14

4.6 Generalized Policy Iteration

Figure 4.7:Generalized policy iteration: Value and policy functions interact until they are optimal
and thus consistent with other.

It is easy to see that if both the evaluation process and the improvement process stabilize, that is, no
longer produce changes, then the value function and policy must be optimal. The value function
stabilizes only when it is consistent with the current policy, and the policy stabilizes only when it is
greedy with respect to the current value function. Thus, both processes stabilize only when a policy
has been found that is greedy with respect to its own evaluation function. This implies that the
Bellman optimality equation (4.1) holds, and thus that the policy and the value function are optimal.

The evaluation and improvement processes in GPI can be viewed as both competing and cooperating.
They compete in the sense that they pull in opposing directions. Making the policy greedy with
respect to the value function typically makes the value function incorrect for the changed policy, and
making the value function consistent with the policy typically causes that policy no longer to be
greedy. In the long run, however, these two processes interact to find a single joint solution: the
optimal value function and an optimal policy.

One might also think of the interaction between the evaluation and improvement processes in GPI in
terms of two constraints or goals--for example, as two lines in two-dimensional space:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node46.html (2 di 3)22/06/2005 9.07.14

4.6 Generalized Policy Iteration

Although the real geometry is much more complicated than this, the diagram suggests what happens
in the real case. Each process drives the value function or policy toward one of the lines representing
a solution to one of the two goals. The goals interact because the two lines are not orthogonal.
Driving directly toward one goal causes some movement away from the other goal. Inevitably,
however, the joint process is brought closer to the overall goal of optimality. The arrows in this
diagram correspond to the behavior of policy iteration in that each takes the system all the way to
achieving one of the two goals completely. In GPI one could also take smaller, incomplete steps
toward each goal. In either case, the two processes together achieve the overall goal of optimality
even though neither is attempting to achieve it directly.

Next: 4.7 Efficiency of Dynamic Up: 4. Dynamic Programming Previous: 4.5 Asynchronous
Dynamic Programming Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node46.html (3 di 3)22/06/2005 9.07.14

4.7 Efficiency of Dynamic Programming

Next: 4.8 Summary Up: 4. Dynamic Programming Previous: 4.6 Generalized Policy Iteration
Contents

4.7 Efficiency of Dynamic Programming

DP may not be practical for very large problems, but compared with other methods for solving
MDPs, DP methods are actually quite efficient. If we ignore a few technical details, then the (worst
case) time DP methods take to find an optimal policy is polynomial in the number of states and
actions. If and denote the number of states and actions, this means that a DP method takes a
number of computational operations that is less than some polynomial function of and . A DP
method is guaranteed to find an optimal policy in polynomial time even though the total number of
(deterministic) policies is . In this sense, DP is exponentially faster than any direct search in
policy space could be, because direct search would have to exhaustively examine each policy to
provide the same guarantee. Linear programming methods can also be used to solve MDPs, and in
some cases their worst-case convergence guarantees are better than those of DP methods. But linear
programming methods become impractical at a much smaller number of states than do DP methods
(by a factor of about 100). For the largest problems, only DP methods are feasible.

DP is sometimes thought to be of limited applicability because of the curse of dimensionality
(Bellman, 1957a), the fact that the number of states often grows exponentially with the number of
state variables. Large state sets do create difficulties, but these are inherent difficulties of the
problem, not of DP as a solution method. In fact, DP is comparatively better suited to handling large
state spaces than competing methods such as direct search and linear programming.

In practice, DP methods can be used with today's computers to solve MDPs with millions of states.
Both policy iteration and value iteration are widely used, and it is not clear which, if either, is better
in general. In practice, these methods usually converge much faster than their theoretical worst-case
run times, particularly if they are started with good initial value functions or policies.

On problems with large state spaces, asynchronous DP methods are often preferred. To complete
even one sweep of a synchronous method requires computation and memory for every state. For
some problems, even this much memory and computation is impractical, yet the problem is still
potentially solvable because only a relatively few states occur along optimal solution trajectories.
Asynchronous methods and other variations of GPI can be applied in such cases and may find good
or optimal policies much faster than synchronous methods can.

Next: 4.8 Summary Up: 4. Dynamic Programming Previous: 4.6 Generalized Policy Iteration
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node47.html22/06/2005 9.07.15

4.8 Summary

Next: 4.9 Bibliographical and Historical Up: 4. Dynamic Programming Previous: 4.7 Efficiency of
Dynamic Contents

4.8 Summary

In this chapter we have become familiar with the basic ideas and algorithms of dynamic
programming as they relate to solving finite MDPs. Policy evaluation refers to the (typically)
iterative computation of the value functions for a given policy. Policy improvement refers to the
computation of an improved policy given the value function for that policy. Putting these two
computations together, we obtain policy iteration and value iteration, the two most popular DP
methods. Either of these can be used to reliably compute optimal policies and value functions for
finite MDPs given complete knowledge of the MDP.

Classical DP methods operate in sweeps through the state set, performing a full backup operation on
each state. Each backup updates the value of one state based on the values of all possible successor
states and their probabilities of occurring. Full backups are closely related to Bellman equations: they
are little more than these equations turned into assignment statements. When the backups no longer
result in any changes in value, convergence has occurred to values that satisfy the corresponding

Bellman equation. Just as there are four primary value functions (, , , and), there are four
corresponding Bellman equations and four corresponding full backups. An intuitive view of the
operation of backups is given by backup diagrams.

Insight into DP methods and, in fact, into almost all reinforcement learning methods, can be gained
by viewing them as generalized policy iteration (GPI). GPI is the general idea of two interacting
processes revolving around an approximate policy and an approximate value function. One process
takes the policy as given and performs some form of policy evaluation, changing the value function
to be more like the true value function for the policy. The other process takes the value function as
given and performs some form of policy improvement, changing the policy to make it better,
assuming that the value function is its value function. Although each process changes the basis for the
other, overall they work together to find a joint solution: a policy and value function that are
unchanged by either process and, consequently, are optimal. In some cases, GPI can be proved to
converge, most notably for the classical DP methods that we have presented in this chapter. In other
cases convergence has not been proved, but still the idea of GPI improves our understanding of the
methods.

It is not necessary to perform DP methods in complete sweeps through the state set. Asynchronous
DP methods are in-place iterative methods that back up states in an arbitrary order, perhaps
stochastically determined and using out-of-date information. Many of these methods can be viewed
as fine-grained forms of GPI.

Finally, we note one last special property of DP methods. All of them update estimates of the values
of states based on estimates of the values of successor states. That is, they update estimates on the

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node48.html (1 di 2)22/06/2005 9.07.16

4.8 Summary

basis of other estimates. We call this general idea bootstrapping. Many reinforcement learning
methods perform bootstrapping, even those that do not require, as DP requires, a complete and
accurate model of the environment. In the next chapter we explore reinforcement learning methods
that do not require a model and do not bootstrap. In the chapter after that we explore methods that do
not require a model but do bootstrap. These key features and properties are separable, yet can be
mixed in interesting combinations.

Next: 4.9 Bibliographical and Historical Up: 4. Dynamic Programming Previous: 4.7 Efficiency of
Dynamic Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node48.html (2 di 2)22/06/2005 9.07.16

4.9 Bibliographical and Historical Remarks

Next: 5. Monte Carlo Methods Up: 4. Dynamic Programming Previous: 4.8 Summary Contents

Subsections

● 4.1-4
● 4.5
● 4.7

4.9 Bibliographical and Historical Remarks

The term "dynamic programming" is due to Bellman (1957a), who showed how these methods could
be applied to a wide range of problems. Extensive treatments of DP can be found in many texts,
including Bertsekas (1995), Bertsekas and Tsitsiklis (1996), Dreyfus and Law (1977), Ross (1983),
White (1969), and Whittle (1982, 1983). Our interest in DP is restricted to its use in solving MDPs,
but DP also applies to other types of problems. Kumar and Kanal (1988) provide a more general look
at DP.

To the best of our knowledge, the first connection between DP and reinforcement learning was made
by Minsky (1961) in commenting on Samuel's checkers player. In a footnote, Minsky mentioned that
it is possible to apply DP to problems in which Samuel's backing-up process can be handled in closed
analytic form. This remark may have misled artificial intelligence researchers into believing that DP
was restricted to analytically tractable problems and therefore largely irrelevant to artificial
intelligence. Andreae (1969b) mentioned DP in the context of reinforcement learning, specifically
policy iteration, although he did not make specific connections between DP and learning algorithms.
Werbos (1977) suggested an approach to approximating DP called "heuristic dynamic programming"
that emphasizes gradient-descent methods for continuous-state problems (Werbos, 1982, 1987, 1988,
1989, 1992). These methods are closely related to the reinforcement learning algorithms that we
discuss in this book. Watkins (1989) was explicit in connecting reinforcement learning to DP,
characterizing a class of reinforcement learning methods as "incremental dynamic programming."

4.1-4

These sections describe well-established DP algorithms that are covered in any of the general DP
references cited above. The policy improvement theorem and the policy iteration algorithm are due to
Bellman (1957a) and Howard (1960). Our presentation was influenced by the local view of policy
improvement taken by Watkins (1989). Our discussion of value iteration as a form of truncated
policy iteration is based on the approach of Puterman and Shin (1978), who presented a class of
algorithms called modified policy iteration, which includes policy iteration and value iteration as
special cases. An analysis showing how value iteration can be made to find an optimal policy in finite
time is given by Bertsekas (1987).

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node49.html (1 di 2)22/06/2005 9.07.17

4.9 Bibliographical and Historical Remarks

Iterative policy evaluation is an example of a classical successive approximation algorithm for
solving a system of linear equations. The version of the algorithm that uses two arrays, one holding
the old values while the other is updated, is often called a Jacobi-style algorithm, after Jacobi's
classical use of this method. It is also sometimes called a synchronous algorithm because it can be
performed in parallel, with separate processors simultaneously updating the values of individual
states using input from other processors. The second array is needed to simulate this parallel
computation sequentially. The in-place version of the algorithm is often called a Gauss-Seidel-style
algorithm after the classical Gauss-Seidel algorithm for solving systems of linear equations. In
addition to iterative policy evaluation, other DP algorithms can be implemented in these different
versions. Bertsekas and Tsitsiklis (1989) provide excellent coverage of these variations and their
performance differences.

4.5

Asynchronous DP algorithms are due to Bertsekas (1982, 1983), who also called them distributed DP
algorithms. The original motivation for asynchronous DP was its implementation on a multiprocessor
system with communication delays between processors and no global synchronizing clock. These
algorithms are extensively discussed by Bertsekas and Tsitsiklis (1989). Jacobi-style and Gauss-
Seidel-style DP algorithms are special cases of the asynchronous version. Williams and Baird (1990)
presented DP algorithms that are asynchronous at a finer grain than the ones we have discussed: the
backup operations themselves are broken into steps that can be performed asynchronously.

4.7

This section, written with the help of Michael Littman, is based on Littman, Dean, and Kaelbling
(1995).

Next: 5. Monte Carlo Methods Up: 4. Dynamic Programming Previous: 4.8 Summary Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node49.html (2 di 2)22/06/2005 9.07.17

5. Monte Carlo Methods

Next: 5.1 Monte Carlo Policy Up: II. Elementary Solution Methods Previous: 4.9 Bibliographical
and Historical Contents

5. Monte Carlo Methods

In this chapter we consider our first learning methods for estimating value functions and discovering
optimal policies. Unlike the previous chapter, here we do not assume complete knowledge of the
environment. Monte Carlo methods require only experience--sample sequences of states, actions, and
rewards from on-line or simulated interaction with an environment. Learning from on-line experience
is striking because it requires no prior knowledge of the environment's dynamics, yet can still attain
optimal behavior. Learning from simulated experience is also powerful. Although a model is
required, the model need only generate sample transitions, not the complete probability distributions
of all possible transitions that is required by dynamic programming (DP) methods. In surprisingly
many cases it is easy to generate experience sampled according to the desired probability
distributions, but infeasible to obtain the distributions in explicit form.

Monte Carlo methods are ways of solving the reinforcement learning problem based on averaging
sample returns. To ensure that well-defined returns are available, we define Monte Carlo methods
only for episodic tasks. That is, we assume experience is divided into episodes, and that all episodes
eventually terminate no matter what actions are selected. It is only upon the completion of an episode
that value estimates and policies are changed. Monte Carlo methods are thus incremental in an
episode-by-episode sense, but not in a step-by-step sense. The term "Monte Carlo" is often used more
broadly for any estimation method whose operation involves a significant random component. Here
we use it specifically for methods based on averaging complete returns (as opposed to methods that
learn from partial returns, considered in the next chapter).

Despite the differences between Monte Carlo and DP methods, the most important ideas carry over
from DP to the Monte Carlo case. Not only do we compute the same value functions, but they
interact to attain optimality in essentially the same way. As in the DP chapter, we consider first policy

evaluation, the computation of and for a fixed arbitrary policy , then policy improvement,
and, finally, generalized policy iteration. Each of these ideas taken from DP is extended to the Monte
Carlo case in which only sample experience is available.

Subsections

● 5.1 Monte Carlo Policy Evaluation
● 5.2 Monte Carlo Estimation of Action Values
● 5.3 Monte Carlo Control
● 5.4 On-Policy Monte Carlo Control
● 5.5 Evaluating One Policy While Following Another

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node50.html (1 di 2)22/06/2005 9.07.19

5. Monte Carlo Methods

● 5.6 Off-Policy Monte Carlo Control
● 5.7 Incremental Implementation
● 5.8 Summary
● 5.9 Bibliographical and Historical Remarks

Next: 5.1 Monte Carlo Policy Up: II. Elementary Solution Methods Previous: 4.9 Bibliographical
and Historical Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node50.html (2 di 2)22/06/2005 9.07.19

5.1 Monte Carlo Policy Evaluation

Next: 5.2 Monte Carlo Estimation Up: 5. Monte Carlo Methods Previous: 5. Monte Carlo Methods
Contents

5.1 Monte Carlo Policy Evaluation

We begin by considering Monte Carlo methods for learning the state-value function for a given
policy. Recall that the value of a state is the expected return--expected cumulative future discounted
reward--starting from that state. An obvious way to estimate it from experience, then, is simply to
average the returns observed after visits to that state. As more returns are observed, the average
should converge to the expected value. This idea underlies all Monte Carlo methods.

In particular, suppose we wish to estimate , the value of a state under policy , given a set of
episodes obtained by following and passing through . Each occurrence of state in an episode is

called a visit to . The every-visit MC method estimates as the average of the returns following
all the visits to in a set of episodes. Within a given episode, the first time is visited is called the
first visit to . The first-visit MC method averages just the returns following first visits to . These two
Monte Carlo methods are very similar but have slightly different theoretical properties. First-visit MC
has been most widely studied, dating back to the 1940s, and is the one we focus on in this chapter.
We reconsider every-visit MC in Chapter 7. First-visit MC is shown in procedural form in Figure
5.1.

Figure 5.1:First-visit MC method for estimating .

Both first-visit MC and every-visit MC converge to as the number of visits (or first visits) to
goes to infinity. This is easy to see for the case of first-visit MC. In this case each return is an

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node51.html (1 di 5)22/06/2005 9.07.23

5.1 Monte Carlo Policy Evaluation

independent, identically distributed estimate of . By the law of large numbers the sequence of
averages of these estimates converges to their expected value. Each average is itself an unbiased

estimate, and the standard deviation of its error falls as , where is the number of returns
averaged. Every-visit MC is less straightforward, but its estimates also converge asymptotically to

 (Singh and Sutton, 1996).

The use of Monte Carlo methods is best illustrated through an example.

Example 5.1 Blackjack is a popular casino card game. The object is to obtain cards the sum of
whose numerical values is as great as possible without exceeding 21. All face cards count as 10, and
the ace can count either as 1 or as 11. We consider the version in which each player competes
independently against the dealer. The game begins with two cards dealt to both dealer and player.
One of the dealer's cards is faceup and the other is facedown. If the player has 21 immediately (an ace
and a 10-card), it is called a natural. He then wins unless the dealer also has a natural, in which case
the game is a draw. If the player does not have a natural, then he can request additional cards, one by
one (hits), until he either stops (sticks) or exceeds 21 (goes bust). If he goes bust, he loses; if he
sticks, then it becomes the dealer's turn. The dealer hits or sticks according to a fixed strategy without
choice: he sticks on any sum of 17 or greater, and hits otherwise. If the dealer goes bust, then the
player wins; otherwise, the outcome--win, lose, or draw--is determined by whose final sum is closer
to 21.

Playing blackjack is naturally formulated as an episodic finite MDP. Each game of blackjack is an
episode. Rewards of , , and are given for winning, losing, and drawing, respectively. All

rewards within a game are zero, and we do not discount (); therefore these terminal rewards
are also the returns. The player's actions are to hit or to stick. The states depend on the player's cards
and the dealer's showing card. We assume that cards are dealt from an infinite deck (i.e., with
replacement) so that there is no advantage to keeping track of the cards already dealt. If the player
holds an ace that he could count as 11 without going bust, then the ace is said to be usable. In this
case it is always counted as 11 because counting it as 1 would make the sum 11 or less, in which case
there is no decision to be made because, obviously, the player should always hit. Thus, the player
makes decisions on the basis of three variables: his current sum (12-21), the dealer's one showing
card (ace-10), and whether or not he holds a usable ace. This makes for a total of 200 states.

Consider the policy that sticks if the player's sum is 20 or 21, and otherwise hits. To find the state-
value function for this policy by a Monte Carlo approach, one simulates many blackjack games using
the policy and averages the returns following each state. Note that in this task the same state never
recurs within one episode, so there is no difference between first-visit and every-visit MC methods.
In this way, we obtained the estimates of the state-value function shown in Figure 5.2. The estimates
for states with a usable ace are less certain and less regular because these states are less common. In
any event, after 500,000 games the value function is very well approximated.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node51.html (2 di 5)22/06/2005 9.07.23

5.1 Monte Carlo Policy Evaluation

Figure 5.2:Approximate state-value functions for the blackjack policy that sticks only on 20 or 21,
computed by Monte Carlo policy evaluation.

Although we have complete knowledge of the environment in this task, it would not be easy to apply
DP policy evaluation to compute the value function. DP methods require the distribution of next

events--in particular, they require the quantities and --and it is not easy to determine these
for blackjack. For example, suppose the player's sum is 14 and he chooses to stick. What is his
expected reward as a function of the dealer's showing card? All of these expected rewards and
transition probabilities must be computed before DP can be applied, and such computations are often
complex and error-prone. In contrast, generating the sample games required by Monte Carlo methods
is easy. This is the case surprisingly often; the ability of Monte Carlo methods to work with sample
episodes alone can be a significant advantage even when one has complete knowledge of the
environment's dynamics.

Can we generalize the idea of backup diagrams to Monte Carlo algorithms? The general idea of a
backup diagram is to show at the top the root node to be updated and to show below all the transitions
and leaf nodes whose rewards and estimated values contribute to the update. For Monte Carlo
estimation of , the root is a state node, and below is the entire sequence of transitions along a
particular episode, ending at the terminal state, as in Figure 5.3. Whereas the DP diagram
(Figure 3.4a) shows all possible transitions, the Monte Carlo diagram shows only those sampled on
the one episode. Whereas the DP diagram includes only one-step transitions, the Monte Carlo
diagram goes all the way to the end of the episode. These differences in the diagrams accurately

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node51.html (3 di 5)22/06/2005 9.07.23

5.1 Monte Carlo Policy Evaluation

reflect the fundamental differences between the algorithms.

Figure 5.3:The backup diagram for Monte Carlo estimation of .

An important fact about Monte Carlo methods is that the estimates for each state are independent.
The estimate for one state does not build upon the estimate of any other state, as is the case in DP. In
other words, Monte Carlo methods do not "bootstrap" as we described it in the previous chapter.

In particular, note that the computational expense of estimating the value of a single state is
independent of the number of states. This can make Monte Carlo methods particularly attractive
when one requires the value of only a subset of the states. One can generate many sample episodes
starting from these states, averaging returns only from of these states ignoring all others. This is a
third advantage Monte Carlo methods can have over DP methods (after the ability to learn from
actual experience and from simulated experience).

Example 5.2: Soap Bubble Suppose a wire frame forming a closed loop is dunked in soapy water
to form a soap surface or bubble conforming at its edges to the wire frame. If the geometry of the
wire frame is irregular but known, how can you compute the shape of the surface? The shape has the
property that the total force on each point exerted by neighboring points is zero (or else the shape
would change). This means that the surface's height at any point is the average of its heights at points
in a small circle around that point. In addition, the surface must meet at its boundaries with the wire
frame. The usual approach to problems of this kind is to put a grid over the area covered by the

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node51.html (4 di 5)22/06/2005 9.07.23

5.1 Monte Carlo Policy Evaluation

surface and solve for its height at the grid points by an iterative computation. Grid points at the
boundary are forced to the wire frame, and all others are adjusted toward the average of the heights of
their four nearest neighbors. This process then iterates, much like DP's iterative policy evaluation,
and ultimately converges to a close approximation to the desired surface.

This is similar to the kind of problem for which Monte Carlo methods were originally designed.
Instead of the iterative computation described above, imagine standing on the surface and taking a
random walk, stepping randomly from grid point to neighboring grid point, with equal probability,
until you reach the boundary. It turns out that the expected value of the height at the boundary is a
close approximation to the height of the desired surface at the starting point (in fact, is is exactly the
value computed by the iterative method described above). Thus, one can closely approximate the
height of the surface at a point by simply averaging the boundary heights of many walks started at the
point. If one is interested in only the value at one point, or any fixed small set of points, then this
Monte Carlo method can be far more efficient than the iterative method based on local consistency.

Exercise 5.1 Consider the diagrams on the right in Figure 5.2. Why does the value function jump
up for the last two rows in the rear? Why does it drop off for the whole last row on the left? Why are
the frontmost values higher in the upper diagrams than in the lower?

Next: 5.2 Monte Carlo Estimation Up: 5. Monte Carlo Methods Previous: 5. Monte Carlo Methods
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node51.html (5 di 5)22/06/2005 9.07.23

5.2 Monte Carlo Estimation of Action Values

Next: 5.3 Monte Carlo Control Up: 5. Monte Carlo Methods Previous: 5.1 Monte Carlo Policy
Contents

5.2 Monte Carlo Estimation of Action Values

If a model is not available, then it is particularly useful to estimate action values rather than state
values. With a model, state values alone are sufficient to determine a policy; one simply looks ahead
one step and chooses whichever action leads to the best combination of reward and next state, as we
did in the chapter on DP. Without a model, however, state values alone are not sufficient. One must
explicitly estimate the value of each action in order for the values to be useful in suggesting a policy.

Thus, one of our primary goals for Monte Carlo methods is to estimate . To achieve this, we first
consider another policy evaluation problem.

The policy evaluation problem for action values is to estimate , the expected return when
starting in state , taking action , and thereafter following policy . The Monte Carlo methods here
are essentially the same as just presented for state values. The every-visit MC method estimates the
value of a state-action pair as the average of the returns that have followed visits to the state in which
the action was selected. The first-visit MC method averages the returns following the first time in
each episode that the state was visited and the action was selected. These methods converge
quadratically, as before, to the true expected values as the number of visits to each state-action pair
approaches infinity.

The only complication is that many relevant state-action pairs may never be visited. If is a
deterministic policy, then in following one will observe returns only for one of the actions from
each state. With no returns to average, the Monte Carlo estimates of the other actions will not
improve with experience. This is a serious problem because the purpose of learning action values is
to help in choosing among the actions available in each state. To compare alternatives we need to
estimate the value of all the actions from each state, not just the one we currently favor.

This is the general problem of maintaining exploration, as discussed in the context of the -armed
bandit problem in Chapter 2. For policy evaluation to work for action values, we must assure
continual exploration. One way to do this is by specifying that the first step of each episode starts at a
state-action pair, and that every such pair has a nonzero probability of being selected as the start. This
guarantees that all state-action pairs will be visited an infinite number of times in the limit of an
infinite number of episodes. We call this the assumption of exploring starts.

The assumption of exploring starts is sometimes useful, but of course it cannot be relied upon in
general, particularly when learning directly from real interactions with an environment. In that case
the starting conditions are unlikely to be so helpful. The most common alternative approach to
assuring that all state-action pairs are encountered is to consider only policies that are stochastic with
a nonzero probability of selecting all actions. We discuss two important variants of this approach in
later sections. For now, we retain the assumption of exploring starts and complete the presentation of

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node52.html (1 di 2)22/06/2005 9.07.25

5.2 Monte Carlo Estimation of Action Values

a full Monte Carlo control method.

Exercise 5.2 What is the backup diagram for Monte Carlo estimation of ?

Next: 5.3 Monte Carlo Control Up: 5. Monte Carlo Methods Previous: 5.1 Monte Carlo Policy
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node52.html (2 di 2)22/06/2005 9.07.25

5.3 Monte Carlo Control

Next: 5.4 On-Policy Monte Carlo Up: 5. Monte Carlo Methods Previous: 5.2 Monte Carlo Estimation
Contents

5.3 Monte Carlo Control

We are now ready to consider how Monte Carlo estimation can be used in control, that is, to approximate
optimal policies. The overall idea is to proceed according to the same pattern as in the DP chapter, that is,
according to the idea of generalized policy iteration (GPI). In GPI one maintains both an approximate
policy and an approximate value function. The value function is repeatedly altered to more closely
approximate the value function for the current policy, and the policy is repeatedly improved with respect
to the current value function:

These two kinds of changes work against each other to some extent, as each creates a moving target for
the other, but together they cause both policy and value function to approach optimality.

To begin, let us consider a Monte Carlo version of classical policy iteration. In this method, we perform
alternating complete steps of policy evaluation and policy improvement, beginning with an arbitrary
policy and ending with the optimal policy and optimal action-value function:

where denotes a complete policy evaluation and denotes a complete policy improvement.
Policy evaluation is done exactly as described in the preceding section. Many episodes are experienced,

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node53.html (1 di 5)22/06/2005 9.07.29

5.3 Monte Carlo Control

with the approximate action-value function approaching the true function asymptotically. For the
moment, let us assume that we do indeed observe an infinite number of episodes and that, in addition, the
episodes are generated with exploring starts. Under these assumptions, the Monte Carlo methods will

compute each exactly, for arbitrary .

Policy improvement is done by making the policy greedy with respect to the current value function. In
this case we have an action-value function, and therefore no model is needed to construct the greedy

policy. For any action-value function , the corresponding greedy policy is the one that, for each ,

deterministically chooses an action with maximal -value:

(5.1)

Policy improvement then can be done by constructing each as the greedy policy with respect to

. The policy improvement theorem (Section 4.2) then applies to and because, for all ,

As we discussed in the previous chapter, the theorem assures us that each is uniformly better than

, unless it is equal to , in which case they are both optimal policies. This in turn assures us that the
overall process converges to the optimal policy and optimal value function. In this way Monte Carlo
methods can be used to find optimal policies given only sample episodes and no other knowledge of the
environment's dynamics.

We made two unlikely assumptions above in order to easily obtain this guarantee of convergence for the
Monte Carlo method. One was that the episodes have exploring starts, and the other was that policy
evaluation could be done with an infinite number of episodes. To obtain a practical algorithm we will
have to remove both assumptions. We postpone consideration of the first assumption until later in this
chapter.

For now we focus on the assumption that policy evaluation operates on an infinite number of episodes.
This assumption is relatively easy to remove. In fact, the same issue arises even in classical DP methods

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node53.html (2 di 5)22/06/2005 9.07.29

5.3 Monte Carlo Control

such as iterative policy evaluation, which also converge only asymptotically to the true value function. In
both DP and Monte Carlo cases there are two ways to solve the problem. One is to hold firm to the idea

of approximating in each policy evaluation. Measurements and assumptions are made to obtain
bounds on the magnitude and probability of error in the estimates, and then sufficient steps are taken
during each policy evaluation to assure that these bounds are sufficiently small. This approach can
probably be made completely satisfactory in the sense of guaranteeing correct convergence up to some
level of approximation. However, it is also likely to require far too many episodes to be useful in practice
on any but the smallest problems.

The second approach to avoiding the infinite number of episodes nominally required for policy
evaluation is to forgo trying to complete policy evaluation before returning to policy improvement. On

each evaluation step we move the value function toward , but we do not expect to actually get close
except over many steps. We used this idea when we first introduced the idea of GPI in Section 4.6. One
extreme form of the idea is value iteration, in which only one iteration of iterative policy evaluation is
performed between each step of policy improvement. The in-place version of value iteration is even more
extreme; there we alternate between improvement and evaluation steps for single states.

For Monte Carlo policy evaluation it is natural to alternate between evaluation and improvement on an
episode-by-episode basis. After each episode, the observed returns are used for policy evaluation, and
then the policy is improved at all the states visited in the episode. A complete simple algorithm along
these lines is given in Figure 5.4. We call this algorithm Monte Carlo ES, for Monte Carlo with
Exploring Starts.

Figure 5.4:Monte Carlo ES: A Monte Carlo control algorithm assuming exploring starts.

In Monte Carlo ES, all the returns for each state-action pair are accumulated and averaged, irrespective
of what policy was in force when they were observed. It is easy to see that Monte Carlo ES cannot

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node53.html (3 di 5)22/06/2005 9.07.29

5.3 Monte Carlo Control

converge to any suboptimal policy. If it did, then the value function would eventually converge to the
value function for that policy, and that in turn would cause the policy to change. Stability is achieved
only when both the policy and the value function are optimal. Convergence to this optimal fixed point
seems inevitable as the changes to the action-value function decrease over time, but has not yet been
formally proved. In our opinion, this is one of the most fundamental open questions in reinforcement
learning.

Example 5.3: Solving Blackjack It is straightforward to apply Monte Carlo ES to blackjack. Since the
episodes are all simulated games, it is easy to arrange for exploring starts that include all possibilities. In
this case one simply picks the dealer's cards, the player's sum, and whether or not the player has a usable
ace, all at random with equal probability. As the initial policy we use the policy evaluated in the previous
blackjack example, that which sticks only on 20 or 21. The initial action-value function can be zero for
all state-action pairs. Figure 5.5 shows the optimal policy for blackjack found by Monte Carlo ES. This
policy is the same as the "basic" strategy of Thorp (1966) with the sole exception of the leftmost notch in
the policy for a usable ace, which is not present in Thorp's strategy. We are uncertain of the reason for
this discrepancy, but confident that what is shown here is indeed the optimal policy for the version of
blackjack we have described.

Figure 5.5:The optimal policy and state-value function for blackjack, found by Monte Carlo ES (Figure
5.4). The state-value function shown was computed from the action-value function found by Monte

Carlo ES.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node53.html (4 di 5)22/06/2005 9.07.29

5.3 Monte Carlo Control

Next: 5.4 On-Policy Monte Carlo Up: 5. Monte Carlo Methods Previous: 5.2 Monte Carlo Estimation
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node53.html (5 di 5)22/06/2005 9.07.29

5.4 On-Policy Monte Carlo Control

Next: 5.5 Evaluating One Policy Up: 5. Monte Carlo Methods Previous: 5.3 Monte Carlo Control Contents

5.4 On-Policy Monte Carlo Control

How can we avoid the unlikely assumption of exploring starts? The only general way to ensure that all actions are selected infinitely often is for the agent to continue to select them. There are two approaches to ensuring this, resulting in what we call
on-policy methods and off-policy methods. On-policy methods attempt to evaluate or improve the policy that is used to make decisions. In this section we present an on-policy Monte Carlo control method in order to illustrate the idea.

In on-policy control methods the policy is generally soft, meaning that for all and all . There are many possible variations on on-policy methods. One possibility is to gradually shift the policy toward a deterministic

optimal policy. Many of the methods discussed in Chapter 2 provide mechanisms for this. The on-policy method we present in this section uses -greedy policies, meaning that most of the time they choose an action that has maximal estimated action

value, but with probability they instead select an action at random. That is, all nongreedy actions are given the minimal probability of selection, , and the remaining bulk of the probability, , is given to the greedy action. The -

greedy policies are examples of -soft policies, defined as policies for which for all states and actions, for some . Among -soft policies, -greedy policies are in some sense those that are closest to greedy.

The overall idea of on-policy Monte Carlo control is still that of GPI. As in Monte Carlo ES, we use first-visit MC methods to estimate the action-value function for the current policy. Without the assumption of exploring starts, however, we cannot
simply improve the policy by making it greedy with respect to the current value function, because that would prevent further exploration of nongreedy actions. Fortunately, GPI does not require that the policy be taken all the way to a greedy policy,

only that it be moved toward a greedy policy. In our on-policy method we will move it only to an -greedy policy. For any -soft policy, , any -greedy policy with respect to is guaranteed to be better than or equal to .

That any -greedy policy with respect to is an improvement over any -soft policy is assured by the policy improvement theorem. Let be the -greedy policy. The conditions of the policy improvement theorem apply because for any
:

 (5.2)

Thus, by the policy improvement theorem, (i.e., , for all). We now prove that equality can hold only when both and are optimal among the -soft policies, that is, when they are better than or equal to all other -
soft policies.

Consider a new environment that is just like the original environment, except with the requirement that policies be -soft "moved inside" the environment. The new environment has the same action and state set as the original and behaves as follows.
If in state and taking action , then with probability the new environment behaves exactly like the old environment. With probability it repicks the action at random, with equal probabilities, and then behaves like the old environment with the

new, random action. The best one can do in this new environment with general policies is the same as the best one could do in the original environment with -soft policies. Let and denote the optimal value functions for the new environment.

Then a policy is optimal among -soft policies if and only if . From the definition of we know that it is the unique solution to

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node54.html (1 di 3)22/06/2005 9.07.36

5.4 On-Policy Monte Carlo Control

When equality holds and the -soft policy is no longer improved, then we also know, from (5.2), that

However, this equation is the same as the previous one, except for the substitution of for . Since is the unique solution, it must be that .

In essence, we have shown in the last few pages that policy iteration works for -soft policies. Using the natural notion of greedy policy for -soft policies, one is assured of improvement on every step, except when the best policy has been found

among the -soft policies. This analysis is independent of how the action-value functions are determined at each stage, but it does assume that they are computed exactly. This brings us to roughly the same point as in the previous section. Now we

only achieve the best policy among the -soft policies, but on the other hand, we have eliminated the assumption of exploring starts. The complete algorithm is given in Figure 5.6.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node54.html (2 di 3)22/06/2005 9.07.36

5.4 On-Policy Monte Carlo Control

Figure 5.6:An -soft on-policy Monte Carlo control algorithm.

Next: 5.5 Evaluating One Policy Up: 5. Monte Carlo Methods Previous: 5.3 Monte Carlo Control Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node54.html (3 di 3)22/06/2005 9.07.36

5.5 Evaluating One Policy While Following Another

Next: 5.6 Off-Policy Monte Carlo Up: 5. Monte Carlo Methods Previous: 5.4 On-Policy Monte
Carlo Contents

5.5 Evaluating One Policy While Following
Another

So far we have considered methods for estimating the value functions for a policy given an infinite
supply of episodes generated using that policy. Suppose now that all we have are episodes generated

from a different policy. That is, suppose we wish to estimate or , but all we have are episodes

following , where . Can we learn the value function for a policy given only experience
"off" the policy?

Happily, in many cases we can. Of course, in order to use episodes from to estimate values for ,
we require that every action taken under is also taken, at least occasionally, under . That is, we

require that implies . In the episodes generated using , consider the th

first visit to state and the complete sequence of states and actions following that visit. Let and

 denote the probabilities of that complete sequence happening given policies and and

starting from . Let denote the corresponding observed return from state . To average these to

obtain an unbiased estimate of , we need only weight each return by its relative probability of

occurring under and , that is, by . The desired Monte Carlo estimate after observing
 returns from state is then

(5.3)

This equation involves the probabilities and , which are normally considered unknown in

applications of Monte Carlo methods. Fortunately, here we need only their ratio, , which

can be determined with no knowledge of the environment's dynamics. Let be the time of
termination of the th episode involving state . Then

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node55.html (1 di 2)22/06/2005 9.07.41

5.5 Evaluating One Policy While Following Another

and

Thus the weight needed in (5.3), , depends only on the two policies and not at all on the
environment's dynamics.

Exercise 5.3 What is the Monte Carlo estimate analogous to (5.3) for action values, given returns
generated using ?

Next: 5.6 Off-Policy Monte Carlo Up: 5. Monte Carlo Methods Previous: 5.4 On-Policy Monte
Carlo Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node55.html (2 di 2)22/06/2005 9.07.41

5.6 Off-Policy Monte Carlo Control

Next: 5.7 Incremental Implementation Up: 5. Monte Carlo Methods Previous: 5.5 Evaluating One
Policy Contents

5.6 Off-Policy Monte Carlo Control

We are now ready to present an example of the second class of learning control methods we consider
in this book: off-policy methods. Recall that the distinguishing feature of on-policy methods is that
they estimate the value of a policy while using it for control. In off-policy methods these two
functions are separated. The policy used to generate behavior, called the behavior policy, may in fact
be unrelated to the policy that is evaluated and improved, called the estimation policy. An advantage
of this separation is that the estimation policy may be deterministic (e.g., greedy), while the behavior
policy can continue to sample all possible actions.

Off-policy Monte Carlo control methods use the technique presented in the preceding section for
estimating the value function for one policy while following another. They follow the behavior policy
while learning about and improving the estimation policy. This technique requires that the behavior
policy have a nonzero probability of selecting all actions that might be selected by the estimation
policy. To explore all possibilities, we require that the behavior policy be soft.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node56.html (1 di 3)22/06/2005 9.07.44

5.6 Off-Policy Monte Carlo Control

Figure 5.7:An off-policy Monte Carlo control algorithm.

Figure 5.7 shows an off-policy Monte Carlo method, based on GPI, for computing . The behavior
policy is maintained as an arbitrary soft policy. The estimation policy is the greedy policy with

respect to , an estimate of . The behavior policy chosen in (a) can be anything, but in order to
assure convergence of to the optimal policy, an infinite number of returns suitable for use in (c)
must be obtained for each pair of state and action. This can be assured by careful choice of the

behavior policy. For example, any -soft behavior policy will suffice.

A potential problem is that this method learns only from the tails of episodes, after the last nongreedy
action. If nongreedy actions are frequent, then learning will be slow, particularly for states appearing
in the early portions of long episodes. Potentially, this could greatly slow learning. There has been
insufficient experience with off-policy Monte Carlo methods to assess how serious this problem is.

Exercise 5.4: Racetrack (programming) Consider driving a race car around a turn like those
shown in Figure 5.8. You want to go as fast as possible, but not so fast as to run off the track. In our
simplified racetrack, the car is at one of a discrete set of grid positions, the cells in the diagram. The
velocity is also discrete, a number of grid cells moved horizontally and vertically per time step. The

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node56.html (2 di 3)22/06/2005 9.07.44

5.6 Off-Policy Monte Carlo Control

actions are increments to the velocity components. Each may be changed by , , or in one step,
for a total of nine actions. Both velocity components are restricted to be nonnegative and less than 5,
and they cannot both be zero. Each episode begins in one of the randomly selected start states and
ends when the car crosses the finish line. The rewards are for each step that stays on the track, and

 if the agent tries to drive off the track. Actually leaving the track is not allowed, but the position is
always advanced by at least one cell along either the horizontal or vertical axes. With these
restrictions and considering only right turns, such as shown in the figure, all episodes are guaranteed
to terminate, yet the optimal policy is unlikely to be excluded. To make the task more challenging, we
assume that on half of the time steps the position is displaced forward or to the right by one additional
cell beyond that specified by the velocity. Apply the on-policy Monte Carlo control method to this
task to compute the optimal policy from each starting state. Exhibit several trajectories following the
optimal policy.

Figure 5.8:A couple of right turns for the racetrack task.

Next: 5.7 Incremental Implementation Up: 5. Monte Carlo Methods Previous: 5.5 Evaluating One
Policy Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node56.html (3 di 3)22/06/2005 9.07.44

5.7 Incremental Implementation

Next: 5.8 Summary Up: 5. Monte Carlo Methods Previous: 5.6 Off-Policy Monte Carlo Contents

5.7 Incremental Implementation

Monte Carlo methods can be implemented incrementally, on an episode-by-episode basis, using
extensions of techniques described in Chapter 2. They use averages of returns just as some of the
methods for solving -armed bandit tasks described in Chapter 2 use averages of rewards. The
techniques in Sections 2.5 and 2.6 extend immediately to the Monte Carlo case. They enable Monte
Carlo methods to process each new return incrementally with no increase in computation or memory
as the number of episodes increases.

There are two differences between the Monte Carlo and bandit cases. One is that the Monte Carlo
case typically involves multiple situations, that is, a different averaging process for each state,
whereas bandit problems involve just one state (at least in the simple form treated in Chapter 2). The
other difference is that the reward distributions in bandit problems are typically stationary, whereas in
Monte Carlo methods the return distributions are typically nonstationary. This is because the returns
depend on the policy, and the policy is typically changing and improving over time.

The incremental implementation described in Section 2.5 handles the case of simple or arithmetic
averages, in which each return is weighted equally. Suppose we instead want to implement a
weighted average, in which each return is weighted by , and we want to compute

 (5.4)

For example, the method described for estimating one policy while following another in Section 5.5

uses weights of . Weighted averages also have a simple incremental update
rule. In addition to keeping track of , we must maintain for each state the cumulative sum of
the weights given to the first returns. The update rule for is

(5.5)

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node57.html (1 di 2)22/06/2005 9.07.46

5.7 Incremental Implementation

and

where .

Exercise 5.5 Modify the algorithm for first-visit MC policy evaluation (Figure 5.1) to use the
incremental implementation for stationary averages described in Section 2.5.

Exercise 5.6 Derive the weighted-average update rule (5.5) from (5.4). Follow the pattern of the
derivation of the unweighted rule (2.4) from (2.1).

Exercise 5.7 Modify the algorithm for the off-policy Monte Carlo control algorithm (Figure 5.7) to
use the method described above for incrementally computing weighted averages.

Next: 5.8 Summary Up: 5. Monte Carlo Methods Previous: 5.6 Off-Policy Monte Carlo Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node57.html (2 di 2)22/06/2005 9.07.46

5.8 Summary

Next: 5.9 Bibliographical and Historical Up: 5. Monte Carlo Methods Previous: 5.7 Incremental
Implementation Contents

5.8 Summary

The Monte Carlo methods presented in this chapter learn value functions and optimal policies from
experience in the form of sample episodes. This gives them at least three kinds of advantages over
DP methods. First, they can be used to learn optimal behavior directly from interaction with the
environment, with no model of the environment's dynamics. Second, they can be used with
simulation or sample models. For surprisingly many applications it is easy to simulate sample
episodes even though it is difficult to construct the kind of explicit model of transition probabilities
required by DP methods. Third, it is easy and efficient to focus Monte Carlo methods on a small
subset of the states. A region of special interest can be accurately evaluated without going to the
expense of accurately evaluating the rest of the state set (we explore this further in Chapter 9).

A fourth advantage of Monte Carlo methods, which we discuss later in the book, is that they may be
less harmed by violations of the Markov property. This is because they not update their value
estimates on the basis of the value estimates of successor states. In other words, it is because they do
not bootstrap.

In designing Monte Carlo control methods we have followed the overall schema of generalized
policy iteration (GPI) introduced in Chapter 4. GPI involves interacting processes of policy
evaluation and policy improvement. Monte Carlo methods provide an alternative policy evaluation
process. Rather than use a model to compute the value of each state, they simply average many
returns that start in the state. Because a state's value is the expected return, this average can become a
good approximation to the value. In control methods we are particularly interested in approximating
action-value functions, because these can be used to improve the policy without requiring a model of
the environment's transition dynamics. Monte Carlo methods intermix policy evaluation and policy
improvement steps on an episode-by-episode basis, and can be incrementally implemented on an
episode-by-episode basis.

Maintaining sufficient exploration is an issue in Monte Carlo control methods. It is not enough just to
select the actions currently estimated to be best, because then no returns will be obtained for
alternative actions, and it may never be learned that they are actually better. One approach is to
ignore this problem by assuming that episodes begin with state-action pairs randomly selected to
cover all possibilities. Such exploring starts can sometimes be arranged in applications with
simulated episodes, but are unlikely in learning from real experience. Instead, one of two general
approaches can be used. In on-policy methods, the agent commits to always exploring and tries to
find the best policy that still explores. In off-policy methods, the agent also explores, but learns a
deterministic optimal policy that may be unrelated to the policy followed. More instances of both
kinds of methods are presented in the next chapter.

All Monte Carlo methods for reinforcement learning have been explicitly identified only recently.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node58.html (1 di 2)22/06/2005 9.07.47

5.8 Summary

Their convergence properties are not yet clear, and their effectiveness in practice has been little
tested. At present, their primary significance is their simplicity and their relationships to other
methods.

Monte Carlo methods differ from DP methods in two ways. First, they operate on sample experience,
and thus can be used for direct learning without a model. Second, they do not bootstrap. That is, they
do not update their value estimates on the basis of other value estimates. These two differences are
not tightly linked and can be separated. In the next chapter we consider methods that learn from
experience, like Monte Carlo methods, but also bootstrap, like DP methods.

Next: 5.9 Bibliographical and Historical Up: 5. Monte Carlo Methods Previous: 5.7 Incremental
Implementation Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node58.html (2 di 2)22/06/2005 9.07.47

5.9 Bibliographical and Historical Remarks

Next: 6. Temporal-Difference Learning Up: 5. Monte Carlo Methods Previous: 5.8 Summary
Contents

5.9 Bibliographical and Historical Remarks

The term "Monte Carlo" dates from the 1940s, when physicists at Los Alamos devised games of
chance that they could study to help understand complex physical phenomena relating to the atom
bomb. Coverage of Monte Carlo methods in this sense can be found in several textbooks (e.g., Kalos
and Whitlock, 1986; Rubinstein, 1981).

An early use of Monte Carlo methods to estimate action values in a reinforcement learning context
was by Michie and Chambers (1968). In pole balancing (Example 3.4), they used averages of episode
durations to assess the worth (expected balancing "life") of each possible action in each state, and
then used these assessments to control action selections. Their method is similar in spirit to Monte
Carlo ES. In our terms, they used a form of every-visit MC method. Narendra and Wheeler (1986)
studied a Monte Carlo method for ergodic finite Markov chains that used the return accumulated
from one visit to a state to the next as a reward for adjusting a learning automaton's action
probabilities.

Barto and Duff (1994) discussed policy evaluation in the context of classical Monte Carlo algorithms
for solving systems of linear equations. They used the analysis of Curtiss (1954) to point out the
computational advantages of Monte Carlo policy evaluation for large problems. Singh and Sutton
(1996) distinguished between every-visit and first-visit MC methods and proved results relating these
methods to reinforcement learning algorithms.

The blackjack example is based on an example used by Widrow, Gupta, and Maitra (1973). The soap
bubble example is a classical Dirichlet problem whose Monte Carlo solution was first proposed by
Kakutani (1945; see Hersh and Griego, 1969; Doyle and Snell, 1984). The racetrack exercise is
adapted from Barto, Bradtke, and Singh (1995), and from Gardner (1973).

Next: 6. Temporal-Difference Learning Up: 5. Monte Carlo Methods Previous: 5.8 Summary
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node59.html22/06/2005 9.07.49

6. Temporal-Difference Learning

Next: 6.1 TD Prediction Up: II. Elementary Solution Methods Previous: 5.9 Bibliographical and
Historical Contents

6. Temporal-Difference Learning

If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly
be temporal-difference (TD) learning. TD learning is a combination of Monte Carlo ideas and
dynamic programming (DP) ideas. Like Monte Carlo methods, TD methods can learn directly from
raw experience without a model of the environment's dynamics. Like DP, TD methods update
estimates based in part on other learned estimates, without waiting for a final outcome (they
bootstrap). The relationship between TD, DP, and Monte Carlo methods is a recurring theme in the
theory of reinforcement learning. This chapter is the beginning of our exploration of it. Before we are
done, we will see that these ideas and methods blend into each other and can be combined in many
ways. In particular, in Chapter 7 we introduce the TD() algorithm, which seamlessly integrates TD
and Monte Carlo methods.

As usual, we start by focusing on the policy evaluation or prediction problem, that of estimating the
value function for a given policy . For the control problem (finding an optimal policy), DP, TD,
and Monte Carlo methods all use some variation of generalized policy iteration (GPI). The
differences in the methods are primarily differences in their approaches to the prediction problem.

Subsections

● 6.1 TD Prediction
● 6.2 Advantages of TD Prediction Methods
● 6.3 Optimality of TD(0)
● 6.4 Sarsa: On-Policy TD Control
● 6.5 Q-Learning: Off-Policy TD Control
● 6.6 Actor-Critic Methods
● 6.7 R-Learning for Undiscounted Continuing Tasks
● 6.8 Games, Afterstates, and Other Special Cases
● 6.9 Summary
● 6.10 Bibliographical and Historical Remarks

❍ 6.1-2
❍ 6.3
❍ 6.4
❍ 6.5
❍ 6.6
❍ 6.7

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node60.html (1 di 2)22/06/2005 9.07.52

6. Temporal-Difference Learning

Next: 6.1 TD Prediction Up: II. Elementary Solution Methods Previous: 5.9 Bibliographical and
Historical Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node60.html (2 di 2)22/06/2005 9.07.52

6.1 TD Prediction

Next: 6.2 Advantages of TD Up: 6. Temporal-Difference Learning Previous: 6. Temporal-
Difference Learning Contents

6.1 TD Prediction

Both TD and Monte Carlo methods use experience to solve the prediction problem. Given some
experience following a policy , both methods update their estimate of . If a nonterminal state

 is visited at time , then both methods update their estimate based on what happens after
that visit. Roughly speaking, Monte Carlo methods wait until the return following the visit is known,

then use that return as a target for . A simple every-visit Monte Carlo method suitable for
nonstationary environments is

(6.1)

where is the actual return following time and is a constant step-size parameter (c.f., Equation

(2.5)). Let us call this method constant- MC. Whereas Monte Carlo methods must wait until the

end of the episode to determine the increment to (only then is known), TD methods need
wait only until the next time step. At time they immediately form a target and make a useful

update using the observed reward and the estimate . The simplest TD method, known
as TD(0), is

(6.2)

In effect, the target for the Monte Carlo update is , whereas the target for the TD update is

.

Because the TD method bases its update in part on an existing estimate, we say that it is a
bootstrapping method, like DP. We know from Chapter 3 that

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node61.html (1 di 5)22/06/2005 9.08.02

6.1 TD Prediction

 (6.3)

 (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas DP methods
use an estimate of (6.4) as a target. The Monte Carlo target is an estimate because the expected value
in (6.3) is not known; a sample return is used in place of the real expected return. The DP target is an
estimate not because of the expected values, which are assumed to be completely provided by a

model of the environment, but because is not known and the current estimate, , is
used instead. The TD target is an estimate for both reasons: it samples the expected values in (6.4)

and it uses the current estimate instead of the true . Thus, TD methods combine the sampling of
Monte Carlo with the bootstrapping of DP. As we shall see, with care and imagination this can take
us a long way toward obtaining the advantages of both Monte Carlo and DP methods.

Figure 6.1 specifies TD(0) completely in procedural form, and Figure 6.2 shows its backup diagram.
The value estimate for the state node at the top of the backup diagram is updated on the basis of the
one sample transition from it to the immediately following state. We refer to TD and Monte Carlo
updates as sample backups because they involve looking ahead to a sample successor state (or state-
action pair), using the value of the successor and the reward along the way to compute a backed-up
value, and then changing the value of the original state (or state-action pair) accordingly. Sample
backups differ from the full backups of DP methods in that they are based on a single sample
successor rather than on a complete distribution of all possible successors.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node61.html (2 di 5)22/06/2005 9.08.02

6.1 TD Prediction

Figure 6.1:Tabular TD(0) for estimating .

Figure 6.2:The backup diagram for TD(0).

Example 6.1: Driving Home Each day as you drive home from work, you try to predict how long it
will take to get home. When you leave your office, you note the time, the day of week, and anything
else that might be relevant. Say on this Friday you are leaving at exactly 6 o'clock, and you estimate
that it will take 30 minutes to get home. As you reach your car it is 6:05, and you notice it is starting
to rain. Traffic is often slower in the rain, so you reestimate that it will take 35 minutes from then, or
a total of 40 minutes. Fifteen minutes later you have completed the highway portion of your journey
in good time. As you exit onto a secondary road you cut your estimate of total travel time to 35
minutes. Unfortunately, at this point you get stuck behind a slow truck, and the road is too narrow to
pass. You end up having to follow the truck until you turn onto the side street where you live at 6:40.
Three minutes later you are home. The sequence of states, times, and predictions is thus as follows:

 Elapsed Time Predicted Predicted

State (minutes) Time to Go Total Time

leaving office, friday at 6 0 30 30

reach car, raining 5 35 40

exiting highway 20 15 35

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node61.html (3 di 5)22/06/2005 9.08.02

6.1 TD Prediction

2ndary road, behind truck 30 10 40

entering home street 40 3 43

arrive home 43 0 43

The rewards in this example are the elapsed times on each leg of the journey.6.1 We are not

discounting (), and thus the return for each state is the actual time to go from that state. The
value of each state is the expected time to go. The second column of numbers gives the current
estimated value for each state encountered.

Figure 6.3:Changes recommended by Monte Carlo methods in the driving home example.

A simple way to view the operation of Monte Carlo methods is to plot the predicted total time (the
last column) over the sequence, as in Figure 6.3. The arrows show the changes in predictions

recommended by the constant- MC method (6.1), for . These are exactly the errors between
the estimated value (predicted time to go) in each state and the actual return (actual time to go). For
example, when you exited the highway you thought it would take only 15 minutes more to get home,
but in fact it took 23 minutes. Equation (6.1) applies at this point and determines an increment in the

estimate of time to go after exiting the highway. The error, , at this time is eight

minutes. Suppose the step-size parameter, , is . Then the predicted time to go after exiting the
highway would be revised upward by four minutes as a result of this experience. This is probably too
large a change in this case; the truck was probably just an unlucky break. In any event, the change
can only be made off-line, that is, after you have reached home. Only at this point do you know any
of the actual returns.

Is it necessary to wait until the final outcome is known before learning can begin? Suppose on

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node61.html (4 di 5)22/06/2005 9.08.02

6.1 TD Prediction

another day you again estimate when leaving your office that it will take 30 minutes to drive home,
but then you become stuck in a massive traffic jam. Twenty-five minutes after leaving the office you
are still bumper-to-bumper on the highway. You now estimate that it will take another 25 minutes to
get home, for a total of 50 minutes. As you wait in traffic, you already know that your initial estimate
of 30 minutes was too optimistic. Must you wait until you get home before increasing your estimate
for the initial state? According to the Monte Carlo approach you must, because you don't yet know
the true return.

According to a TD approach, on the other hand, you would learn immediately, shifting your initial
estimate from 30 minutes toward 50. In fact, each estimate would be shifted toward the estimate that
immediately follows it. Returning to our first day of driving, Figure 6.4 shows the same predictions
as Figure 6.3, except with the changes recommended by the TD rule (6.2) (these are the changes
made by the rule if). Each error is proportional to the change over time of the prediction, that
is, to the temporal differences in predictions.

Figure 6.4:Changes recommended by TD methods in the driving home example.

Besides giving you something to do while waiting in traffic, there are several computational reasons
why it is advantageous to learn based on your current predictions rather than waiting until termination
when you know the actual return. We briefly discuss some of these next.

Next: 6.2 Advantages of TD Up: 6. Temporal-Difference Learning Previous: 6. Temporal-
Difference Learning Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node61.html (5 di 5)22/06/2005 9.08.02

6.2 Advantages of TD Prediction Methods

Next: 6.3 Optimality of TD(0) Up: 6. Temporal-Difference Learning Previous: 6.1 TD Prediction
Contents

6.2 Advantages of TD Prediction Methods

TD methods learn their estimates in part on the basis of other estimates. They learn a guess from a
guess--they bootstrap. Is this a good thing to do? What advantages do TD methods have over Monte
Carlo and DP methods? Developing and answering such questions will take the rest of this book and
more. In this section we briefly anticipate some of the answers.

Obviously, TD methods have an advantage over DP methods in that they do not require a model of
the environment, of its reward and next-state probability distributions.

The next most obvious advantage of TD methods over Monte Carlo methods is that they are naturally
implemented in an on-line, fully incremental fashion. With Monte Carlo methods one must wait until
the end of an episode, because only then is the return known, whereas with TD methods one need
wait only one time step. Surprisingly often this turns out to be a critical consideration. Some
applications have very long episodes, so that delaying all learning until an episode's end is too slow.
Other applications are continuing tasks and have no episodes at all. Finally, as we noted in the
previous chapter, some Monte Carlo methods must ignore or discount episodes on which
experimental actions are taken, which can greatly slow learning. TD methods are much less
susceptible to these problems because they learn from each transition regardless of what subsequent
actions are taken.

But are TD methods sound? Certainly it is convenient to learn one guess from the next, without
waiting for an actual outcome, but can we still guarantee convergence to the correct answer? Happily,
the answer is yes. For any fixed policy , the TD algorithm described above has been proved to
converge to , in the mean for a constant step-size parameter if it is sufficiently small, and with
probability 1 if the step-size parameter decreases according to the usual stochastic approximation
conditions (2.8). Most convergence proofs apply only to the table-based case of the algorithm
presented above (6.2), but some also apply to the case of general linear function approximation.
These results are discussed in a more general setting in the next two chapters.

If both TD and Monte Carlo methods converge asymptotically to the correct predictions, then a
natural next question is "Which gets there first?" In other words, which method learns faster? Which
makes the more efficient use of limited data? At the current time this is an open question in the sense
that no one has been able to prove mathematically that one method converges faster than the other. In
fact, it is not even clear what is the most appropriate formal way to phrase this question! In practice,

however, TD methods have usually been found to converge faster than constant- MC methods on
stochastic tasks, as illustrated in the following example.

Example 6.2: Random Walk In this example we empirically compare the prediction abilities of TD

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node62.html (1 di 4)22/06/2005 9.08.06

6.2 Advantages of TD Prediction Methods

(0) and constant- MC applied to the small Markov process shown in Figure 6.5. All episodes start
in the center state, , and proceed either left or right by one state on each step, with equal
probability. This behavior is presumably due to the combined effect of a fixed policy and an
environment's state-transition probabilities, but we do not care which; we are concerned only with
predicting returns however they are generated. Episodes terminate either on the extreme left or the
extreme right. When an episode terminates on the right a reward of occurs; all other rewards are
zero. For example, a typical walk might consist of the following state-and-reward sequence:

. Because this task is undiscounted and episodic, the true value of each
state is the probability of terminating on the right if starting from that state. Thus, the true value of the

center state is . The true values of all the states, through , are , and .
Figure 6.6 shows the values learned by TD(0) approaching the true values as more episodes are
experienced. Averaging over many episode sequences, Figure 6.7 shows the average error in the

predictions found by TD(0) and constant- MC, for a variety of values of , as a function of
number of episodes. In all cases the approximate value function was initialized to the intermediate

value , for all . The TD method is consistently better than the MC method on this task
over this number of episodes.

Figure 6.5:A small Markov process for generating random walks.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node62.html (2 di 4)22/06/2005 9.08.06

6.2 Advantages of TD Prediction Methods

Figure 6.6:Values learned by TD(0) after various numbers of episodes. The final estimate is about
as close as the estimates ever get to the true values. With a constant step-size parameter (in

this example), the values fluctuate indefinitely in response to the outcomes of the most recent
episodes.

Figure 6.7:Learning curves for TD(0) and constant- MC methods, for various values of , on the
prediction problem for the random walk. The performance measure shown is the root mean-squared
(RMS) error between the value function learned and the true value function, averaged over the five

states. These data are averages over 100 different sequences of episodes.

Exercise 6.1 This is an exercise to help develop your intuition about why TD methods are often
more efficient than Monte Carlo methods. Consider the driving home example and how it is
addressed by TD and Monte Carlo methods. Can you imagine a scenario in which a TD update would
be better on average than an Monte Carlo update? Give an example scenario--a description of past
experience and a current state--in which you would expect the TD update to be better. Here's a hint:
Suppose you have lots of experience driving home from work. Then you move to a new building and
a new parking lot (but you still enter the highway at the same place). Now you are starting to learn
predictions for the new building. Can you see why TD updates are likely to be much better, at least
initially, in this case? Might the same sort of thing happen in the original task?

Exercise 6.2 From Figure 6.6, it appears that the first episode results in a change in only .
What does this tell you about what happened on the first episode? Why was only the estimate for this
one state changed? By exactly how much was it changed?

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node62.html (3 di 4)22/06/2005 9.08.06

6.2 Advantages of TD Prediction Methods

Exercise 6.3 Do you think that by choosing the step-size parameter, , differently, either algorithm
could have done significantly better than shown in Figure 6.7? Why or why not?

Exercise 6.4 In Figure 6.7, the RMS error of the TD method seems to go down and then up again,

particularly at high 's. What could have caused this? Do you think this always occurs, or might it
be a function of how the approximate value function was initialized?

Exercise 6.5 Above we stated that the true values for the random walk task are , and , for
states through . Describe at least two different ways that these could have been computed. Which
would you guess we actually used? Why?

Next: 6.3 Optimality of TD(0) Up: 6. Temporal-Difference Learning Previous: 6.1 TD Prediction
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node62.html (4 di 4)22/06/2005 9.08.06

6.3 Optimality of TD(0)

Next: 6.4 Sarsa: On-Policy TD Up: 6. Temporal-Difference Learning Previous: 6.2 Advantages of
TD Contents

6.3 Optimality of TD(0)

Suppose there is available only a finite amount of experience, say 10 episodes or 100 time steps. In
this case, a common approach with incremental learning methods is to present the experience
repeatedly until the method converges upon an answer. Given an approximate value function, , the
increments specified by (6.1) or (6.2) are computed for every time step at which a nonterminal state
is visited, but the value function is changed only once, by the sum of all the increments. Then all the
available experience is processed again with the new value function to produce a new overall
increment, and so on, until the value function converges. We call this batch updating because updates
are made only after processing each complete batch of training data.

Under batch updating, TD(0) converges deterministically to a single answer independent of the step-

size parameter, , as long as is chosen to be sufficiently small. The constant- MC method
also converges deterministically under the same conditions, but to a different answer. Understanding
these two answers will help us understand the difference between the two methods. Under normal
updating the methods do not move all the way to their respective batch answers, but in some sense
they take steps in these directions. Before trying to understand the two answers in general, for all
possible tasks, we first look at a few examples.

Example 6.3 Random walk under batch updating. Batch-updating versions of TD(0) and constant-

 MC were applied as follows to the random walk prediction example (Example 6.2). After each
new episode, all episodes seen so far were treated as a batch. They were repeatedly presented to the

algorithm, either TD(0) or constant- MC, with sufficiently small that the value function
converged. The resulting value function was then compared with , and the average root mean-
squared error across the five states (and across 100 independent repetitions of the whole experiment)
was plotted to obtain the learning curves shown in Figure 6.8. Note that the batch TD method was
consistently better than the batch Monte Carlo method.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node63.html (1 di 4)22/06/2005 9.08.11

6.3 Optimality of TD(0)

Figure 6.8:Performance of TD(0) and constant- MC under batch training on the random walk
task.

Under batch training, constant- MC converges to values, , that are sample averages of the
actual returns experienced after visiting each state . These are optimal estimates in the sense that
they minimize the mean-squared error from the actual returns in the training set. In this sense it is
surprising that the batch TD method was able to perform better according to the root mean-squared
error measure shown in Figure 6.8. How is it that batch TD was able to perform better than this
optimal method? The answer is that the Monte Carlo method is optimal only in a limited way, and
that TD is optimal in a way that is more relevant to predicting returns. But first let's develop our
intuitions about different kinds of optimality through another example.

Example 6.4: You are the Predictor Place yourself now in the role of the predictor of returns for
an unknown Markov reward process. Suppose you observe the following eight episodes:

This means that the first episode started in state , transitioned to with a reward of 0, and then

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node63.html (2 di 4)22/06/2005 9.08.11

6.3 Optimality of TD(0)

terminated from with a reward of 0. The other seven episodes were even shorter, starting from
and terminating immediately. Given this batch of data, what would you say are the optimal

predictions, the best values for the estimates and ? Everyone would probably agree that

the optimal value for is , because six out of the eight times in state the process terminated
immediately with a return of 1, and the other two times in the process terminated immediately with
a return of 0.

But what is the optimal value for the estimate given this data? Here there are two reasonable
answers. One is to observe that 100% of the times the process was in state it traversed immediately

to (with a reward of 0); and since we have already decided that has value , therefore must

have value as well. One way of viewing this answer is that it is based on first modeling the Markov
process, in this case as

and then computing the correct estimates given the model, which indeed in this case gives

. This is also the answer that batch TD(0) gives.

The other reasonable answer is simply to observe that we have seen once and the return that

followed it was 0; we therefore estimate as . This is the answer that batch Monte Carlo
methods give. Notice that it is also the answer that gives minimum squared error on the training data.
In fact, it gives zero error on the data. But still we expect the first answer to be better. If the process is
Markov, we expect that the first answer will produce lower error on future data, even though the
Monte Carlo answer is better on the existing data.

The above example illustrates a general difference between the estimates found by batch TD(0) and
batch Monte Carlo methods. Batch Monte Carlo methods always find the estimates that minimize

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node63.html (3 di 4)22/06/2005 9.08.11

6.3 Optimality of TD(0)

mean-squared error on the training set, whereas batch TD(0) always finds the estimates that would be
exactly correct for the maximum-likelihood model of the Markov process. In general, the maximum-
likelihood estimate of a parameter is the parameter value whose probability of generating the data is
greatest. In this case, the maximum-likelihood estimate is the model of the Markov process formed in
the obvious way from the observed episodes: the estimated transition probability from to is the
fraction of observed transitions from that went to , and the associated expected reward is the
average of the rewards observed on those transitions. Given this model, we can compute the estimate
of the value function that would be exactly correct if the model were exactly correct. This is called
the certainty-equivalence estimate because it is equivalent to assuming that the estimate of the
underlying process was known with certainty rather than being approximated. In general, batch TD
(0) converges to the certainty-equivalence estimate.

This helps explain why TD methods converge more quickly than Monte Carlo methods. In batch
form, TD(0) is faster than Monte Carlo methods because it computes the true certainty-equivalence
estimate. This explains the advantage of TD(0) shown in the batch results on the random walk task
(Figure 6.8). The relationship to the certainty-equivalence estimate may also explain in part the
speed advantage of nonbatch TD(0) (e.g., Figure 6.7). Although the nonbatch methods do not
achieve either the certainty-equivalence or the minimum squared-error estimates, they can be

understood as moving roughly in these directions. Nonbatch TD(0) may be faster than constant-
MC because it is moving toward a better estimate, even though it is not getting all the way there. At
the current time nothing more definite can be said about the relative efficiency of on-line TD and
Monte Carlo methods.

Finally, it is worth noting that although the certainty-equivalence estimate is in some sense an
optimal solution, it is almost never feasible to compute it directly. If is the number of states, then
just forming the maximum-likelihood estimate of the process may require memory, and
computing the corresponding value function requires on the order of computational steps if done
conventionally. In these terms it is indeed striking that TD methods can approximate the same
solution using memory no more than and repeated computations over the training set. On tasks
with large state spaces, TD methods may be the only feasible way of approximating the certainty-
equivalence solution.

Next: 6.4 Sarsa: On-Policy TD Up: 6. Temporal-Difference Learning Previous: 6.2 Advantages of
TD Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node63.html (4 di 4)22/06/2005 9.08.11

6.4 Sarsa: On-Policy TD Control

Next: 6.5 Q-Learning: Off-Policy TD Up: 6. Temporal-Difference Learning Previous: 6.3 Optimality of TD(0)
Contents

6.4 Sarsa: On-Policy TD Control

We turn now to the use of TD prediction methods for the control problem. As usual, we follow the pattern of
generalized policy iteration (GPI), only this time using TD methods for the evaluation or prediction part. As with Monte
Carlo methods, we face the need to trade off exploration and exploitation, and again approaches fall into two main
classes: on-policy and off-policy. In this section we present an on-policy TD control method.

The first step is to learn an action-value function rather than a state-value function. In particular, for an on-policy

method we must estimate for the current behavior policy and for all states and actions . This can be done
using essentially the same TD method described above for learning . Recall that an episode consists of an alternating
sequence of states and state-action pairs:

In the previous section we considered transitions from state to state and learned the values of states. Now we consider
transitions from state-action pair to state-action pair, and learn the value of state-action pairs. Formally these cases are
identical: they are both Markov chains with a reward process. The theorems assuring the convergence of state values
under TD(0) also apply to the corresponding algorithm for action values:

(6.5)

This update is done after every transition from a nonterminal state . If is terminal, then is defined

as zero. This rule uses every element of the quintuple of events, , that make up a transition
from one state-action pair to the next. This quintuple gives rise to the name Sarsa for the algorithm.

It is straightforward to design an on-policy control algorithm based on the Sarsa prediction method. As in all on-policy

methods, we continually estimate for the behavior policy , and at the same time change toward greediness with

respect to . The general form of the Sarsa control algorithm is given in Figure 6.9.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node64.html (1 di 3)22/06/2005 9.08.15

6.4 Sarsa: On-Policy TD Control

Figure 6.9:Sarsa: An on-policy TD control algorithm.

The convergence properties of the Sarsa algorithm depend on the nature of the policy's dependence on . For example,

one could use -greedy or -soft policies. According to Satinder Singh (personal communication), Sarsa converges
with probability to an optimal policy and action-value function as long as all state-action pairs are visited an infinite

number of times and the policy converges in the limit to the greedy policy (which can be arranged, for example, with -

greedy policies by setting), but this result has not yet been published in the literature.

Example 6.5: Windy Gridworld Figure 6.10 shows a standard gridworld, with start and goal states, but with one
difference: there is a crosswind upward through the middle of the grid. The actions are the standard four--up, down,
right, and left--but in the middle region the resultant next states are shifted upward by a "wind," the strength of
which varies from column to column. The strength of the wind is given below each column, in number of cells shifted
upward. For example, if you are one cell to the right of the goal, then the action left takes you to the cell just above
the goal. Let us treat this as an undiscounted episodic task, with constant rewards of until the goal state is reached.

Figure 6.11 shows the result of applying -greedy Sarsa to this task, with , , and the initial values

 for all . The increasing slope of the graph shows that the goal is reached more and more quickly over

time. By 8000 time steps, the greedy policy (shown inset) was long since optimal; continued -greedy exploration kept
the average episode length at about 17 steps, two less than the minimum of 15. Note that Monte Carlo methods cannot
easily be used on this task because termination is not guaranteed for all policies. If a policy was ever found that caused
the agent to stay in the same state, then the next episode would never end. Step-by-step learning methods such as Sarsa
do not have this problem because they quickly learn during the episode that such policies are poor, and switch to
something else.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node64.html (2 di 3)22/06/2005 9.08.15

6.4 Sarsa: On-Policy TD Control

Figure 6.10:Gridworld in which movement is altered by a location-dependent, upward "wind."

Figure 6.11:Results of Sarsa applied to the windy gridworld.

Exercise 6.6: Windy Gridworld with King's Moves Resolve the windy gridworld task assuming eight possible
actions, including the diagonal moves, rather than the usual four. How much better can you do with the extra actions?
Can you do even better by including a ninth action that causes no movement at all other than that caused by the wind?

Exercise 6.7: Stochastic Wind Resolve the windy gridworld task with King's moves, assuming that the effect of the
wind, if there is any, is stochastic, sometimes varying by 1 from the mean values given for each column. That is, a third
of the time you move exactly according to these values, as in the previous exercise, but also a third of the time you
move one cell above that, and another third of the time you move one cell below that. For example, if you are one cell
to the right of the goal and you move left, then one-third of the time you move one cell above the goal, one-third of
the time you move two cells above the goal, and one-third of the time you move to the goal.

Exercise 6.8 What is the backup diagram for Sarsa?

Next: 6.5 Q-Learning: Off-Policy TD Up: 6. Temporal-Difference Learning Previous: 6.3 Optimality of TD(0)
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node64.html (3 di 3)22/06/2005 9.08.15

6.5 Q-Learning: Off-Policy TD Control

Next: 6.6 Actor-Critic Methods Up: 6. Temporal-Difference Learning Previous: 6.4 Sarsa: On-Policy TD Contents

6.5 Q-Learning: Off-Policy TD Control

One of the most important breakthroughs in reinforcement learning was the development of an off-policy TD control
algorithm known as Q-learning (Watkins, 1989). Its simplest form, one-step Q-learning, is defined by

(6.6)

In this case, the learned action-value function, , directly approximates , the optimal action-value function, independent
of the policy being followed. This dramatically simplifies the analysis of the algorithm and enabled early convergence
proofs. The policy still has an effect in that it determines which state-action pairs are visited and updated. However, all that
is required for correct convergence is that all pairs continue to be updated. As we observed in Chapter 5, this is a minimal
requirement in the sense that any method guaranteed to find optimal behavior in the general case must require it. Under this

assumption and a variant of the usual stochastic approximation conditions on the sequence of step-size parameters, has

been shown to converge with probability 1 to . The Q-learning algorithm is shown in procedural form in Figure 6.12.

Figure 6.12:Q-learning: An off-policy TD control algorithm.

What is the backup diagram for Q-learning? The rule (6.6) updates a state-action pair, so the top node, the root of the
backup, must be a small, filled action node. The backup is also from action nodes, maximizing over all those actions
possible in the next state. Thus the bottom nodes of the backup diagram should be all these action nodes. Finally, remember
that we indicate taking the maximum of these "next action" nodes with an arc across them (Figure 3.7). Can you guess now
what the diagram is? If so, please do make a guess before turning to the answer in Figure 6.14.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node65.html (1 di 3)22/06/2005 9.08.18

6.5 Q-Learning: Off-Policy TD Control

Figure 6.13:The cliff-walking task. The results are from a single run, but smoothed.

Figure 6.14:The backup diagram for Q-learning.

Example 6.6: Cliff Walking This gridworld example compares Sarsa and Q-learning, highlighting the difference
between on-policy (Sarsa) and off-policy (Q-learning) methods. Consider the gridworld shown in the upper part of Figure
6.13. This is a standard undiscounted, episodic task, with start and goal states, and the usual actions causing movement up,
down, right, and left. Reward is on all transitions except those into the the region marked "The Cliff." Stepping into this
region incurs a reward of and sends the agent instantly back to the start. The lower part of the figure shows the

performance of the Sarsa and Q-learning methods with -greedy action selection, . After an initial transient, Q-
learning learns values for the optimal policy, that which travels right along the edge of the cliff. Unfortunately, this results

in its occasionally falling off the cliff because of the -greedy action selection. Sarsa, on the other hand, takes the action
selection into account and learns the longer but safer path through the upper part of the grid. Although Q-learning actually
learns the values of the optimal policy, its on-line performance is worse than that of Sarsa, which learns the roundabout

policy. Of course, if were gradually reduced, then both methods would asymptotically converge to the optimal policy.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node65.html (2 di 3)22/06/2005 9.08.18

6.5 Q-Learning: Off-Policy TD Control

Exercise 6.9 Why is Q-learning considered an off-policy control method?

Exercise 6.10 Consider the learning algorithm that is just like Q-learning except that instead of the maximum over next
state-action pairs it uses the expected value, taking into account how likely each action is under the current policy. That is,
consider the algorithm otherwise like Q-learning except with the update rule

Is this new method an on-policy or off-policy method? What is the backup diagram for this algorithm? Given the same
amount of experience, would you expect this method to work better or worse than Sarsa? What other considerations might
impact the comparison of this method with Sarsa?

Next: 6.6 Actor-Critic Methods Up: 6. Temporal-Difference Learning Previous: 6.4 Sarsa: On-Policy TD Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node65.html (3 di 3)22/06/2005 9.08.18

6.6 Actor-Critic Methods

Next: 6.7 R-Learning for Undiscounted Up: 6. Temporal-Difference Learning Previous: 6.5 Q-
Learning: Off-Policy TD Contents

6.6 Actor-Critic Methods

Actor-critic methods are TD methods that have a separate memory structure to explicitly represent
the policy independent of the value function. The policy structure is known as the actor, because it is
used to select actions, and the estimated value function is known as the critic, because it criticizes the
actions made by the actor. Learning is always on-policy: the critic must learn about and critique
whatever policy is currently being followed by the actor. The critique takes the form of a TD error.
This scalar signal is the sole output of the critic and drives all learning in both actor and critic, as
suggested by Figure 6.15.

Figure 6.15:The actor-critic architecture.

Actor-critic methods are the natural extension of the idea of reinforcement comparison methods
(Section 2.8) to TD learning and to the full reinforcement learning problem. Typically, the critic is a
state-value function. After each action selection, the critic evaluates the new state to determine
whether things have gone better or worse than expected. That evaluation is the TD error:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node66.html (1 di 3)22/06/2005 9.08.20

6.6 Actor-Critic Methods

where is the current value function implemented by the critic. This TD error can be used to
evaluate the action just selected, the action taken in state . If the TD error is positive, it suggests
that the tendency to select should be strengthened for the future, whereas if the TD error is
negative, it suggests the tendency should be weakened. Suppose actions are generated by the Gibbs
softmax method:

where the are the values at time of the modifiable policy parameters of the actor, indicating
the tendency to select (preference for) each action when in each state . Then the strengthening or

weakening described above can be implemented by increasing or decreasing , for instance,
by

where is another positive step-size parameter.

This is just one example of an actor-critic method. Other variations select the actions in different
ways, or use eligibility traces like those described in the next chapter. Another common dimension of
variation, as in reinforcement comparison methods, is to include additional factors varying the
amount of credit assigned to the action taken, . For example, one of the most common such factors
is inversely related to the probability of selecting , resulting in the update rule:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node66.html (2 di 3)22/06/2005 9.08.20

6.6 Actor-Critic Methods

These issues were explored early on, primarily for the immediate reward case (Sutton, 1984;
Williams, 1992) and have not been brought fully up to date.

Many of the earliest reinforcement learning systems that used TD methods were actor-critic methods
(Witten, 1977; Barto, Sutton, and Anderson, 1983). Since then, more attention has been devoted to
methods that learn action-value functions and determine a policy exclusively from the estimated
values (such as Sarsa and Q-learning). This divergence may be just historical accident. For example,
one could imagine intermediate architectures in which both an action-value function and an
independent policy would be learned. In any event, actor-critic methods are likely to remain of
current interest because of two significant apparent advantages:

● They require minimal computation in order to select actions. Consider a case where there are
an infinite number of possible actions--for example, a continuous-valued action. Any method
learning just action values must search through this infinite set in order to pick an action. If the
policy is explicitly stored, then this extensive computation may not be needed for each action
selection.

● They can learn an explicitly stochastic policy; that is, they can learn the optimal probabilities
of selecting various actions. This ability turns out to be useful in competitive and non-Markov
cases (e.g., see Singh, Jaakkola, and Jordan, 1994).

In addition, the separate actor in actor-critic methods makes them more appealing in some respects as
psychological and biological models. In some cases it may also make it easier to impose domain-
specific constraints on the set of allowed policies.

Next: 6.7 R-Learning for Undiscounted Up: 6. Temporal-Difference Learning Previous: 6.5 Q-
Learning: Off-Policy TD Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node66.html (3 di 3)22/06/2005 9.08.20

6.7 R-Learning for Undiscounted Continuing Tasks

Next: 6.8 Games, Afterstates, and Up: 6. Temporal-Difference Learning Previous: 6.6 Actor-Critic
Methods Contents

6.7 R-Learning for Undiscounted Continuing
Tasks

R-learning is an off-policy control method for the advanced version of the reinforcement learning
problem in which one neither discounts nor divides experience into distinct episodes with finite
returns. In this case one seeks to obtain the maximum reward per time step. The value functions for a
policy, , are defined relative to the average expected reward per time step under the policy, :

assuming the process is ergodic (nonzero probability of reaching any state from any other under any
policy) and thus that does not depend on the starting state. From any state, in the long run the
average reward is the same, but there is a transient. From some states better-than-average rewards are
received for a while, and from others worse-than-average rewards are received. It is this transient that
defines the value of a state:

and the value of a state-action pair is similarly the transient difference in reward when starting in that
state and taking that action:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node67.html (1 di 4)22/06/2005 9.08.25

6.7 R-Learning for Undiscounted Continuing Tasks

We call these relative values because they are relative to the average reward under the current policy.

There are subtle distinctions that need to be drawn between different kinds of optimality in the
undiscounted continuing case. Nevertheless, for most practical purposes it may be adequate simply to
order policies according to their average reward per time step, in other words, according to their .
For now let us consider all policies that attain the maximal value of to be optimal.

Other than its use of relative values, R-learning is a standard TD control method based on off-policy
GPI, much like Q-learning. It maintains two policies, a behavior policy and an estimation policy, plus
an action-value function and an estimated average reward. The behavior policy is used to generate

experience; it might be the -greedy policy with respect to the action-value function. The estimation
policy is the one involved in GPI. It is typically the greedy policy with respect to the action-value

function. If is the estimation policy, then the action-value function, , is an approximation of
and the average reward, , is an approximation of . The complete algorithm is given in Figure
6.16. There has been little experience with this method and it should be considered experimental.

Figure 6.16:R-learning: An off-policy TD control algorithm for undiscounted, continuing tasks. The

scalars and are step-size parameters.

Example 6.7: An Access-Control Queuing Task This is a decision task involving access control to
a set of servers. Customers of four different priorities arrive at a single queue. If given access to a
server, the customers pay a reward of 1, 2, 4, or 8, depending on their priority, with higher priority
customers paying more. In each time step, the customer at the head of the queue is either accepted
(assigned to one of the servers) or rejected (removed from the queue). In either case, on the next time

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node67.html (2 di 4)22/06/2005 9.08.25

6.7 R-Learning for Undiscounted Continuing Tasks

step the next customer in the queue is considered. The queue never empties, and the proportion of
(randomly distributed) high priority customers in the queue is . Of course a customer can be served
only if there is a free server. Each busy server becomes free with probability on each time step.
Although we have just described them for definiteness, let us assume the statistics of arrivals and
departures are unknown. The task is to decide on each step whether to accept or reject the next
customer, on the basis of his priority and the number of free servers, so as to maximize long-term
reward without discounting. Figure 6.17 shows the solution found by R-learning for this task with

, , and . The R-learning parameters were , , and
. The initial action values and were zero.

Figure 6.17:The policy and value function found by R-learning on the access-control queuing task
after 2 million steps. The drop on the right of the graph is probably due to insufficient data; many of

these states were never experienced. The value learned for was about .

Exercise 6.11 Design an on-policy method for undiscounted, continuing tasks.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node67.html (3 di 4)22/06/2005 9.08.25

6.7 R-Learning for Undiscounted Continuing Tasks

Next: 6.8 Games, Afterstates, and Up: 6. Temporal-Difference Learning Previous: 6.6 Actor-Critic
Methods Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node67.html (4 di 4)22/06/2005 9.08.25

6.8 Games, Afterstates, and Other Special Cases

Next: 6.9 Summary Up: 6. Temporal-Difference Learning Previous: 6.7 R-Learning for
Undiscounted Contents

6.8 Games, Afterstates, and Other Special
Cases

In this book we try to present a uniform approach to a wide class of tasks, but of course there are
always exceptional tasks that are better treated in a specialized way. For example, our general
approach involves learning an action-value function, but in Chapter 1 we presented a TD method for
learning to play tic-tac-toe that learned something much more like a state-value function. If we look
closely at that example, it becomes apparent that the function learned there is neither an action-value
function nor a state-value function in the usual sense. A conventional state-value function evaluates
states in which the agent has the option of selecting an action, but the state-value function used in tic-
tac-toe evaluates board positions after the agent has made its move. Let us call these afterstates, and
value functions over these, afterstate value functions. Afterstates are useful when we have knowledge
of an initial part of the environment's dynamics but not necessarily of the full dynamics. For example,
in games we typically know the immediate effects of our moves. We know for each possible chess
move what the resulting position will be, but not how our opponent will reply. Afterstate value
functions are a natural way to take advantage of this kind of knowledge and thereby produce a more
efficient learning method.

The reason it is more efficient to design algorithms in terms of afterstates is apparent from the tic-tac-
toe example. A conventional action-value function would map from positions and moves to an
estimate of the value. But many position-move pairs produce the same resulting position, as in this
example:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node68.html (1 di 2)22/06/2005 9.08.26

6.8 Games, Afterstates, and Other Special Cases

In such cases the position-move pairs are different but produce the same "afterposition," and thus
must have the same value. A conventional action-value function would have to separately assess both
pairs, whereas an afterstate value function would immediately assess both equally. Any learning
about the position-move pair on the left would immediately transfer to the pair on the right.

Afterstates arise in many tasks, not just games. For example, in queuing tasks there are actions such
as assigning customers to servers, rejecting customers, or discarding information. In such cases the
actions are in fact defined in terms of their immediate effects, which are completely known. For
example, in the access-control queuing example described in the previous section, a more efficient
learning method could be obtained by breaking the environment's dynamics into the immediate effect
of the action, which is deterministic and completely known, and the unknown random processes
having to do with the arrival and departure of customers. The afterstates would be the number of free
servers after the action but before the random processes had produced the next conventional state.
Learning an afterstate value function over the afterstates would enable all actions that produced the
same number of free servers to share experience. This should result in a significant reduction in
learning time.

It is impossible to describe all the possible kinds of specialized problems and corresponding
specialized learning algorithms. However, the principles developed in this book should apply widely.
For example, afterstate methods are still aptly described in terms of generalized policy iteration, with
a policy and (afterstate) value function interacting in essentially the same way. In many cases one
will still face the choice between on-policy and off-policy methods for managing the need for
persistent exploration.

Exercise 6.12 Describe how the task of Jack's Car Rental (Example 4.2) could be reformulated in
terms of afterstates. Why, in terms of this specific task, would such a reformulation be likely to speed
convergence?

Next: 6.9 Summary Up: 6. Temporal-Difference Learning Previous: 6.7 R-Learning for
Undiscounted Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node68.html (2 di 2)22/06/2005 9.08.26

6.9 Summary

Next: 6.10 Bibliographical and Historical Up: 6. Temporal-Difference Learning Previous: 6.8
Games, Afterstates, and Contents

6.9 Summary

In this chapter we introduced a new kind of learning method, temporal-difference (TD) learning, and
shown how it can be applied to the reinforcement learning problem. As usual, we divided the overall
problem into a prediction problem and a control problem. TD methods are alternatives to Monte
Carlo methods for solving the prediction problem. In both cases, the extension to the control problem
is via the idea of generalized policy iteration (GPI) that we abstracted from dynamic programming.
This is the idea that approximate policy and value functions should interact in such a way that they
both move toward their optimal values.

One of the two processes making up GPI drives the value function to accurately predict returns for
the current policy; this is the prediction problem. The other process drives the policy to improve

locally (e.g., to be -greedy) with respect to the current value function. When the first process is
based on experience, a complication arises concerning maintaining sufficient exploration. As in
Chapter 5, we have grouped the TD control methods according to whether they deal with this
complication by using an on-policy or off-policy approach. Sarsa and actor-critic methods are on-
policy methods, and Q-learning and R-learning are off-policy methods.

The methods presented in this chapter are today the most widely used reinforcement learning
methods. This is probably due to their great simplicity: they can be applied on-line, with a minimal
amount of computation, to experience generated from interaction with an environment; they can be
expressed nearly completely by single equations that can be implemented with small computer
programs. In the next few chapters we extend these algorithms, making them slightly more
complicated and significantly more powerful. All the new algorithms will retain the essence of those
introduced here: they will be able to process experience on-line, with relatively little computation,
and they will be driven by TD errors. The special cases of TD methods introduced in the present
chapter should rightly be called one-step, tabular, modelfree TD methods. In the next three chapters
we extend them to multistep forms (a link to Monte Carlo methods), forms using function
approximation rather than tables (a link to artificial neural networks), and forms that include a model
of the environment (a link to planning and dynamic programming).

Finally, in this chapter we have discussed TD methods entirely within the context of reinforcement
learning problems, but TD methods are actually more general than this. They are general methods for
learning to make long-term predictions about dynamical systems. For example, TD methods may be
relevant to predicting financial data, life spans, election outcomes, weather patterns, animal behavior,
demands on power stations, or customer purchases. It was only when TD methods were analyzed as
pure prediction methods, independent of their use in reinforcement learning, that their theoretical
properties first came to be well understood. Even so, these other potential applications of TD learning
methods have not yet been extensively explored.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node69.html (1 di 2)22/06/2005 9.08.27

6.9 Summary

Next: 6.10 Bibliographical and Historical Up: 6. Temporal-Difference Learning Previous: 6.8
Games, Afterstates, and Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node69.html (2 di 2)22/06/2005 9.08.27

6.10 Bibliographical and Historical Remarks

Next: III. A Unified View Up: 6. Temporal-Difference Learning Previous: 6.9 Summary Contents

Subsections

● 6.1-2
● 6.3
● 6.4
● 6.5
● 6.6
● 6.7

6.10 Bibliographical and Historical Remarks

As we outlined in Chapter 1, the idea of TD learning has its early roots in animal learning psychology
and artificial intelligence, most notably the work of Samuel (1959) and Klopf (1972). Samuel's work
is described as a case study in Section 11.2. Also related to TD learning are Holland's (1975, 1976)
early ideas about consistency among value predictions. These influenced one of the authors (Barto),
who was a graduate student from 1970 to 1975 at the University of Michigan, where Holland was
teaching. Holland's ideas led to a number of TD-related systems, including the work of Booker
(1982) and the bucket brigade of Holland (1986), which is related to Sarsa as discussed below.

6.1-2

Most of the specific material from these sections is from Sutton (1988), including the TD(0)
algorithm, the random walk example, and the term "temporal-difference learning." The
characterization of the relationship to dynamic programming and Monte Carlo methods was
influenced by Watkins (1989), Werbos (1987), and others. The use of backup diagrams here and in
other chapters is new to this book. Example 6.4 is due to Sutton, but has not been published before.

Tabular TD(0) was proved to converge in the mean by Sutton (1988) and with probability 1 by Dayan
(1992), based on the work of Watkins and Dayan (1992). These results were extended and
strengthened by Jaakkola, Jordan, and Singh (1994) and Tsitsiklis (1994) by using extensions of the
powerful existing theory of stochastic approximation. Other extensions and generalizations are
covered in the next two chapters.

6.3

The optimality of the TD algorithm under batch training was established by Sutton (1988). The term
certainty equivalence is from the adaptive control literature (e.g., Goodwin and Sin, 1984).

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node70.html (1 di 3)22/06/2005 9.08.28

6.10 Bibliographical and Historical Remarks

Illuminating this result is Barnard's (1993) derivation of the TD algorithm as a combination of one
step of an incremental method for learning a model of the Markov chain and one step of a method for
computing predictions from the model.

6.4

The Sarsa algorithm was first explored by Rummery and Niranjan (1994), who called it modified Q-
learning. The name "Sarsa" was introduced by Sutton (1996). The convergence of one-step tabular
Sarsa (the form treated in this chapter) has been proved by Satinder Singh (personal communication).
The "windy gridworld" example was suggested by Tom Kalt.

Holland's (1986) bucket brigade idea evolved into an algorithm closely related to Sarsa. The original
idea of the bucket brigade involved chains of rules triggering each other; it focused on passing credit
back from the current rule to the rules that triggered it. Over time, the bucket brigade came to be
more like TD learning in passing credit back to any temporally preceding rule, not just to the ones
that triggered the current rule. The modern form of the bucket brigade, when simplified in various
natural ways, is nearly identical to one-step Sarsa, as detailed by Wilson (1994).

6.5

Q-learning was introduced by Watkins (1989), whose outline of a convergence proof was later made
rigorous by Watkins and Dayan (1992). More general convergence results were proved by Jaakkola,
Jordan, and Singh (1994) and Tsitsiklis (1994).

6.6

Actor-critic architectures using TD learning were first studied by Witten (1977) and then by Barto,
Sutton, and Anderson (1983; Sutton, 1984), who introduced this use of the terms "actor" and "critic."
Sutton (1984) and Williams (1992) developed the eligibility terms mentioned in this section. Barto
(1995a) and Houk, Adams, and Barto (1995) presented a model of how an actor-critic architecture
might be implemented in the brain.

6.7

R-learning is due to Schwartz (1993). Mahadevan (1996), Tadepalli and Ok (1994), and Bertsekas
and Tsitsiklis (1996) have studied reinforcement learning for undiscounted continuing tasks. In the
literature, the undiscounted continuing case is often called the case of maximizing "average reward
per time step" or the "average-reward case." The name R-learning was probably meant to be the
alphabetic successor to Q-learning, but we prefer to think of it as a reference to the learning of
relative values. The access-control queuing example was suggested by the work of Carlström and
Nordström (1997).

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node70.html (2 di 3)22/06/2005 9.08.28

6.10 Bibliographical and Historical Remarks

Next: III. A Unified View Up: 6. Temporal-Difference Learning Previous: 6.9 Summary Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node70.html (3 di 3)22/06/2005 9.08.28

III. A Unified View

Next: 7. Eligibility Traces Up: Book Previous: 6.10 Bibliographical and Historical Contents

III. A Unified View

So far we have discussed three classes of methods for solving the reinforcement learning problem:
dynamic programming, Monte Carlo methods, and temporal-difference learning. Although each is
different, these are not really alternatives in the sense that one must pick one or another. It is perfectly
sensible and often desirable to apply methods of several different kinds simultaneously, that is, to
apply a joint method with parts or aspects of more than one kind. For different tasks or different parts
of one task one may want to emphasize one kind of method over another, but these choices can be
made smoothly and at the time the methods are used, rather than the time at which they are designed.
In Part III we present a unified view of the three kinds of elementary solution methods introduced in
Part II.

The unifications we present in this part of the book are not rough analogies. We develop specific
algorithms that embody the key ideas of one or more of the elementary solution methods. First we
present the mechanism of eligibility traces, unifying Monte Carlo and temporal-difference methods.
Then we bring in function approximation, enabling generalization across states and actions. Finally
we reintroduce models of the environment to obtain the strengths of dynamic programming and
heuristic search. All of these can be used synergistically as parts of joint methods.

Subsections

● 7. Eligibility Traces
❍ 7.1 -Step TD Prediction

❍ 7.2 The Forward View of TD()

❍ 7.3 The Backward View of TD()
❍ 7.4 Equivalence of Forward and Backward Views
❍ 7.5 Sarsa()
❍ 7.6 Q()
❍ 7.7 Eligibility Traces for Actor-Critic Methods
❍ 7.8 Replacing Traces
❍ 7.9 Implementation Issues
❍ 7.10 Variable
❍ 7.11 Conclusions
❍ 7.12 Bibliographical and Historical Remarks

■ 7.1-2
■ 7.3
■ 7.4

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node71.html (1 di 3)22/06/2005 9.08.29

III. A Unified View

■ 7.5
■ 7.6
■ 7.7
■ 7.8
■ 7.9-10

● 8. Generalization and Function Approximation

❍ 8.1 Value Prediction with Function Approximation
❍ 8.2 Gradient-Descent Methods
❍ 8.3 Linear Methods

■ 8.3.1 Coarse Coding
■ 8.3.2 Tile Coding
■ 8.3.3 Radial Basis Functions
■ 8.3.4 Kanerva Coding

❍ 8.4 Control with Function Approximation
❍ 8.5 Off-Policy Bootstrapping
❍ 8.6 Should We Bootstrap?
❍ 8.7 Summary
❍ 8.8 Bibliographical and Historical Remarks

■ 8.2
■ 8.3
■ 8.4
■ 8.5

● 9. Planning and Learning

❍ 9.1 Models and Planning
❍ 9.2 Integrating Planning, Acting, and Learning
❍ 9.3 When the Model Is Wrong
❍ 9.4 Prioritized Sweeping
❍ 9.5 Full vs. Sample Backups
❍ 9.6 Trajectory Sampling
❍ 9.7 Heuristic Search
❍ 9.8 Summary
❍ 9.9 Bibliographical and Historical Remarks

■ 9.1
■ 9.2-3
■ 9.4
■ 9.5
■ 9.7

● 10. Dimensions of Reinforcement Learning

❍ 10.1 The Unified View

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node71.html (2 di 3)22/06/2005 9.08.29

III. A Unified View

❍ 10.2 Other Frontier Dimensions

● 11. Case Studies
❍ 11.1 TD-Gammon
❍ 11.2 Samuel's Checkers Player
❍ 11.3 The Acrobot
❍ 11.4 Elevator Dispatching
❍ 11.5 Dynamic Channel Allocation
❍ 11.6 Job-Shop Scheduling

Next: 7. Eligibility Traces Up: Book Previous: 6.10 Bibliographical and Historical Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node71.html (3 di 3)22/06/2005 9.08.29

7. Eligibility Traces

Next: 7.1 -Step TD Prediction Up: III. A Unified View Previous: III. A Unified View Contents

7. Eligibility Traces

Eligibility traces are one of the basic mechanisms of reinforcement learning. For example, in the

popular TD() algorithm, the refers to the use of an eligibility trace. Almost any temporal-
difference (TD) method, such as Q-learning or Sarsa, can be combined with eligibility traces to
obtain a more general method that may learn more efficiently.

There are two ways to view eligibility traces. The more theoretical view, which we emphasize here, is
that they are a bridge from TD to Monte Carlo methods. When TD methods are augmented with
eligibility traces, they produce a family of methods spanning a spectrum that has Monte Carlo
methods at one end and one-step TD methods at the other. In between are intermediate methods that
are often better than either extreme method. In this sense eligibility traces unify TD and Monte Carlo
methods in a valuable and revealing way.

The other way to view eligibility traces is more mechanistic. From this perspective, an eligibility
trace is a temporary record of the occurrence of an event, such as the visiting of a state or the taking
of an action. The trace marks the memory parameters associated with the event as eligible for
undergoing learning changes. When a TD error occurs, only the eligible states or actions are assigned
credit or blame for the error. Thus, eligibility traces help bridge the gap between events and training
information. Like TD methods themselves, eligibility traces are a basic mechanism for temporal
credit assignment.

For reasons that will become apparent shortly, the more theoretical view of eligibility traces is called
the forward view, and the more mechanistic view is called the backward view. The forward view is
most useful for understanding what is computed by methods using eligibility traces, whereas the
backward view is more appropriate for developing intuition about the algorithms themselves. In this
chapter we present both views and then establish the senses in which they are equivalent, that is, in
which they describe the same algorithms from two points of view. As usual, we first consider the
prediction problem and then the control problem. That is, we first consider how eligibility traces are
used to help in predicting returns as a function of state for a fixed policy (i.e., in estimating).
Only after exploring the two views of eligibility traces within this prediction setting do we extend the
ideas to action values and control methods.

Subsections

● 7.1 -Step TD Prediction

● 7.2 The Forward View of TD()

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node72.html (1 di 2)22/06/2005 9.08.31

7. Eligibility Traces

● 7.3 The Backward View of TD()
● 7.4 Equivalence of Forward and Backward Views
● 7.5 Sarsa()
● 7.6 Q()
● 7.7 Eligibility Traces for Actor-Critic Methods
● 7.8 Replacing Traces
● 7.9 Implementation Issues
● 7.10 Variable
● 7.11 Conclusions
● 7.12 Bibliographical and Historical Remarks

❍ 7.1-2
❍ 7.3
❍ 7.4
❍ 7.5
❍ 7.6
❍ 7.7
❍ 7.8
❍ 7.9-10

Next: 7.1 -Step TD Prediction Up: III. A Unified View Previous: III. A Unified View Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node72.html (2 di 2)22/06/2005 9.08.31

7.1 -Step TD Prediction

-Step TD Prediction">
Next: 7.2 The Forward View Up: 7. Eligibility Traces Previous: 7. Eligibility Traces Contents

7.1 -Step TD Prediction

What is the space of methods lying between Monte Carlo and TD methods? Consider estimating from sample
episodes generated using . Monte Carlo methods perform a backup for each state based on the entire sequence of
observed rewards from that state until the end of the episode. The backup of simple TD methods, on the other hand, is
based on just the one next reward, using the value of the state one step later as a proxy for the remaining rewards. One
kind of intermediate method, then, would perform a backup based on an intermediate number of rewards: more than one,
but less than all of them until termination. For example, a two-step backup would be based on the first two rewards and
the estimated value of the state two steps later. Similarly, we could have three-step backups, four-step backups, and so on.
Figure 7.1 diagrams the spectrum of -step backups for , with one-step, simple TD backups on the left and up-until-
termination Monte Carlo backups on the right.

Figure 7.1:The spectrum ranging from the one-step backups of simple TD methods to the up-until-termination backups
of Monte Carlo methods. In between are the -step backups, based on steps of real rewards and the estimated value of

the th next state, all appropriately discounted.

The methods that use -step backups are still TD methods because they still change an earlier estimate based on how it
differs from a later estimate. Now the later estimate is not one step later, but steps later. Methods in which the temporal
difference extends over steps are called -step TD methods. The TD methods introduced in the previous chapter all use
one-step backups, and henceforth we call them one-step TD methods.

More formally, consider the backup applied to state as a result of the state-reward sequence,
 (omitting the actions for simplicity). We know that in Monte Carlo backups the

estimate of is updated in the direction of the complete return:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node73.html (1 di 5)22/06/2005 9.08.38

7.1 -Step TD Prediction

where is the last time step of the episode. Let us call this quantity the target of the backup. Whereas in Monte Carlo
backups the target is the expected return, in one-step backups the target is the first reward plus the discounted estimated
value of the next state:

This makes sense because takes the place of the remaining terms , as
we discussed in the previous chapter. Our point now is that this idea makes just as much sense after two steps as it does
after one. The two-step target is

where now takes the place of the terms . In general, the -step target
is

(7.1)

This quantity is sometimes called the "corrected -step truncated return" because it is a return truncated after steps and
then approximately corrected for the truncation by adding the estimated value of the th next state. That terminology is

descriptive but a bit long. We instead refer to simply as the -step return at time .

Of course, if the episode ends in less than steps, then the truncation in an -step return occurs at the episode's end,

resulting in the conventional complete return. In other words, if , then . Thus, the last
 -step returns of any episode are always complete returns, and an infinite-step return is always a complete return. This

definition enables us to treat Monte Carlo methods as the special case of infinite-step returns. All of this is consistent with
the tricks for treating episodic and continuing tasks equivalently that we introduced in Section 3.4. There we chose to
treat the terminal state as a state that always transitions to itself with zero reward. Under this trick, all -step returns that
last up to or past termination have the same value as the complete return.

An -step backup is defined to be a backup toward the -step return. In the tabular, state-value case, the increment to

 (the estimated value of at time), due to an -step backup of , is defined by

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node73.html (2 di 5)22/06/2005 9.08.38

7.1 -Step TD Prediction

where is a positive step-size parameter, as usual. Of course, the increments to the estimated values of the other states

are , for all . We define the -step backup in terms of an increment, rather than as a direct update
rule as we did in the previous chapter, in order to distinguish two different ways of making the updates. In on-line
updating, the updates are done during the episode, as soon as the increment is computed. In this case we have

 for all . This is the case considered in the previous chapter. In off-line updating, on
the other hand, the increments are accumulated "on the side" and are not used to change value estimates until the end of

the episode. In this case, is constant within an episode, for all . If its value in this episode is , then its new

value in the next episode will be .

The expected value of all -step returns is guaranteed to improve in a certain way over the current value function as an
approximation to the true value function. For any , the expected value of the -step return using is guaranteed to be a
better estimate of than is, in a worst-state sense. That is, the worst error under the new estimate is guaranteed to be

less than or equal to times the worst error under :

(7.2)

This is called the error reduction property of -step returns. Because of the error reduction property, one can show
formally that on-line and off-line TD prediction methods using -step backups converge to the correct predictions under
appropriate technical conditions. The -step TD methods thus form a family of valid methods, with one-step TD methods
and Monte Carlo methods as extreme members.

Nevertheless, -step TD methods are rarely used because they are inconvenient to implement. Computing -step returns
requires waiting steps to observe the resultant rewards and states. For large , this can become problematic, particularly
in control applications. The significance of -step TD methods is primarily for theory and for understanding related
methods that are more conveniently implemented. In the next few sections we use the idea of -step TD methods to
explain and justify eligibility trace methods.

Example 7.1: -step TD Methods on the Random Walk Consider using -step TD methods on the random walk task
described in Example 6.2 and shown in Figure 6.5. Suppose the first episode progressed directly from the center state, ,
to the right, through and , and then terminated on the right with a return of 1. Recall that the estimated values of all

the states started at an intermediate value, . As a result of this experience, a one-step method would change

only the estimate for the last state, , which would be incremented toward , the observed return. A two-step method,

on the other hand, would increment the values of the two states preceding termination: and would both be
incremented toward 1. A three-step method, or any -step method for , would increment the values of all three of
the visited states toward 1, all by the same amount. Which is better? Figure 7.2 shows the results of a simple empirical
assessment for a larger random walk process, with 19 states (and with a outcome on the left, all values initialized to

). Shown is the root mean-squared error in the predictions at the end of an episode, averaged over states, the first 10
episodes, and 100 repetitions of the whole experiment (the same sets of walks were used for all methods). Results are

shown for on-line and off-line -step TD methods with a range of values for and . Empirically, on-line methods with

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node73.html (3 di 5)22/06/2005 9.08.38

7.1 -Step TD Prediction

an intermediate value of seem to work best on this task. This illustrates how the generalization of TD and Monte Carlo
methods to -step methods can potentially perform better than either of the two extreme methods.

Figure 7.2:Performance of -step TD methods as a function of , for various values of , on a 19-state random walk
task. The performance measure shown is the root mean-squared (RMS) error between the true values of states and the
values found by the learning methods, averaged over the 19 states, the first 10 trials, and 100 different sequences of

walks.

Exercise 7.1 Why do you think a larger random walk task (19 states instead of 5) was used in the examples of this
chapter? Would a smaller walk have shifted the advantage to a different value of ? How about the change in left-side
outcome from 0 to ? Would that have made any difference in the best value of ?

Exercise 7.2 Why do you think on-line methods worked better than off-line methods on the example task?

Exercise 7.3 In the lower part of Figure 7.2, notice that the plot for is different from the others, dropping to

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node73.html (4 di 5)22/06/2005 9.08.38

7.1 -Step TD Prediction

low performance at a much lower value of than similar methods. In fact, the same was observed for , ,
and . Can you explain why this might have been so? In fact, we are not sure ourselves.

Next: 7.2 The Forward View Up: 7. Eligibility Traces Previous: 7. Eligibility Traces Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node73.html (5 di 5)22/06/2005 9.08.38

7.2 The Forward View of TD()

Next: 7.3 The Backward View Up: 7. Eligibility Traces Previous: 7.1 -Step TD Prediction Contents

7.2 The Forward View of TD()

Backups can be done not just toward any -step return, but toward any average of -step returns. For example,
a backup can be done toward a return that is half of a two-step return and half of a four-step return:

. Any set of returns can be averaged in this way, even an infinite set, as long as the
weights on the component returns are positive and sum to 1. The overall return possesses an error reduction
property similar to that of individual -step returns (7.2) and thus can be used to construct backups with
guaranteed convergence properties. Averaging produces a substantial new range of algorithms. For example,
one could average one-step and infinite-step backups to obtain another way of interrelating TD and Monte Carlo
methods. In principle, one could even average experience-based backups with DP backups to get a simple
combination of experience-based and model-based methods (see Chapter 9).

A backup that averages simpler component backups in this way is called a complex backup. The backup
diagram for a complex backup consists of the backup diagrams for each of the component backups with a
horizontal line above them and the weighting fractions below. For example, the complex backup mentioned
above, mixing half of a two-step backup and half of a four-step backup, has the diagram:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node74.html (1 di 5)22/06/2005 9.08.43

7.2 The Forward View of TD()

Figure 7.3:The backup digram for TD(). If , then the overall backup reduces to its first component,
the one-step TD backup, whereas if , then the overall backup reduces to its last component, the Monte

Carlo backup.

The TD() algorithm can be understood as one particular way of averaging -step backups. This average

contains all the -step backups, each weighted proportional to , where (Figure 7.3). A
normalization factor of ensures that the weights sum to 1. The resulting backup is toward a return, called

the -return, defined by

Figure 7.4 illustrates this weighting sequence. The one-step return is given the largest weight, ; the two-

step return is given the next largest weight, ; the three-step return is given the weight ; and

so on. The weight fades by with each additional step. After a terminal state has been reached, all subsequent
-step returns are equal to . If we want, we can separate these terms from the main sum, yielding

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node74.html (2 di 5)22/06/2005 9.08.43

7.2 The Forward View of TD()

(7.3)

This equation makes it clearer what happens when . In this case the main sum goes to zero, and the

remaining term reduces to the conventional return, . Thus, for , backing up according to the -return

is the same as the Monte Carlo algorithm that we called constant- MC (6.1) in the previous chapter. On the

other hand, if , then the -return reduces to , the one-step return. Thus, for , backing up

according to the -return is the same as the one-step TD method, TD(0).

Figure 7.4:Weighting given in the -return to each of the -step returns.

We define the -return algorithm as the algorithm that performs backups using the -return. On each step, ,

it computes an increment, , to the value of the state occurring on that step:

(7.4)

(The increments for other states are of course , for all .) As with the -step TD methods,
the updating can be either on-line or off-line.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node74.html (3 di 5)22/06/2005 9.08.43

7.2 The Forward View of TD()

The approach that we have been taking so far is what we call the theoretical, or forward, view of a learning
algorithm. For each state visited, we look forward in time to all the future rewards and decide how best to
combine them. We might imagine ourselves riding the stream of states, looking forward from each state to
determine its update, as suggested by Figure 7.5. After looking forward from and updating one state, we move
on to the next and never have to work with the preceding state again. Future states, on the other hand, are
viewed and processed repeatedly, once from each vantage point preceding them.

Figure 7.5:The forward or theoretical view. We decide how to update each state by looking forward to future
rewards and states.

The -return algorithm is the basis for the forward view of eligibility traces as used in the TD() method. In

fact, we show in a later section that, in the off-line case, the -return algorithm is the TD() algorithm. The

-return and TD() methods use the parameter to shift from one-step TD methods to Monte Carlo
methods. The specific way this shift is done is interesting, but not obviously better or worse than the way it is

done with simple -step methods by varying . Ultimately, the most compelling motivation for the way of

mixing -step backups is that there is a simple algorithm--TD()--for achieving it. This is a mechanism issue
rather than a theoretical one. In the next few sections we develop the mechanistic, or backward, view of

eligibility traces as used in TD().

Example 7.2: -return on the Random Walk Task Figure 7.6 shows the performance of the off-line -
return algorithm on the 19-state random walk task used with the -step methods in Example 7.1. The

experiment was just as in the -step case except that here we varied instead of . Note that we get best

performance with an intermediate value of .

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node74.html (4 di 5)22/06/2005 9.08.43

7.2 The Forward View of TD()

Figure 7.6:Performance of the off-line -return algorithm on a 19-state random walk task.

Exercise 7.4 The parameter characterizes how fast the exponential weighting in Figure 7.4 falls off, and

thus how far into the future the -return algorithm looks in determining its backup. But a rate factor such as
is sometimes an awkward way of characterizing the speed of the decay. For some purposes it is better to specify

a time constant, or half-life. What is the equation relating and the half-life, , the time by which the
weighting sequence will have fallen to half of its initial value?

Next: 7.3 The Backward View Up: 7. Eligibility Traces Previous: 7.1 -Step TD Prediction Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node74.html (5 di 5)22/06/2005 9.08.43

7.3 The Backward View of TD()

Next: 7.4 Equivalence of Forward Up: 7. Eligibility Traces Previous: 7.2 The Forward View Contents

7.3 The Backward View of TD()

In the previous section we presented the forward or theoretical view of the tabular TD() algorithm as a
way of mixing backups that parametrically shifts from a TD method to a Monte Carlo method. In this

section we instead define TD() mechanistically, and in the next section we show that this mechanism

correctly implements the forward view. The mechanistic, or backward, view of TD() is useful because it
is simple conceptually and computationally. In particular, the forward view itself is not directly
implementable because it is acausal, using at each step knowledge of what will happen many steps later.
The backward view provides a causal, incremental mechanism for approximating the forward view and, in
the off-line case, for achieving it exactly.

In the backward view of TD(), there is an additional memory variable associated with each state, its

eligibility trace. The eligibility trace for state at time is denoted . On each step, the

eligibility traces for all states decay by , and the eligibility trace for the one state visited on the step is
incremented by :

(7.5)

for all nonterminal states , where is the discount rate and is the parameter introduced in the previous

section. Henceforth we refer to as the trace-decay parameter. This kind of eligibility trace is called an
accumulating trace because it accumulates each time the state is visited, then fades away gradually when
the state is not visited, as illustrated below:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node75.html (1 di 4)22/06/2005 9.08.47

7.3 The Backward View of TD()

At any time, the traces record which states have recently been visited, where "recently" is defined in terms

of . The traces are said to indicate the degree to which each state is eligible for undergoing learning
changes should a reinforcing event occur. The reinforcing events we are concerned with are the moment-by-
moment one-step TD errors. For example, the TD error for state-value prediction is

(7.6)

In the backward view of TD(), the global TD error signal triggers proportional updates to all recently
visited states, as signaled by their nonzero traces:

(7.7)

As always, these increments could be done on each step to form an on-line algorithm, or saved until the end
of the episode to produce an off-line algorithm. In either case, equations ((7.5)-(7.7)) provide the

mechanistic definition of the TD() algorithm. A complete algorithm for on-line TD() is given in
Figure 7.7.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node75.html (2 di 4)22/06/2005 9.08.47

7.3 The Backward View of TD()

Figure 7.7:On-line tabular TD().

The backward view of TD() is oriented backward in time. At each moment we look at the current TD
error and assign it backward to each prior state according to the state's eligibility trace at that time. We
might imagine ourselves riding along the stream of states, computing TD errors, and shouting them back to
the previously visited states, as suggested by Figure 7.8. Where the TD error and traces come together, we
get the update given by (7.7).

Figure 7.8:The backward or mechanistic view. Each update depends on the current TD error combined
with traces of past events.

To better understand the backward view, consider what happens at various values of . If , then by

(7.5) all traces are zero at except for the trace corresponding to . Thus the TD() update (7.7) reduces
to the simple TD rule (6.2), which we henceforth call TD(0). In terms of Figure 7.8, TD(0) is the case in

which only the one state preceding the current one is changed by the TD error. For larger values of , but
still , more of the preceding states are changed, but each more temporally distant state is changed
less because its eligibility trace is smaller, as suggested in the figure. We say that the earlier states are given
less credit for the TD error.

If , then the credit given to earlier states falls only by per step. This turns out to be just the right

thing to do to achieve Monte Carlo behavior. For example, remember that the TD error, , includes an
undiscounted term of . In passing this back steps it needs to be discounted, like any reward in a

return, by , which is just what the falling eligibility trace achieves. If and , then the
eligibility traces do not decay at all with time. In this case the method behaves like a Monte Carlo method
for an undiscounted, episodic task. If , the algorithm is also known as TD(1).

TD(1) is a way of implementing Monte Carlo algorithms that is more general than those presented earlier
and that significantly increases their range of applicability. Whereas the earlier Monte Carlo methods were
limited to episodic tasks, TD(1) can be applied to discounted continuing tasks as well. Moreover, TD(1)

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node75.html (3 di 4)22/06/2005 9.08.47

7.3 The Backward View of TD()

can be performed incrementally and on-line. One disadvantage of Monte Carlo methods is that they learn
nothing from an episode until it is over. For example, if a Monte Carlo control method does something that
produces a very poor reward but does not end the episode, then the agent's tendency to do that will be
undiminished during the episode. On-line TD(1), on the other hand, learns in an -step TD way from the
incomplete ongoing episode, where the steps are all the way up to the current step. If something
unusually good or bad happens during an episode, control methods based on TD(1) can learn immediately
and alter their behavior on that same episode.

Next: 7.4 Equivalence of Forward Up: 7. Eligibility Traces Previous: 7.2 The Forward View Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node75.html (4 di 4)22/06/2005 9.08.47

7.4 Equivalence of Forward and Backward Views

Next: 7.5 Sarsa() Up: 7. Eligibility Traces Previous: 7.3 The Backward View Contents

7.4 Equivalence of Forward and Backward Views

In this section we show that off-line TD(), as defined mechanistically above, achieves the same weight updates as the

off-line -return algorithm. In this sense we align the forward (theoretical) and backward (mechanistic) views of TD(

). Let denote the update at time of according to the -return algorithm (7.4), and let

denote the update at time of state according to the mechanistic definition of TD() as given by (7.7). Then our goal
is to show that the sum of all the updates over an episode is the same for the two algorithms:

(7.8)

where is an identity indicator function, equal to if and equal to 0 otherwise.

First note that an accumulating eligibility trace can be written explicitly (nonrecursively) as

Thus, the left-hand side of (7.8) can be written

 (7.9)

 (7.10)

 (7.11)

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node76.html (1 di 5)22/06/2005 9.08.52

7.4 Equivalence of Forward and Backward Views

 (7.12)

Now we turn to the right-hand side of (7.8). Consider an individual update of the -return algorithm:

Examine the first column inside the brackets--all the 's with their weighting factors of times powers of . It
turns out that all the weighting factors sum to 1. Thus we can pull out the first column and get an unweighted term of

. A similar trick pulls out the second column in brackets, starting from the second row, which sums to .
Repeating this for each column, we get

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node76.html (2 di 5)22/06/2005 9.08.52

7.4 Equivalence of Forward and Backward Views

The approximation above is exact in the case of off-line updating, in which case is the same for all . The last step is
exact (not an approximation) because all the terms omitted are due to fictitious steps "after" the terminal state has
been entered. All these steps have zero rewards and zero values; thus all their 's are zero as well. Thus, we have shown
that in the off-line case the right-hand side of (7.8) can be written

which is the same as (7.9). This proves (7.8).

In the case of on-line updating, the approximation made above will be close as long as is small and thus changes

little during an episode. Even in the on-line case we can expect the updates of TD() and of the -return algorithm to
be similar.

For the moment let us assume that the increments are small enough during an episode that on-line TD() gives

essentially the same update over the course of an episode as does the -return algorithm. There still remain interesting
questions about what happens during an episode. Consider the updating of the value of state in midepisode, at time

. Under on-line TD(), the effect at is just as if we had done a -return update treating the last observed
state as the terminal state of the episode with a nonzero terminal value equal to its current estimated value. This

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node76.html (3 di 5)22/06/2005 9.08.52

7.4 Equivalence of Forward and Backward Views

relationship is maintained from step to step as each new state is observed.

Example 7.3: Random Walk with TD() Because off-line TD() is equivalent to the -return algorithm, we

already have the results for off-line TD() on the 19-state random walk task; they are shown in Figure 7.6. The

comparable results for on-line TD() are shown in Figure 7.9. Note that the on-line algorithm works better over a
broader range of parameters. This is often found to be the case for on-line methods.

Figure 7.9:Performance of on-line TD() on the 19-state random walk task.

Exercise 7.5 Although TD() only approximates the -return algorithm when done online, perhaps there's a
slightly different TD method that would maintain the equivalence even in the on-line case. One idea is to define the TD

error instead as and the -step return as

. Show that in this case the modified TD() algorithm would
then achieve exactly

even in the case of on-line updating with large . In what ways might this modified TD() be better or worse than the
conventional one described in the text? Describe an experiment to assess the relative merits of the two algorithms.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node76.html (4 di 5)22/06/2005 9.08.52

7.4 Equivalence of Forward and Backward Views

Next: 7.5 Sarsa() Up: 7. Eligibility Traces Previous: 7.3 The Backward View Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node76.html (5 di 5)22/06/2005 9.08.52

7.5 Sarsa()

)">
Next: 7.6 Q() Up: 7. Eligibility Traces Previous: 7.4 Equivalence of Forward Contents

7.5 Sarsa()

How can eligibility traces be used not just for prediction, as in TD(), but for control? As usual, the main idea of one popular

approach is simply to learn action values, , rather than state values, . In this section we show how eligibility
traces can be combined with Sarsa in a straightforward way to produce an on-policy TD control method. The eligibility trace

version of Sarsa we call Sarsa(), and the original version presented in the previous chapter we henceforth call one-step Sarsa.

The idea in Sarsa() is to apply the TD() prediction method to state-action pairs rather than to states. Obviously, then, we

need a trace not just for each state, but for each state-action pair. Let denote the trace for state-action pair .

Otherwise the method is just like TD(), substituting state-action variables for state variables-- for and

for :

where

and

(7.13)

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node77.html (1 di 3)22/06/2005 9.08.56

7.5 Sarsa()

Figure 7.10:Sarsa()'s backup diagram.

Figure 7.10 shows the backup diagram for Sarsa(). Notice the similarity to the diagram of the TD() algorithm (Figure
7.3). The first backup looks ahead one full step, to the next state-action pair, the second looks ahead two steps, and so on. A

final backup is based on the complete return. The weighting of each backup is just as in TD() and the -return algorithm.

One-step Sarsa and Sarsa() are on-policy algorithms, meaning that they approximate , the action values for the
current policy, , then improve the policy gradually based on the approximate values for the current policy. The policy
improvement can be done in many different ways, as we have seen throughout this book. For example, the simplest approach is

to use the -greedy policy with respect to the current action-value estimates. Figure 7.11 shows the complete Sarsa()
algorithm for this case.

Figure 7.11:Tabular Sarsa().

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node77.html (2 di 3)22/06/2005 9.08.56

7.5 Sarsa()

Figure 7.12:Gridworld example of the speedup of policy learning due to the use of eligibility traces.

Example 7.4: Traces in Gridworld The use of eligibility traces can substantially increase the efficiency of control algorithms.
The reason for this is illustrated by the gridworld example in Figure 7.12. The first panel shows the path taken by an agent in a
single episode, ending at a location of high reward, marked by the *. In this example the values were all initially 0, and all
rewards were zero except for a positive reward at the * location. The arrows in the other two panels show which action values

were strengthened as a result of this path by one-step Sarsa and Sarsa() methods. The one-step method strengthens only the
last action of the sequence of actions that led to the high reward, whereas the trace method strengthens many actions of the

sequence. The degree of strengthening (indicated by the size of the arrows) falls off (according to) with steps from the

reward. In this example, and .

Next: 7.6 Q() Up: 7. Eligibility Traces Previous: 7.4 Equivalence of Forward Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node77.html (3 di 3)22/06/2005 9.08.56

7.6 Q()

)">
Next: 7.7 Eligibility Traces for Up: 7. Eligibility Traces Previous: 7.5 Sarsa() Contents

7.6 Q()

Two different methods have been proposed that combine eligibility traces and Q-learning; we call them Watkins's Q()

and Peng's Q(), after the researchers who first proposed them. First we describe Watkins's Q().

Recall that Q-learning is an off-policy method, meaning that the policy learned about need not be the same as the one used
to select actions. In particular, Q-learning learns about the greedy policy while it typically follows a policy involving

exploratory actions--occasional selections of actions that are suboptimal according to . Because of this, special care is
required when introducing eligibility traces.

Suppose we are backing up the state-action pair at time . Suppose that on the next two time steps the agent selects
the greedy action, but on the third, at time , the agent selects an exploratory, nongreedy action. In learning about the
value of the greedy policy at we can use subsequent experience only as long as the greedy policy is being followed.
Thus, we can use the one-step and two-step returns, but not, in this case, the three-step return. The -step returns for all

 no longer have any necessary relationship to the greedy policy.

Thus, unlike TD() or Sarsa(), Watkins's Q() does not look ahead all the way to the end of the episode in its

backup. It only looks ahead as far as the next exploratory action. Aside from this difference, however, Watkins's Q() is

much like TD() and Sarsa(). Their lookahead stops at episode's end, whereas Q()'s lookahead stops at the first
exploratory action, or at episode's end if there are no exploratory actions before that. Actually, to be more precise, one-step

Q-learning and Watkins's Q() both look one action past the first exploration, using their knowledge of the action values.

For example, suppose the first action, , is exploratory. Watkins's Q() would still do the one-step update of

 toward . In general, if is the first exploratory action, then the longest
backup is toward

where we assume off-line updating. The backup diagram in Figure 7.13 illustrates the forward view of Watkins's Q(),
showing all the component backups.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node78.html (1 di 4)22/06/2005 9.09.00

7.6 Q()

Figure 7.13:The backup diagram for Watkins's Q(). The series of component backups ends either with the end of the
episode or with the first nongreedy action, whichever comes first.

The mechanistic or backward view of Watkins's Q() is also very simple. Eligibility traces are used just as in Sarsa(),
except that they are set to zero whenever an exploratory (nongreedy) action is taken. The trace update is best thought of as

occurring in two steps. First, the traces for all state-action pairs are either decayed by or, if an exploratory action was
taken, set to . Second, the trace corresponding to the current state and action is incremented by . The overall result is

where, as before, is an identity indicator function, equal to if and otherwise. The rest of the algorithm is
defined by

where

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node78.html (2 di 4)22/06/2005 9.09.00

7.6 Q()

Figure 7.14 shows the complete algorithm in pseudocode.

Figure 7.14:Tabular version of Watkins's Q() algorithm.

Unfortunately, cutting off traces every time an exploratory action is taken loses much of the advantage of using eligibility
traces. If exploratory actions are frequent, as they often are early in learning, then only rarely will backups of more than

one or two steps be done, and learning may be little faster than one-step Q-learning. Peng's Q() is an alternate version of

Q() meant to remedy this. Peng's Q() can be thought of as a hybrid of Sarsa() and Watkins's Q().

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node78.html (3 di 4)22/06/2005 9.09.00

7.6 Q()

Figure 7.15:The backup diagram for Peng's Q().

Conceptually, Peng's Q() uses the mixture of backups shown in Figure 7.15. Unlike Q-learning, there is no distinction
between exploratory and greedy actions. Each component backup is over many steps of actual experiences, and all but the
last are capped by a final maximization over actions. The component backups, then, are neither on-policy nor off-policy.
The earlier transitions of each are on-policy, whereas the last (fictitious) transition uses the greedy policy. As a

consequence, for a fixed nongreedy policy, converges to neither nor under Peng's Q(), but to some hybrid of

the two. However, if the policy is gradually made more greedy, then the method may still converge to . As of this
writing this has not yet been proved. Nevertheless, the method performs well empirically. Most studies have shown it

performing significantly better than Watkins's Q() and almost as well as Sarsa().

On the other hand, Peng's Q() cannot be implemented as simply as Watkins's Q(). For a complete description of the

needed implementation, see Peng and Williams (1994, 1996). One could imagine yet a third version of Q(), let us call it

naive Q(), that is just like Watkins's Q() except that the traces are not set to zero on exploratory actions. This method

might have some of the advantages of Peng's Q(), but without the complex implementation. We know of no experience
with this method, but perhaps it is not as naive as one might at first suppose.

Next: 7.7 Eligibility Traces for Up: 7. Eligibility Traces Previous: 7.5 Sarsa() Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node78.html (4 di 4)22/06/2005 9.09.00

7.7 Eligibility Traces for Actor-Critic Methods

Next: 7.8 Replacing Traces Up: 7. Eligibility Traces Previous: 7.6 Q() Contents

7.7 Eligibility Traces for Actor-Critic Methods

In this section we describe how to extend the actor-critic methods introduced in Section 6.6 to use eligibility traces. This is

fairly straightforward. The critic part of an actor-critic method is simply on-policy learning of . The TD() algorithm
can be used for that, with one eligibility trace for each state. The actor part needs to use an eligibility trace for each state-
action pair. Thus, an actor-critic method needs two sets of traces, one for each state and one for each state-action pair.

Recall that the one-step actor-critic method updates the actor by

where is the TD() error (7.6), and is the preference for taking action at time if in state . The preferences
determine the policy via, for example, a softmax method (Section 2.3). We generalize the above equation to use eligibility
traces as follows:

(7.14)

where denotes the trace at time for state-action pair . For the simplest case mentioned above, the trace can be

updated as in Sarsa().

In Section 6.6 we also discussed a more sophisticated actor-critic method that uses the update

To generalize this equation to eligibility traces we can use the same update (7.14) with a slightly different trace. Rather than

incrementing the trace by 1 each time a state-action pair occurs, it is updated by :

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node79.html (1 di 2)22/06/2005 9.09.03

7.7 Eligibility Traces for Actor-Critic Methods

(7.15)

for all .

Next: 7.8 Replacing Traces Up: 7. Eligibility Traces Previous: 7.6 Q() Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node79.html (2 di 2)22/06/2005 9.09.03

7.8 Replacing Traces

Next: 7.9 Implementation Issues Up: 7. Eligibility Traces Previous: 7.7 Eligibility Traces for Contents

7.8 Replacing Traces

In some cases significantly better performance can be obtained by using a slightly modified kind of trace known as a replacing
trace. Suppose a state is visited and then revisited before the trace due to the first visit has fully decayed to zero. With
accumulating traces (7.5), the revisit causes a further increment in the trace, driving it greater than , whereas with replacing
traces, the trace is reset to . Figure 7.16 contrasts these two kinds of traces. Formally, a replacing trace for a discrete state is
defined by

Figure 7.16:Accumulating and replacing traces.

(7.16)

Prediction or control algorithms using replacing traces are often called replace-trace methods. Although replacing traces are
only slightly different from accumulating traces, they can produce a significant improvement in learning rate. Figure 7.17

compares the performance of conventional and replace-trace versions of TD() on the 19-state random walk prediction task.
Other examples for a slightly more general case are given in Figure 8.10 in the next chapter.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node80.html (1 di 3)22/06/2005 9.09.06

7.8 Replacing Traces

Figure 7.17:Error as a function of on a 19-state random walk task. These data are using the best value of for each value of

. The error is averaged over all 19 states and the first 20 trials of 100 different runs.

Example 7.5 Figure 7.18 shows an example of the kind of task that is difficult for control methods using accumulating
eligibility traces. All rewards are zero except on entering the terminal state, which produces a reward of +1. From each state,
selecting the right action brings the agent one step closer to the terminal reward, whereas the wrong (upper) action leaves it
in the same state to try again. The full sequence of states is long enough that one would like to use long traces to get the fastest
learning. However, problems occur if long accumulating traces are used. Suppose, on the first episode, at some state, , the agent

by chance takes the wrong action a few times before taking the right action. As the agent continues, the trace is

likely to be larger than the trace . The right action was more recent, but the wrong action was selected more
times. When reward is finally received, then, the value for the wrong action is likely to go up more than the value for the right
action. On the next episode the agent will be even more likely to go the wrong way many times before going right, making it
even more likely that the wrong action will have the larger trace. Eventually, all of this will be corrected, but learning is
significantly slowed. With replacing traces, on the other hand, this problem never occurs. No matter how many times the wrong
action is taken, its eligibility trace is always less than that for the right action after the right action has been taken.

Figure 7.18:A simple task that causes problems for control methods using accumulating traces.

There is an interesting relationship between replace-trace methods and Monte Carlo methods in the undiscounted case. Just as
conventional TD(1) is related to the every-visit MC algorithm, so replace-trace TD(1) is related to the first-visit MC algorithm.
In particular, the off-line version of replace-trace TD(1) is formally identical to first-visit MC (Singh and Sutton, 1996). How, or
even whether, these methods and results extend to the discounted case is unknown.

There are several possible ways to generalize replacing eligibility traces for use in control methods. Obviously, when a state is
revisited and a new action is selected, the trace for that action should be reset to 1. But what of the traces for the other actions for
that state? The approach recommended by Singh and Sutton (1996) is to set the traces of all the other actions from the revisited
state to 0. In this case, the state-action traces are updated by the following instead of (7.13):

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node80.html (2 di 3)22/06/2005 9.09.06

7.8 Replacing Traces

(7.17)

Note that this variant of replacing traces works out even better than the original replacing traces in the example task. Once the
right action has been selected, the wrong action is left with no trace at all. The results shown in Figure 8.10 were obtained
using this kind of replacing trace.

Exercise 7.6 In Example 7.5, suppose from state the wrong action is taken twice before the right action is taken. If

accumulating traces are used, then how big must the trace parameter be in order for the wrong action to end up with a larger
eligibility trace than the right action?

Exercise 7.7 (programming) Program Example 7.5 and compare accumulate-trace and replace-trace versions of Sarsa() on

it, for and a range of values. Can you empirically demonstrate the claimed advantage of replacing traces on this
example?

Exercise 7.8 Draw a backup diagram for Sarsa() with replacing traces.

Next: 7.9 Implementation Issues Up: 7. Eligibility Traces Previous: 7.7 Eligibility Traces for Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node80.html (3 di 3)22/06/2005 9.09.06

7.9 Implementation Issues

Next: 7.10 Variable Up: 7. Eligibility Traces Previous: 7.8 Replacing Traces Contents

7.9 Implementation Issues

It might at first appear that methods using eligibility traces are much more complex than one-step
methods. A naive implementation would require every state (or state-action pair) to update both its
value estimate and its eligibility trace on every time step. This would not be a problem for
implementations on single-instruction, multiple-data parallel computers or in plausible neural
implementations, but it is a problem for implementations on conventional serial computers.

Fortunately, for typical values of and the eligibility traces of almost all states are almost

always nearly zero; only those that have recently been visited will have traces significantly greater
than zero. Only these few states really need to be updated because the updates at the others will have
essentially no effect.

In practice, then, implementations on conventional computers keep track of and update only the few
states with nonzero traces. Using this trick, the computational expense of using traces is typically a

few times that of a one-step method. The exact multiple of course depends on and and on the

expense of the other computations. Cichosz (1995) has demonstrated a further implementation

technique that further reduces complexity to a constant independent of and . Finally, it should

be noted that the tabular case is in some sense a worst case for the computational complexity of
traces. When function approximation is used (Chapter 8), the computational advantages of not using
traces generally decrease. For example, if artificial neural networks and backpropagation are used,
then traces generally cause only a doubling of the required memory and computation per step.

Exercise 7.9 Write pseudocode for an implementation of TD() that updates only value estimates
for states whose traces are greater than some small positive constant.

Next: 7.10 Variable Up: 7. Eligibility Traces Previous: 7.8 Replacing Traces Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node81.html22/06/2005 9.09.07

7.10 Variable

">
Next: 7.11 Conclusions Up: 7. Eligibility Traces Previous: 7.9 Implementation Issues Contents

7.10 Variable

The -return can be significantly generalized beyond what we have described so far by allowing
to vary from step to step, that is, by redefining the trace update as

where denotes the value of at time . This is an advanced topic because the added generality
has never been used in practical applications, but it is interesting theoretically and may yet prove

useful. For example, one idea is to vary as a function of state: . If a state's value
estimate is believed to be known with high certainty, then it makes sense to use that estimate fully,
ignoring whatever states and rewards are received after it. This corresponds to cutting off all the

traces once this state has been reached, that is, to choosing the for the certain state to be zero or
very small. Similarly, states whose value estimates are highly uncertain, perhaps because even the
state estimate is unreliable, can be given s near 1. This causes their estimated values to have little
effect on any updates. They are "skipped over" until a state that is known better is encountered. Some
of these ideas were explored formally by Sutton and Singh (1994).

The eligibility trace equation above is the backward view of variable s. The corresponding forward

view is a more general definition of the -return:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node82.html (1 di 2)22/06/2005 9.09.09

7.10 Variable

Exercise 7.10 Prove that the forward and backward views of off-line TD() remain equivalent

under their new definitions with variable given in this section. Follow the example of the proof in
Section 7.4.

Next: 7.11 Conclusions Up: 7. Eligibility Traces Previous: 7.9 Implementation Issues Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node82.html (2 di 2)22/06/2005 9.09.09

7.11 Conclusions

Next: 7.12 Bibliographical and Historical Up: 7. Eligibility Traces Previous: 7.10 Variable
Contents

7.11 Conclusions

Eligibility traces in conjunction with TD errors provide an efficient, incremental way of shifting and
choosing between Monte Carlo and TD methods. Traces can be used without TD errors to achieve a

similar effect, but only awkwardly. A method such as TD() enables this to be done from partial
experiences and with little memory and little nonmeaningful variation in predictions.

As we mentioned in Chapter 5, Monte Carlo methods may have advantages in non-Markov tasks
because they do not bootstrap. Because eligibility traces make TD methods more like Monte Carlo
methods, they also can have advantages in these cases. If one wants to use TD methods because of
their other advantages, but the task is at least partially non-Markov, then the use of an eligibility trace
method is indicated. Eligibility traces are the first line of defense against both long-delayed rewards
and non-Markov tasks.

By adjusting , we can place eligibility trace methods anywhere along a continuum from Monte
Carlo to one-step TD methods. Where shall we place them? We do not yet have a good theoretical
answer to this question, but a clear empirical answer appears to be emerging. On tasks with many
steps per episode, or many steps within the half-life of discounting, it appears significantly better to
use eligibility traces than not to (e.g., see Figure 8.10). On the other hand, if the traces are so long as
to produce a pure Monte Carlo method, or nearly so, then performance degrades sharply. An
intermediate mixture appears to be the best choice. Eligibility traces should be used to bring us
toward Monte Carlo methods, but not all the way there. In the future it may be possible to vary the

trade-off between TD and Monte Carlo methods more finely by using variable , but at present it is
not clear how this can be done reliably and usefully.

Methods using eligibility traces require more computation than one-step methods, but in return they
offer significantly faster learning, particularly when rewards are delayed by many steps. Thus it often
makes sense to use eligibility traces when data are scarce and cannot be repeatedly processed, as is
often the case in on-line applications. On the other hand, in off-line applications in which data can be
generated cheaply, perhaps from an inexpensive simulation, then it often does not pay to use
eligibility traces. In these cases the objective is not to get more out of a limited amount of data, but
simply to process as much data as possible as quickly as possible. In these cases the speedup per
datum due to traces is typically not worth their computational cost, and one-step methods are favored.

Next: 7.12 Bibliographical and Historical Up: 7. Eligibility Traces Previous: 7.10 Variable
Contents

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node83.html (1 di 2)22/06/2005 9.09.10

7.11 Conclusions

Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node83.html (2 di 2)22/06/2005 9.09.10

7.12 Bibliographical and Historical Remarks

Next: 8. Generalization and Function Up: 7. Eligibility Traces Previous: 7.11 Conclusions
Contents

Subsections

● 7.1-2
● 7.3
● 7.4
● 7.5
● 7.6
● 7.7
● 7.8
● 7.9-10

7.12 Bibliographical and Historical Remarks

7.1-2

The forward view of eligibility traces in terms of -step returns and the -return is due to Watkins
(1989), who also first discussed the error reduction property of -step returns. Our presentation is
based on the slightly modified treatment by Jaakkola, Jordan, and Singh (1994). The results in the
random walk examples were made for this text based on work of Sutton (1988) and Singh and Sutton
(1996). The use of backup diagrams to describe these and other algorithms in this chapter is new, as
are the terms "forward view" and "backward view."

TD() was proved to converge in the mean by Dayan (1992), and with probability 1 by many
researchers, including Peng (1993), Dayan and Sejnowski (1994), and Tsitsiklis (1994). Jaakkola,

Jordan, and Singh (1994), in addition, first proved convergence of TD() under on-line updating.
Gurvits, Lin, and Hanson (1994) proved convergence of a more general class of eligibility trace
methods.

7.3

The idea that stimuli produce aftereffects in the nervous system that are important for learning is very
old. Animal learning psychologists at least as far back as Pavlov (1927) and Hull (1943, 1952)
included such ideas in their theories. However, stimulus traces in these theories are more like
transient state representations than what we are calling eligibility traces: they could be associated
with actions, whereas an eligibility trace is used only for credit assignment. The idea of a stimulus

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node84.html (1 di 3)22/06/2005 9.09.11

7.12 Bibliographical and Historical Remarks

trace serving exclusively for credit assignment is apparently due to Klopf (1972), who hypothesized
that under certain conditions a neuron's synapses would become "eligible" for subsequent
modification should reinforcement later arrive at the neuron. Our use of eligibility traces was based
on Klopf's work (Sutton, 1978a, 1978b, 1978c; Barto and Sutton, 1981a, 1981b; Sutton and Barto,

1981a; Barto, Sutton, and Anderson, 1983; Sutton, 1984). The TD() algorithm is due to Sutton
(1988).

7.4

The equivalence of forward and backward views, and the relationships to Monte Carlo methods, were
proved by Sutton (1988) for undiscounted episodic tasks, then extended by Watkins (1989) to the
general case. The idea in exercise 7.5 is new.

7.5

Sarsa() was first explored as a control method by Rummery and Niranjan (1994) and Rummery
(1995).

7.6

Watkins's Q() is due to Watkins (1989). Peng's Q() is due to Peng and Williams (Peng, 1993;
Peng and Williams, 1994, 1996). Rummery (1995) made extensive comparative studies of these
algorithms.

Convergence has not been proved for any control method for .

7.7

Actor-critic methods were among the first methods to use eligibility traces (Barto, Sutton, and
Anderson, 1983; Sutton, 1984). The specific algorithm discussed in this chapter has never been tried
before.

7.8

Replacing traces are due to Singh and Sutton (1996). The results in Figure 7.17 are from their paper.
The task in Figure 7.18 was used to show the weakness of accumulating traces by Sutton (1984). The
relationship of both kinds of traces to specific Monte Carlo methods was developed by Singh and
Sutton (1996).

7.9-10

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node84.html (2 di 3)22/06/2005 9.09.11

7.12 Bibliographical and Historical Remarks

The ideas in these two sections were generally known for many years, but beyond what is in the
sources cited in the sections themselves, this text may be the first place they have been described.

Perhaps the first published discussion of variable was by Watkins (1989), who pointed out that the

cutting off of the backup sequence (Figure 7.13) in his Q() when a nongreedy action was selected

could be implemented by temporarily setting to 0.

Next: 8. Generalization and Function Up: 7. Eligibility Traces Previous: 7.11 Conclusions
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node84.html (3 di 3)22/06/2005 9.09.11

8. Generalization and Function Approximation

Next: 8.1 Value Prediction with Up: III. A Unified View Previous: 7.12 Bibliographical and
Historical Contents

8. Generalization and Function Approximation

We have so far assumed that our estimates of value functions are represented as a table with one
entry for each state or for each state-action pair. This is a particularly clear and instructive case, but
of course it is limited to tasks with small numbers of states and actions. The problem is not just the
memory needed for large tables, but the time and data needed to fill them accurately. In other words,
the key issue is that of generalization. How can experience with a limited subset of the state space be
usefully generalized to produce a good approximation over a much larger subset?

This is a severe problem. In many tasks to which we would like to apply reinforcement learning, most
states encountered will never have been experienced exactly before. This will almost always be the
case when the state or action spaces include continuous variables or complex sensations, such as a
visual image. The only way to learn anything at all on these tasks is to generalize from previously
experienced states to ones that have never been seen.

Fortunately, generalization from examples has already been extensively studied, and we do not need
to invent totally new methods for use in reinforcement learning. To a large extent we need only
combine reinforcement learning methods with existing generalization methods. The kind of
generalization we require is often called function approximation because it takes examples from a
desired function (e.g., a value function) and attempts to generalize from them to construct an
approximation of the entire function. Function approximation is an instance of supervised learning,
the primary topic studied in machine learning, artificial neural networks, pattern recognition, and
statistical curve fitting. In principle, any of the methods studied in these fields can be used in
reinforcement learning as described in this chapter.

Subsections

● 8.1 Value Prediction with Function Approximation
● 8.2 Gradient-Descent Methods
● 8.3 Linear Methods

❍ 8.3.1 Coarse Coding
❍ 8.3.2 Tile Coding
❍ 8.3.3 Radial Basis Functions
❍ 8.3.4 Kanerva Coding

● 8.4 Control with Function Approximation
● 8.5 Off-Policy Bootstrapping

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node85.html (1 di 2)22/06/2005 9.09.12

8. Generalization and Function Approximation

● 8.6 Should We Bootstrap?
● 8.7 Summary
● 8.8 Bibliographical and Historical Remarks

❍ 8.2
❍ 8.3
❍ 8.4
❍ 8.5

Next: 8.1 Value Prediction with Up: III. A Unified View Previous: 7.12 Bibliographical and
Historical Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node85.html (2 di 2)22/06/2005 9.09.12

8.1 Value Prediction with Function Approximation

Next: 8.2 Gradient-Descent Methods Up: 8. Generalization and Function Previous: 8.
Generalization and Function Contents

8.1 Value Prediction with Function
Approximation

As usual, we begin with the prediction problem of estimating the state-value function from
experience generated using policy . The novelty in this chapter is that the approximate value
function at time , , is represented not as a table but as a parameterized functional form with

parameter vector . This means that the value function depends totally on , varying from time

step to time step only as varies. For example, might be the function computed by an artificial

neural network, with the vector of connection weights. By adjusting the weights, any of a wide
range of different functions can be implemented by the network. Or might be the function

computed by a decision tree, where is all the parameters defining the split points and leaf values of

the tree. Typically, the number of parameters (the number of components of) is much less than the
number of states, and changing one parameter changes the estimated value of many states.
Consequently, when a single state is backed up, the change generalizes from that state to affect the
values of many other states.

All of the prediction methods covered in this book have been described as backups, that is, as updates
to an estimated value function that shift its value at particular states toward a "backed-up value" for
that state. Let us refer to an individual backup by the notation , where is the state backed up
and is the backed-up value, or target, that 's estimated value is shifted toward. For example, the DP

backup for value prediction is , the Monte Carlo backup is

, the TD(0) backup is , and the general TD() backup is

. In the DP case, an arbitrary state is backed up, whereas in the the other cases the state,
, encountered in (possibly simulated) experience is backed up.

It is natural to interpret each backup as specifying an example of the desired input-output behavior of
the estimated value function. In a sense, the backup means that the estimated value for state
should be more like . Up to now, the actual update implementing the backup has been trivial: the
table entry for 's estimated value has simply been shifted a fraction of the way toward . Now we
permit arbitrarily complex and sophisticated function approximation methods to implement the
backup. The normal inputs to these methods are examples of the desired input-output behavior of the
function they are trying to approximate. We use these methods for value prediction simply by passing
to them the of each backup as a training example. We then interpret the approximate function
they produce as an estimated value function.

Viewing each backup as a conventional training example in this way enables us to use any of a wide

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node86.html (1 di 4)22/06/2005 9.09.17

8.1 Value Prediction with Function Approximation

range of existing function approximation methods for value prediction. In principle, we can use any
method for supervised learning from examples, including artificial neural networks, decision trees,
and various kinds of multivariate regression. However, not all function approximation methods are
equally well suited for use in reinforcement learning. The most sophisticated neural network and
statistical methods all assume a static training set over which multiple passes are made. In
reinforcement learning, however, it is important that learning be able to occur on-line, while
interacting with the environment or with a model of the environment. To do this requires methods
that are able to learn efficiently from incrementally acquired data. In addition, reinforcement learning
generally requires function approximation methods able to handle nonstationary target functions
(target functions that change over time). For example, in GPI control methods we often seek to learn

 while changes. Even if the policy remains the same, the target values of training examples are
nonstationary if they are generated by bootstrapping methods (DP and TD). Methods that cannot
easily handle such nonstationarity are less suitable for reinforcement learning.

What performance measures are appropriate for evaluating function approximation methods? Most
supervised learning methods seek to minimize the mean-squared error (MSE) over some distribution,

, of the inputs. In our value prediction problem, the inputs are states and the target function is the

true value function , so MSE for an approximation , using parameter , is

(8.1)

where is a distribution weighting the errors of different states. This distribution is important
because it is usually not possible to reduce the error to zero at all states. After all, there are generally

far more states than there are components to . The flexibility of the function approximator is thus a
scarce resource. Better approximation at some states can be gained, generally, only at the expense of
worse approximation at other states. The distribution specifies how these trade-offs should be
made.

The distribution is also usually the distribution from which the states in the training examples are
drawn, and thus the distribution of states at which backups are done. If we wish to minimize error
over a certain distribution of states, then it makes sense to train the function approximator with
examples from that same distribution. For example, if you want a uniform level of error over the
entire state set, then it makes sense to train with backups distributed uniformly over the entire state
set, such as in the exhaustive sweeps of some DP methods. Henceforth, let us assume that the
distribution of states at which backups are done and the distribution that weights errors, , are the
same.

A distribution of particular interest is the one describing the frequency with which states are

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node86.html (2 di 4)22/06/2005 9.09.17

8.1 Value Prediction with Function Approximation

encountered while the agent is interacting with the environment and selecting actions according to ,
the policy whose value function we are approximating. We call this the on-policy distribution, in part
because it is the distribution of backups in on-policy control methods. Minimizing error over the on-
policy distribution focuses function approximation resources on the states that actually occur while
following the policy, ignoring those that never occur. The on-policy distribution is also the one for
which it is easiest to get training examples using Monte Carlo or TD methods. These methods
generate backups from sample experience using the policy . Because a backup is generated for each
state encountered in the experience, the training examples available are naturally distributed
according to the on-policy distribution. Stronger convergence results are available for the on-policy
distribution than for other distributions, as we discuss later.

It is not completely clear that we should care about minimizing the MSE. Our goal in value
prediction is potentially different because our ultimate purpose is to use the predictions to aid in
finding a better policy. The best predictions for that purpose are not necessarily the best for
minimizing MSE. However, it is not yet clear what a more useful alternative goal for value prediction
might be. For now, we continue to focus on MSE.

An ideal goal in terms of MSE would be to find a global optimum, a parameter vector for which

 for all possible . Reaching this goal is sometimes possible for simple
function approximators such as linear ones, but is rarely possible for complex function approximators
such as artificial neural networks and decision trees. Short of this, complex function approximators

may seek to converge instead to a local optimum, a parameter vector for which

 for all in some neighborhood of . Although this guarantee is only
slightly reassuring, it is typically the best that can be said for nonlinear function approximators. For
many cases of interest in reinforcement learning, convergence to an optimum, or even true
convergence, does not occur. Nevertheless, an MSE that is within a small bound of an optimum may
still be achieved with some methods. Other methods may in fact diverge, with their MSE approaching
infinity in the limit.

In this section we have outlined a framework for combining a wide range of reinforcement learning
methods for value prediction with a wide range of function approximation methods, using the
backups of the former to generate training examples for the latter. We have also outlined a range of
MSE performance measures to which these methods may aspire. The range of possible methods is far
too large to cover all, and anyway too little is known about most of them to make a reliable
evaluation or recommendation. Of necessity, we consider only a few possibilities. In the rest of this
chapter we focus on function approximation methods based on gradient principles, and on linear
gradient-descent methods in particular. We focus on these methods in part because we consider them
to be particularly promising and because they reveal key theoretical issues, but also because they are
simple and our space is limited. If we had another chapter devoted to function approximation, we
would also cover at least memory-based and decision-tree methods.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node86.html (3 di 4)22/06/2005 9.09.17

8.1 Value Prediction with Function Approximation

Next: 8.2 Gradient-Descent Methods Up: 8. Generalization and Function Previous: 8.
Generalization and Function Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node86.html (4 di 4)22/06/2005 9.09.17

8.2 Gradient-Descent Methods

Next: 8.3 Linear Methods Up: 8. Generalization and Function Previous: 8.1 Value Prediction with
Contents

8.2 Gradient-Descent Methods

We now develop in detail one class of learning methods for function approximation in value
prediction, those based on gradient descent. Gradient-descent methods are among the most widely
used of all function approximation methods and are particularly well suited to reinforcement learning.

In gradient-descent methods, the parameter vector is a column vector with a fixed number of real

valued components, (the here denotes transpose), and is

a smooth differentiable function of for all . For now, let us assume that on each step , we

observe a new example . These states might be successive states from an interaction
with the environment, but for now we do not assume so. Even though we are given the exact, correct

values, for each , there is still a difficult problem because our function approximator has

limited resources and thus limited resolution. In particular, there is generally no that gets all the
states, or even all the examples, exactly correct. In addition, we must generalize to all the other states
that have not appeared in examples.

We assume that states appear in examples with the same distribution, , over which we are trying to
minimize the MSE as given by (8.1). A good strategy in this case is to try to minimize error on the
observed examples. Gradient-descent methods do this by adjusting the parameter vector after each
example by a small amount in the direction that would most reduce the error on that example:

 (8.2)

where is a positive step-size parameter, and , for any function , denotes the vector of

partial derivatives, . This derivative vector is the gradient of with

respect to . This kind of method is called gradient descent because the overall step in is
proportional to the negative gradient of the example's squared error. This is the direction in which the

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node87.html (1 di 5)22/06/2005 9.09.26

8.2 Gradient-Descent Methods

error falls most rapidly.

It may not be immediately apparent why only a small step is taken in the direction of the gradient.
Could we not move all the way in this direction and completely eliminate the error on the example?
In many cases this could be done, but usually it is not desirable. Remember that we do not seek or
expect to find a value function that has zero error on all states, but only an approximation that
balances the errors in different states. If we completely corrected each example in one step, then we
would not find such a balance. In fact, the convergence results for gradient methods assume that the
step-size parameter decreases over time. If it decreases in such a way as to satisfy the standard
stochastic approximation conditions (2.7), then the gradient-descent method (8.2) is guaranteed to
converge to a local optimum.

We turn now to the case in which the target output, , of the th training example, , is not

the true value, , but some approximation of it. For example, might be a noise-corrupted

version of , or it might be one of the backed-up values mentioned in the previous section. In

such cases we cannot perform the exact update (8.2) because is unknown, but we can

approximate it by substituting in place of . This yields the general gradient-descent method
for state-value prediction:

(8.3)

If is an unbiased estimate, that is, if , for each , then is guaranteed to
converge to a local optimum under the usual stochastic approximation conditions (2.7) for decreasing

the step-size parameter .

For example, suppose the states in the examples are the states generated by interaction (or simulated
interaction) with the environment using policy . Let denote the return following each state, .
Because the true value of a state is the expected value of the return following it, the Monte Carlo

target is by definition an unbiased estimate of . With this choice, the general

gradient-descent method (8.3) converges to a locally optimal approximation to . Thus, the
gradient-descent version of Monte Carlo state-value prediction is guaranteed to find a locally optimal
solution.

Similarly, we can use -step TD returns and their averages for . For example, the gradient-descent

form of TD() uses the -return, , as its approximation to , yielding the forward-
view update:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node87.html (2 di 5)22/06/2005 9.09.26

8.2 Gradient-Descent Methods

(8.4)

Unfortunately, for , is not an unbiased estimate of , and thus this method does not
converge to a local optimum. The situation is the same when DP targets are used such as

. Nevertheless, such bootstrapping methods can be quite effective,
and other performance guarantees are available for important special cases, as we discuss later in this
chapter. For now we emphasize the relationship of these methods to the general gradient-descent
form (8.3). Although increments as in (8.4) are not themselves gradients, it is useful to view this
method as a gradient-descent method (8.3) with a bootstrapping approximation in place of the desired

output, .

As (8.4) provides the forward view of gradient-descent TD(), so the backward view is provided by

 (8.5)

where is the usual TD error,

(8.6)

and is a column vector of eligibility traces, one for each component of , updated by

(8.7)

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node87.html (3 di 5)22/06/2005 9.09.26

8.2 Gradient-Descent Methods

with . A complete algorithm for on-line gradient-descent TD() is given in Figure 8.1.

Figure 8.1:On-line gradient-descent TD() for estimating . The approximate value function, ,

is implicitly a function of .

Two methods for gradient-based function approximation have been used widely in reinforcement
learning. One is multilayer artificial neural networks using the error backpropagation algorithm. This
maps immediately onto the equations and algorithms just given, where the backpropagation process
is the way of computing the gradients. The second popular form is the linear form, which we discuss
extensively in the next section.

Exercise 8.1 Show that table-lookup TD() is a special case of general TD() as given by
equations ((8.5)-(8.7)).

Exercise 8.2 State aggregation is a simple form of generalizing function approximation in which
states are grouped together, with one table entry (value estimate) used for each group. Whenever a
state in a group is encountered, the group's entry is used to determine the state's value, and when the
state is updated, the group's entry is updated. Show that this kind of state aggregation is a special case
of a gradient method such as (8.4).

Exercise 8.3 The equations given in this section are for the on-line version of gradient-descent TD(

). What are the equations for the off-line version? Give a complete description specifying the new
approximate value function at the end of an episode, , in terms of the approximate value function

used during the episode, . Start by modifying a forward-view equation for TD(), such as (8.4).

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node87.html (4 di 5)22/06/2005 9.09.26

8.2 Gradient-Descent Methods

Exercise 8.4 For off-line updating, show that equations ((8.5)-(8.7)) produce updates identical to
(8.4).

Next: 8.3 Linear Methods Up: 8. Generalization and Function Previous: 8.1 Value Prediction with
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node87.html (5 di 5)22/06/2005 9.09.26

8.3 Linear Methods

Next: 8.4 Control with Function Up: 8. Generalization and Function Previous: 8.2 Gradient-Descent Methods
Contents

Subsections

● 8.3.1 Coarse Coding
● 8.3.2 Tile Coding
● 8.3.3 Radial Basis Functions
● 8.3.4 Kanerva Coding

8.3 Linear Methods

One of the most important special cases of gradient-descent function approximation is that in which the approximate

function, , is a linear function of the parameter vector, . Corresponding to every state , there is a column vector of

features , with the same number of components as . The features may be
constructed from the states in many different ways; we cover a few possibilities below. However the features are
constructed, the approximate state-value function is given by

(8.8)

In this case the approximate value function is said to be linear in the parameters, or simply linear.

It is natural to use gradient-descent updates with linear function approximation. The gradient of the approximate value

function with respect to in this case is

Thus, the general gradient-descent update (8.3) reduces to a particularly simple form in the linear case. In addition, in

the linear case there is only one optimum (or, in degenerate cases, one set of equally good optima). Thus, any
method guaranteed to converge to or near a local optimum is automatically guaranteed to converge to or near the
global optimum. Because it is simple in these ways, the linear, gradient-descent case is one of the most favorable for
mathematical analysis. Almost all useful convergence results for learning systems of all kinds are for linear (or
simpler) function approximation methods.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node88.html (1 di 9)22/06/2005 9.09.33

8.3 Linear Methods

In particular, the gradient-descent TD() algorithm discussed in the previous section (Figure 8.1) has been proved to
converge in the linear case if the step-size parameter is reduced over time according to the usual conditions (2.7).

Convergence is not to the minimum-error parameter vector, , but to a nearby parameter vector, , whose error is
bounded according to

(8.9)

That is, the asymptotic error is no more than times the smallest possible error. As approaches 1, the bound
approaches the minimum error. An analogous bound applies to other on-policy bootstrapping methods. For example,
linear gradient-descent DP backups (8.3), with the on-policy distribution, will converge to the same result as TD(0).
Technically, this bound applies only to discounted continuing tasks, but a related result presumably holds for episodic
tasks. There are also a few technical conditions on the rewards, features, and decrease in the step-size parameter,
which we are omitting here. The full details can be found in the original paper (Tsitsiklis and Van Roy, 1997a).

Critical to the above result is that states are backed up according to the on-policy distribution. For other backup
distributions, bootstrapping methods using function approximation may actually diverge to infinity. Examples of this
and a discussion of possible solution methods are given in Section 8.5

Beyond these theoretical results, linear learning methods are also of interest because in practice they can be very
efficient in terms of both data and computation. Whether or not this is so depends critically on how the states are
represented in terms of the features. Choosing features appropriate to the task is an important way of adding prior
domain knowledge to reinforcement learning systems. Intuitively, the features should correspond to the natural
features of the task, those along which generalization is most appropriate. If we are valuing geometric objects, for
example, we might want to have features for each possible shape, color, size, or function. If we are valuing states of a
mobile robot, then we might want to have features for locations, degrees of remaining battery power, recent sonar
readings, and so on.

In general, we also need features for combinations of these natural qualities. This is because the linear form prohibits
the representation of interactions between features, such as the presence of feature being good only in the absence of
feature . For example, in the pole-balancing task (Example 3.4), a high angular velocity may be either good or bad
depending on the angular position. If the angle is high, then high angular velocity means an imminent danger of
falling, a bad state, whereas if the angle is low, then high angular velocity means the pole is righting itself, a good
state. In cases with such interactions one needs to introduce features for conjunctions of feature values when using
linear function approximation methods. We next consider some general ways of doing this.

Exercise 8.5 How could we reproduce the tabular case within the linear framework?

Exercise 8.6 How could we reproduce the state aggregation case (see Exercise 8.4) within the linear framework?

8.3.1 Coarse Coding

Consider a task in which the state set is continuous and two-dimensional. A state in this case is a point in 2-space, a
vector with two real components. One kind of feature for this case is those corresponding to circles in state space, as
shown in Figure 8.2. If the state is inside a circle, then the corresponding feature has the value and is said to be

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node88.html (2 di 9)22/06/2005 9.09.33

8.3 Linear Methods

present; otherwise the feature is and is said to be absent. This kind of 1-0-valued feature is called a binary feature.
Given a state, which binary features are present indicate within which circles the state lies, and thus coarsely code for
its location. Representing a state with features that overlap in this way (although they need not be circles or binary) is
known as coarse coding.

Figure 8.2:Coarse coding. Generalization from state to state depends on the number of their features whose
receptive fields (in this case, circles) overlap. These states have one feature in common, so there will be slight

generalization between them.

Assuming linear gradient-descent function approximation, consider the effect of the size and density of the circles.

Corresponding to each circle is a single parameter (a component of) that is affected by learning. If we train at one
point (state), , then the parameters of all circles intersecting will be affected. Thus, by (8.8), the approximate
value function will be affected at all points within the union of the circles, with a greater effect the more circles a
point has "in common" with , as shown in Figure 8.2. If the circles are small, then the generalization will be over a
short distance, as in Figure 8.3a, whereas if they are large, it will be over a large distance, as in Figure 8.3b.
Moreover, the shape of the features will determine the nature of the generalization. For example, if they are not
strictly circular, but are elongated in one direction, then generalization will be similarly affected, as in Figure 8.3c.

Figure 8.3:Generalization in linear function approximation methods is determined by the sizes and shapes of the
features' receptive fields. All three of these cases have roughly the same number and density of features.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node88.html (3 di 9)22/06/2005 9.09.33

8.3 Linear Methods

Features with large receptive fields give broad generalization, but might also seem to limit the learned function to a
coarse approximation, unable to make discriminations much finer than the width of the receptive fields. Happily, this
is not the case. Initial generalization from one point to another is indeed controlled by the size and shape of the
receptive fields, but acuity, the finest discrimination ultimately possible, is controlled more by the total number of
features.

Example 8.1: Coarseness of Coarse Coding This example illustrates the effect on learning of the size of the
receptive fields in coarse coding. Linear function approximation based on coarse coding and (8.3) was used to learn a
one-dimensional square-wave function (shown at the top of Figure 8.4). The values of this function were used as the
targets, . With just one dimension, the receptive fields were intervals rather than circles. Learning was repeated with
three different sizes of the intervals: narrow, medium, and broad, as shown at the bottom of the figure. All three cases
had the same density of features, about 50 over the extent of the function being learned. Training examples were

generated uniformly at random over this extent. The step-size parameter was , where is the number of
features that were present at one time. Figure 8.4 shows the functions learned in all three cases over the course of
learning. Note that the width of the features had a strong effect early in learning. With broad features, the
generalization tended to be broad; with narrow features, only the close neighbors of each trained point were changed,
causing the function learned to be more bumpy. However, the final function learned was affected only slightly by the
width of the features. Receptive field shape tends to have a strong effect on generalization but little effect on
asymptotic solution quality.

Figure 8.4:Example of feature width's strong effect on initial generalization (first row) and weak effect on
asymptotic accuracy (last row).

8.3.2 Tile Coding

Tile coding is a form of coarse coding that is particularly well suited for use on sequential digital computers and for
efficient on-line learning. In tile coding the receptive fields of the features are grouped into exhaustive partitions of
the input space. Each such partition is called a tiling, and each element of the partition is called a tile. Each tile is the

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node88.html (4 di 9)22/06/2005 9.09.33

8.3 Linear Methods

receptive field for one binary feature.

An immediate advantage of tile coding is that the overall number of features that are present at one time is strictly
controlled and independent of the input state. Exactly one feature is present in each tiling, so the total number of

features present is always the same as the number of tilings. This allows the step-size parameter, , to be set in an

easy, intuitive way. For example, choosing , where is the number of tilings, results in exact one-trial

learning. If the example is received, then whatever the prior value, , the new value will be

. Usually one wishes to change more slowly than this, to allow for generalization and stochastic

variation in target outputs. For example, one might choose , in which case one would move one-tenth of the
way to the target in one update.

Because tile coding uses exclusively binary (0-1-valued) features, the weighted sum making up the approximate value
function (8.8) is almost trivial to compute. Rather than performing multiplications and additions, one simply
computes the indices of the present features and then adds up the corresponding components of the
parameter vector. The eligibility trace computation (8.7) is also simplified because the components of the gradient,

, are also usually , and otherwise .

The computation of the indices of the present features is particularly easy if gridlike tilings are used. The ideas and
techniques here are best illustrated by examples. Suppose we address a task with two continuous state variables. Then
the simplest way to tile the space is with a uniform two-dimensional grid:

Given the and coordinates of a point in the space, it is computationally easy to determine the index of the tile it is
in. When multiple tilings are used, each is offset by a different amount, so that each cuts the space in a different way.
In the example shown in Figure 8.5, an extra row and an extra column of tiles have been added to the grid so that no
points are left uncovered. The two tiles highlighted are those that are present in the state indicated by the . The
different tilings may be offset by random amounts, or by cleverly designed deterministic strategies (simply offsetting
each dimension by the same increment is known not to be a good idea). The effects on generalization and asymptotic
accuracy illustrated in Figures 8.3 and 8.4 apply here as well. The width and shape of the tiles should be chosen to
match the width of generalization that one expects to be appropriate. The number of tilings should be chosen to
influence the density of tiles. The denser the tiling, the finer and more accurately the desired function can be
approximated, but the greater the computational costs.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node88.html (5 di 9)22/06/2005 9.09.33

8.3 Linear Methods

Figure 8.5:Multiple, overlapping gridtilings.

It is important to note that the tilings can be arbitrary and need not be uniform grids. Not only can the tiles be
strangely shaped, as in Figure 8.6a, but they can be shaped and distributed to give particular kinds of generalization.
For example, the stripe tiling in Figure 8.6b will promote generalization along the vertical dimension and
discrimination along the horizontal dimension, particularly on the left. The diagonal stripe tiling in Figure 8.6c will
promote generalization along one diagonal. In higher dimensions, axis-aligned stripes correspond to ignoring some of
the dimensions in some of the tilings, that is, to hyperplanar slices.

Figure 8.6:Tilings.

Another important trick for reducing memory requirements is hashing--a consistent pseudo-random collapsing of a
large tiling into a much smaller set of tiles. Hashing produces tiles consisting of noncontiguous, disjoint regions
randomly spread throughout the state space, but that still form an exhaustive tiling. For example, one tile might
consist of the four subtiles shown below:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node88.html (6 di 9)22/06/2005 9.09.33

8.3 Linear Methods

Through hashing, memory requirements are often reduced by large factors with little loss of performance. This is
possible because high resolution is needed in only a small fraction of the state space. Hashing frees us from the curse
of dimensionality in the sense that memory requirements need not be exponential in the number of dimensions, but
need merely match the real demands of the task. Good public-domain implementations of tile coding, including
hashing, are widely available.

Exercise 8.7 Suppose we believe that one of two state dimensions is more likely to have an effect on the value
function than is the other, that generalization should be primarily across this dimension rather than along it. What kind
of tilings could be used to take advantage of this prior knowledge?

8.3.3 Radial Basis Functions

Radial basis functions (RBFs) are the natural generalization of coarse coding to continuous-valued features. Rather

than each feature being either 0 or 1, it can be anything in the interval , reflecting various degrees to which the

feature is present. A typical RBF feature, , has a Gaussian (bell-shaped) response dependent only on the
distance between the state, , and the feature's prototypical or center state, , and relative to the feature's width, :

The norm or distance metric of course can be chosen in whatever way seems most appropriate to the states and task at
hand. Figure 8.7 shows a 1-dimensional example with a Euclidean distance metric.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node88.html (7 di 9)22/06/2005 9.09.33

8.3 Linear Methods

Figure 8.7:One-dimensional radial basis functions.

An RBF network is a linear function approximator using RBFs for its features. Learning is defined by equations (8.3)
and (8.8), exactly as in other linear function approximators. The primary advantage of RBFs over binary features is
that they produce approximate functions that vary smoothly and are differentiable. In addition, some learning methods
for RBF networks change the centers and widths of the features as well. Such nonlinear methods may be able to fit the
target function much more precisely. The downside to RBF networks, and to nonlinear RBF networks especially, is
greater computational complexity and, often, more manual tuning before learning is robust and efficient.

8.3.4 Kanerva Coding

On tasks with very high dimensionality, say hundreds of dimensions, tile coding and RBF networks become
impractical. If we take either method at face value, its computational complexity increases exponentially with the
number of dimensions. There are a number of tricks that can reduce this growth (such as hashing), but even these
become impractical after a few tens of dimensions.

On the other hand, some of the general ideas underlying these methods can be practical for high-dimensional tasks. In
particular, the idea of representing states by a list of the features present and then mapping those features linearly to an
approximation may scale well to large tasks. The key is to keep the number of features from scaling explosively. Is
there any reason to think this might be possible?

First we need to establish some realistic expectations. Roughly speaking, a function approximator of a given
complexity can only accurately approximate target functions of comparable complexity. But as dimensionality
increases, the size of the state space inherently increases exponentially. It is reasonable to assume that in the worst
case the complexity of the target function scales like the size of the state space. Thus, if we focus the worst case, then
there is no solution, no way to get good approximations for high-dimensional tasks without using resources
exponential in the dimension.

A more useful way to think about the problem is to focus on the complexity of the target function as separate and
distinct from the size and dimensionality of the state space. The size of the state space may give an upper bound on
complexity, but short of that high bound, complexity and dimension can be unrelated. For example, one might have a
1000-dimensional task where only one of the dimensions happens to matter. Given a certain level of complexity, we
then seek to be able to accurately approximate any target function of that complexity or less. As the target level of
complexity increases, we would like to get by with a proportionate increase in computational resources.

From this point of view, the real source of the problem is the complexity of the target function, or of a reasonable
approximation of it, not the dimensionality of the state space. Thus, adding dimensions, such as new sensors or new
features, to a task should be almost without consequence if the complexity of the needed approximations remains the
same. The new dimensions may even make things easier if the target function can be simply expressed in terms of
them. Unfortunately, methods like tile coding and RBF coding do not work this way. Their complexity increases
exponentially with dimensionality even if the complexity of the target function does not. For these methods,
dimensionality itself is still a problem. We need methods whose complexity is unaffected by dimensionality per se,
methods that are limited only by, and scale well with, the complexity of what they approximate.

One simple approach that meets these criteria, which we call Kanerva coding, is to choose binary features that
correspond to particular prototype states. For definiteness, let us say that the prototypes are randomly selected from
the entire state space. The receptive field of such a feature is all states sufficiently close to the prototype. Kanerva
coding uses a different kind of distance metric than in is used in tile coding and RBFs. For definiteness, consider a
binary state space and the hamming distance, the number of bits at which two states differ. States are considered
similar if they agree on enough dimensions, even if they are totally different on others.

The strength of Kanerva coding is that the complexity of the functions that can be learned depends entirely on the

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node88.html (8 di 9)22/06/2005 9.09.33

8.3 Linear Methods

number of features, which bears no necessary relationship to the dimensionality of the task. The number of features
can be more or less than the number of dimensions. Only in the worst case must it be exponential in the number of
dimensions. Dimensionality itself is thus no longer a problem. Complex functions are still a problem, as they have to
be. To handle more complex tasks, a Kanerva coding approach simply needs more features. There is not a great deal
of experience with such systems, but what there is suggests that their abilities increase in proportion to their
computational resources. This is an area of current research, and significant improvements in existing methods can
still easily be found.

Next: 8.4 Control with Function Up: 8. Generalization and Function Previous: 8.2 Gradient-Descent Methods
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node88.html (9 di 9)22/06/2005 9.09.33

8.4 Control with Function Approximation

Next: 8.5 Off-Policy Bootstrapping Up: 8. Generalization and Function Previous: 8.3 Linear Methods Contents

8.4 Control with Function Approximation

We now extend value prediction methods using function approximation to control methods, following the pattern of
GPI. First we extend the state-value prediction methods to action-value prediction methods, then we combine them with
policy improvement and action selection techniques. As usual, the problem of ensuring exploration is solved by
pursuing either an on-policy or an off-policy approach.

The extension to action-value prediction is straightforward. In this case it is the action-value function, , that is

represented as a parameterized functional form with parameter vector . Whereas before we considered training
examples of the form , now we consider examples of the form . The target output, , can be any

approximation of , including the usual backed-up values such as the full Monte Carlo return, , or the one-

step Sarsa-style return, . The general gradient-descent update for action-value prediction is

For example, the backward view of the action-value method analogous to TD() is

where

and

with . We call this method gradient-descent Sarsa(), particularly when it is elaborated to form a full control

method. For a constant policy, this method converges in the same way that TD() does, with the same kind of error
bound (8.9).

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node89.html (1 di 6)22/06/2005 9.09.41

8.4 Control with Function Approximation

To form control methods, we need to couple such action-value prediction methods with techniques for policy
improvement and action selection. Suitable techniques applicable to continuous actions, or to actions from large discrete
sets, are a topic of ongoing research with as yet no clear resolution. On the other hand, if the action set is discrete and
not too large, then we can use the techniques already developed in previous chapters. That is, for each possible action,

, available in the current state, , we can compute and then find the greedy action

. Policy improvement is done by changing the estimation policy to the greedy policy (in off-

policy methods) or to a soft approximation of the greedy policy such as the -greedy policy (in on-policy methods).
Actions are selected according to this same policy in on-policy methods, or by an arbitrary policy in off-policy methods.

Figure 8.8:Linear, gradient-descent Sarsa() with binary features and -greedy policy. Updates for both
accumulating and replacing traces are specified, including the option (when using replacing traces) of clearing the

traces of nonselected actions.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node89.html (2 di 6)22/06/2005 9.09.41

8.4 Control with Function Approximation

Figure 8.9:A linear, gradient-descent version of Watkins's Q() with binary features, -greedy policy, and
accumulating traces.

Figures 8.8 and 8.9 show examples of on-policy (Sarsa()) and off-policy (Watkins's Q()) control methods using
function approximation. Both methods use linear, gradient-descent function approximation with binary features, such as

in tile coding and Kanerva coding. Both methods use an -greedy policy for action selection, and the Sarsa method
uses it for GPI as well. Both compute the sets of present features, , corresponding to the current state and all possible
actions, . If the value function for each action is a separate linear function of the same features (a common case), then
the indices of the for each action are essentially the same, simplifying the computation significantly.

All the methods we have discussed above have used accumulating eligibility traces. Although replacing traces (Section
7.8) are known to have advantages in tabular methods, replacing traces do not directly extend to the use of function
approximation. Recall that the idea of replacing traces is to reset a state's trace to each time it is visited instead of
incrementing it by . But with function approximation there is no single trace corresponding to a state, just a trace for

each component of , which corresponds to many states. One approach that seems to work well for linear, gradient-
descent function approximation methods with binary features is to treat the features as if they were states for the
purposes of replacing traces. That is, each time a state is encountered that has feature , the trace for feature is set to
rather than being incremented by , as it would be with accumulating traces.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node89.html (3 di 6)22/06/2005 9.09.41

8.4 Control with Function Approximation

When working with state-action traces, it may also be useful to clear (set to zero) the traces of all nonselected actions in
the states encountered (see Section 7.8). This idea can also be extended to the case of linear function approximation
with binary features. For each state encountered, we first clear the traces of all features for the state and the actions not
selected, then we set to the traces of the features for the state and the action that was selected. As we noted for the
tabular case, this may or may not be the best way to proceed when using replacing traces. A procedural specification of
both kinds of traces, including the optional clearing for nonselected actions, is given for the Sarsa algorithm in Figure
8.8.

Example 8.2: Mountain-Car Task Consider the task of driving an underpowered car up a steep mountain road, as
suggested by the diagram in the upper left of Figure 8.10. The difficulty is that gravity is stronger than the car's engine,
and even at full throttle the car cannot accelerate up the steep slope. The only solution is to first move away from the
goal and up the opposite slope on the left. Then, by applying full throttle the car can build up enough inertia to carry it
up the steep slope even though it is slowing down the whole way. This is a simple example of a continuous control task
where things have to get worse in a sense (farther from the goal) before they can get better. Many control
methodologies have great difficulties with tasks of this kind unless explicitly aided by a human designer.

Figure 8.10:The mountain-car task (upper left panel) and the cost-to-go function () learned during
one run.

The reward in this problem is on all time steps until the car moves past its goal position at the top of the mountain,
which ends the episode. There are three possible actions: full throttle forward (), full throttle reverse (), and zero
throttle (). The car moves according to a simplified physics. Its position, , and velocity, , are updated by

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node89.html (4 di 6)22/06/2005 9.09.41

8.4 Control with Function Approximation

where the operation enforces and . When reached the left

bound, was reset to zero. When it reached the right bound, the goal was reached and the episode was terminated.
Each episode started from a random position and velocity uniformly chosen from these ranges. To convert the two
continuous state variables to binary features, we used gridtilings as in Figure 8.5. We used ten tilings, each
offset by a random fraction of a tile width.

The Sarsa algorithm in Figure 8.8 (using replace traces and the optional clearing) readily solved this task, learning a
near optimal policy within 100 episodes. Figure 8.10 shows the negative of the value function (the cost-to-go function)

learned on one run, using the parameters , , and (). The initial action values were all zero,
which was optimistic (all true values are negative in this task), causing extensive exploration to occur even though the

exploration parameter, , was . This can be seen in the middle-top panel of the figure, labeled "Step 428." At this time
not even one episode had been completed, but the car has oscillated back and forth in the valley, following circular
trajectories in state space. All the states visited frequently are valued worse than unexplored states, because the actual
rewards have been worse than what was (unrealistically) expected. This continually drives the agent away from
wherever it has been, to explore new states, until a solution is found. Figure 8.11 shows the results of a detailed study

of the effect of the parameters and , and of the kind of traces, on the rate of learning on this task.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node89.html (5 di 6)22/06/2005 9.09.41

8.4 Control with Function Approximation

Figure 8.11:The effect of , , and the kind of traces on early performance on the mountain-car task. This study
used five tilings.

Exercise 8.8 Describe how the actor-critic control method can be combined with gradient-descent function
approximation.

Next: 8.5 Off-Policy Bootstrapping Up: 8. Generalization and Function Previous: 8.3 Linear Methods Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node89.html (6 di 6)22/06/2005 9.09.41

8.5 Off-Policy Bootstrapping

Next: 8.6 Should We Bootstrap? Up: 8. Generalization and Function Previous: 8.4 Control with Function Contents

8.5 Off-Policy Bootstrapping

We return now to the prediction case to take a closer look at the interaction between bootstrapping, function approximation, and the
on-policy distribution. By bootstrapping we mean the updating of a value estimate on the basis of other value estimates. TD methods

involve bootstrapping, as do DP methods, whereas Monte Carlo methods do not. TD() is a bootstrapping method for , and by
convention we consider it not to be a bootstrapping method for . Although TD(1) involves bootstrapping within an episode, the
net effect over a complete episode is the same as a nonbootstrapping Monte Carlo update.

Bootstrapping methods are more difficult to combine with function approximation than are nonbootstrapping methods. For example,
consider the case of value prediction with linear, gradient-descent function approximation. In this case, nonbootstrapping methods find
minimal MSE (8.1) solutions for any distribution of training examples, , whereas bootstrapping methods find only near-minimal

MSE (8.9) solutions, and only for the on-policy distribution. Moreover, the quality of the MSE bound for TD() gets worse the

farther strays from 1, that is, the farther the method moves from its nonbootstrapping form.

The restriction of the convergence results for bootstrapping methods to the on-policy distribution is of greatest concern. This is not a
problem for on-policy methods such as Sarsa and actor-critic methods, but it is for off-policy methods such as Q-learning and DP
methods. Off-policy control methods do not backup states (or state-action pairs) with exactly the same distribution with which the
states would be encountered following the estimation policy (the policy whose value function they are estimating). Many DP methods,
for example, backup all states uniformly. Q-learning may backup states according to an arbitrary distribution, but typically it backs
them up according to the distribution generated by interacting with the environment and following a soft policy close to a greedy
estimation policy. We use the term off-policy bootstrapping for any kind of bootstrapping using a distribution of backups different
from the on-policy distribution. Surprisingly, off-policy bootstrapping combined with function approximation can lead to divergence
and infinite MSE.

Example 8.3: Baird's Counterexample Consider the six-state, episodic Markov process shown in Figure 8.12. Episodes begin in
one of the five upper states, proceed immediately to the lower state, and then cycle there for some number of steps before terminating.

The reward is zero on all transitions, so the true value function is , for all . The form of the approximate value function is
shown by the equations inset in each state. Note that the overall function is linear and that there are fewer states than components of

. Moreover, the set of feature vectors, , corresponding to this function is a linearly independent set, and the true value

function is easily formed by setting . In all ways, this task seems a favorable case for linear function approximation.

Figure 8.12:Baird's counterexample. The approximate value function for this Markov process is of the form shown by the linear
expressions inside each state. The reward is always zero.

The prediction method we apply to this task is a linear, gradient-descent form of DP policy evaluation. The parameter vector, , is
updated in sweeps through the state space, performing a synchronous, gradient-descent backup at every state, , using the DP (full

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node90.html (1 di 4)22/06/2005 9.09.47

8.5 Off-Policy Bootstrapping

backup) target:

Like most DP methods, this one uses a uniform backup distribution, one of the simplest off-policy distributions. Otherwise this is an
ideal case. There is no randomness and no asynchrony. Each state is updated exactly once per sweep according to a classical DP
backup. The method is entirely conventional except in its use of gradient-descent function approximation. Yet for some initial values
of the parameters, the system becomes unstable, as shown computationally in Figure 8.13.

Figure 8.13:Computational demonstration of the instability of DP value prediction with linear function approximation on Baird's

counterexample. The parameters were , , and .

If we alter just the distribution of DP backups in Baird's counterexample, from the uniform distribution to the on-policy distribution
(which generally requires asynchronous updating), then convergence is guaranteed to a solution with error bounded by (8.9) for

. This example is striking because the DP method used is arguably the simplest and best-understood bootstrapping method, and
the linear, gradient-descent method used is arguably the simplest and best-understood kind of function approximation. The example
shows that even the simplest combination of bootstrapping and function approximation can be unstable if the backups are not done
according to the on-policy distribution.

There are also counterexamples similar to Baird's showing divergence for Q-learning. This is cause for concern because otherwise Q-
learning has the best convergence guarantees of all control methods. Considerable effort has gone into trying to find a remedy to this
problem or to obtain some weaker, but still workable, guarantee. For example, it may be possible to guarantee convergence of Q-
learning as long as the behavior policy (the policy used to select actions) is sufficiently close to the estimation policy (the policy used

in GPI), for example, when it is the -greedy policy. To the best of our knowledge, Q-learning has never been found to diverge in
this case, but there has been no theoretical analysis. In the rest of this section we present several other ideas that have been explored.

Suppose that instead of taking just a step toward the expected one-step return on each iteration, as in Baird's counterexample, we
actually change the value function all the way to the best, least-squares approximation. Would this solve the instability problem? Of

course it would if the feature vectors, , formed a linearly independent set, as they do in Baird's counterexample,
because then exact approximation is possible on each iteration and the method reduces to standard tabular DP. But of course the point
here is to consider the case when an exact solution is not possible. In this case stability is not guaranteed even when forming the best
approximation at each iteration, as shown by the following example.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node90.html (2 di 4)22/06/2005 9.09.47

8.5 Off-Policy Bootstrapping

Figure 8.14:Tsitsiklis and Van Roy's counterexample to DP policy evaluation with least-squares linear function approximation.

Example 8.4: Tsitsiklis and Van Roy's Counterexample The simplest counterexample to linear least-squares DP is shown in
Figure 8.14. There are just two nonterminal states, and the modifiable parameter is a scalar. The estimated value of the first state is

, and the estimated value of the second state is . The reward is zero on all transitions, so the true values are zero at both states,

which is exactly representable with . If we set at each step so as to minimize the MSE between the estimated value and
the expected one-step return, then we have

 (8.10)

where denotes the value function given . The sequence diverges when and .

One way to try to prevent instability is to use special methods for function approximation. In particular, stability is guaranteed for
function approximation methods that do not extrapolate from the observed targets. These methods, called averagers, include nearest
neighbor methods and local weighted regression, but not popular methods such as tile coding and backpropagation.

Another approach is to attempt to minimize not the mean-squared error from the true value function (8.1), but the mean-squared error
from the expected one-step return. It is natural to call this error measure the mean-squared Bellman error:

(8.11)

This suggests the gradient-descent procedure:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node90.html (3 di 4)22/06/2005 9.09.47

8.5 Off-Policy Bootstrapping

where the expected values are implicitly conditional on . This update is guaranteed to converge to a minimum of the mean-squared
Bellman error under the usual conditions on the step-size parameters. However, this method is feasible only for deterministic systems
or when a model is available. The problem is that the update above involves the next state, , appearing in two expected values that
are multiplied together. To get an unbiased sample of the product, one needs two independent samples of the next state, but during
normal interaction with the environment only one is obtained. Because of this, the method is probably limited in practice to cases in
which a model is available (to produce a second sample). In practice, this method is also sometimes slow to converge. To handle that
problem, Baird (1995) has proposed combining this method parametrically with conventional TD methods.

Exercise 8.9 (programming) Look up the paper by Baird (1995) on the Internet and obtain his counterexample for Q-learning.
Implement it and demonstrate the divergence.

Next: 8.6 Should We Bootstrap? Up: 8. Generalization and Function Previous: 8.4 Control with Function Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node90.html (4 di 4)22/06/2005 9.09.47

8.6 Should We Bootstrap?

Next: 8.7 Summary Up: 8. Generalization and Function Previous: 8.5 Off-Policy Bootstrapping Contents

8.6 Should We Bootstrap?

At this point you may be wondering why we bother with bootstrapping methods at all. Nonbootstrapping methods
can be used with function approximation more reliably and over a broader range of conditions than bootstrapping
methods. Nonbootstrapping methods achieve a lower asymptotic error than bootstrapping methods, even when
backups are done according to the on-policy distribution. By using eligibility traces and , it is even possible
to implement nonbootstrapping methods on-line, in a step-by-step incremental manner. Despite all this, in practice
bootstrapping methods are usually the methods of choice.

Figure 8.15:The effect of on reinforcement learning performance. In all cases, the better the performance, the

lowerthe curve. The two left panels are applications to simple continuous-state control tasks using the Sarsa()
algorithm and tile coding, with either replacing or accumulating traces (Sutton, 1996). The upper-right panel is for

policy evaluation on a random walk task using TD() (Singh and Sutton, 1996). The lower right panel is
unpublished data for the pole-balancing task (Example 3.4) from an earlier study (Sutton, 1984).

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node91.html (1 di 2)22/06/2005 9.09.49

8.6 Should We Bootstrap?

In empirical comparisons, bootstrapping methods usually perform much better than nonbootstrapping methods. A

convenient way to make such comparisons is to use a TD method with eligibility traces and vary from 0 (pure
bootstrapping) to 1 (pure nonbootstrapping). Figure 8.15 summarizes a collection of such results. In all cases,

performance became much worse as approached , the nonbootstrapping case. The example in the upper right of
the figure is particularly significant in this regard. This is a policy evaluation (prediction) task and the performance
measure used is root MSE (at the end of each episode, averaged over the first 20 episodes). Asymptotically, the

 case must be best according to this measure, but here, short of the asymptote, we see it performing much
worse.

At this time it is unclear why methods that involve some bootstrapping perform so much better than pure
nonbootstrapping methods. It could be that bootstrapping methods learn faster, or it could be that they actually
learn something better than nonbootstrapping methods. The available results indicate that nonbootstrapping
methods are better than bootstrapping methods at reducing MSE from the true value function, but reducing MSE is
not necessarily the most important goal. For example, if you add 1000 to the true action-value function at all state-
action pairs, then it will have very poor MSE, but you will still get the optimal policy. Nothing quite that simple is
going on with bootstrapping methods, but they do seem to do something right. We expect the understanding of
these issues to improve as research continues.

Next: 8.7 Summary Up: 8. Generalization and Function Previous: 8.5 Off-Policy Bootstrapping Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node91.html (2 di 2)22/06/2005 9.09.49

8.7 Summary

Next: 8.8 Bibliographical and Historical Up: 8. Generalization and Function Previous: 8.6 Should
We Bootstrap? Contents

8.7 Summary

Reinforcement learning systems must be capable of generalization if they are to be applicable to
artificial intelligence or to large engineering applications. To achieve this, any of a broad range of
existing methods for supervised-learning function approximation can be used simply by treating each
backup as a training example. Gradient-descent methods, in particular, allow a natural extension to
function approximation of all the techniques developed in previous chapters, including eligibility
traces. Linear gradient-descent methods are particularly appealing theoretically and work well in
practice when provided with appropriate features. Choosing the features is one of the most important
ways of adding prior domain knowledge to reinforcement learning systems. Linear methods include
radial basis functions, tile coding, and Kanerva coding. Backpropagation methods for multilayer
neural networks are methods for nonlinear gradient-descent function approximation.

For the most part, the extension of reinforcement learning prediction and control methods to gradient-
descent forms is straightforward. However, there is an interesting interaction between function
approximation, bootstrapping, and the on-policy/off-policy distinction. Bootstrapping methods, such

as DP and TD() for , work reliably in conjunction with function approximation over a
narrower range of conditions than do nonbootstrapping methods. Because the control case has not yet
yielded to theoretical analysis, research has focused on the value prediction problem. In this case, on-
policy bootstrapping methods converge reliably with linear gradient-descent function approximation

to a solution with mean-squared error bounded by times the minimum possible error. Off-policy
bootstrapping methods, on the other hand, may diverge to infinite error. Several approaches have
been explored to making off-policy bootstrapping methods work with function approximation, but
this is still an open research issue. Bootstrapping methods are of persistent interest in reinforcement
learning, despite their limited theoretical guarantees, because in practice they usually work
significantly better than nonbootstrapping methods.

Next: 8.8 Bibliographical and Historical Up: 8. Generalization and Function Previous: 8.6 Should
We Bootstrap? Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node92.html22/06/2005 9.09.50

8.8 Bibliographical and Historical Remarks

Next: 9. Planning and Learning Up: 8. Generalization and Function Previous: 8.7 Summary
Contents

Subsections

● 8.2
● 8.3
● 8.4
● 8.5

8.8 Bibliographical and Historical Remarks

Despite our treatment of generalization and function approximation late in the book, they have
always been an integral part of reinforcement learning. It is only in the last decade or less that the
field has focused on the tabular case, as we have here for the first seven chapters. Bertsekas and
Tsitsiklis (1996) present the state of the art in function approximation in reinforcement learning, and
the collection of papers by Boyan, Moore, and Sutton (1995) is also useful. Some of the early work
with function approximation in reinforcement learning is discussed at the end of this section.

8.2

Gradient-descent methods for the minimizing mean-squared error in supervised learning are well
known. Widrow and Hoff (1960) introduced the least-mean-square (LMS) algorithm, which is the
prototypical incremental gradient-descent algorithm. Details of this and related algorithms are
provided in many texts (e.g., Widrow and Stearns, 1985; Bishop, 1995; Duda and Hart, 1973).

Gradient-descent analyses of TD learning date back at least to Sutton (1988). Methods more
sophisticated than the simple gradient-descent methods covered in this section have also been studied
in the context of reinforcement learning, such as quasi-Newton methods (Werbos, 1990) and
recursive-least-squares methods (Bradtke, 1993, 1994; Bradtke and Barto, 1996; Bradtke, Ydstie, and
Barto, 1994). Bertsekas and Tsitsiklis (1996) provide a good discussion of these methods.

The earliest use of state aggregation in reinforcement learning may have been Michie and Chambers's
BOXES system (1968). The theory of state aggregation in reinforcement learning has been developed
by Singh, Jaakkola, and Jordan (1995) and Tsitsiklis and Van Roy (1996).

8.3

TD() with linear gradient-descent function approximation was first explored by Sutton (1984,

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node93.html (1 di 4)22/06/2005 9.09.51

8.8 Bibliographical and Historical Remarks

1988), who proved convergence of TD(0) in the mean to the minimal MSE solution for the case in

which the feature vectors, , are linearly independent. Convergence with probability
for general was proved by several researchers at about the same time (Peng, 1993; Dayan and
Sejnowski, 1994; Tsitsiklis, 1994; Gurvits, Lin, and Hanson, 1994). In addition, Jaakkola, Jordan,
and Singh (1994) proved convergence under on-line updating. All of these results assumed linearly

independent feature vectors, which implies at least as many components to as there are states.

Convergence of linear TD() for the more interesting case of general (dependent) feature vectors
was first shown by Dayan (1992). A significant generalization and strengthening of Dayan's result
was proved by Tsitsiklis and Van Roy (1997a). They proved the main result presented in Section 8.2,

the bound on the asymptotic error of TD() and other bootstrapping methods. Recently they
extended their analysis to the undiscounted continuing case (Tsitsiklis and Van Roy, 1997b).

Our presentation of the range of possibilities for linear function approximation is based on that by
Barto (1990). The term coarse coding is due to Hinton (1984), and our Figure 8.2 is based on one of
his figures. Waltz and Fu (1965) provide an early example of this type of function approximation in a
reinforcement learning system.

Tile coding, including hashing, was introduced by Albus (1971, 1981). He described it in terms of his
"cerebellar model articulator controller," or CMAC, as tile coding is known in the literature. The term
"tile coding" is new to this book, though the idea of describing CMAC in these terms is taken from
Watkins (1989). Tile coding has been used in many reinforcement learning systems (e.g., Shewchuk
and Dean, 1990; Lin and Kim, 1991; Miller, Scalera, and Kim, 1994; Sofge and White, 1992; Tham,
1994; Sutton, 1996; Watkins, 1989) as well as in other types of learning control systems (e.g., Kraft
and Campagna, 1990; Kraft, Miller, and Dietz, 1992).

Function approximation using radial basis functions (RBFs) has received wide attention ever since
being related to neural networks by Broomhead and Lowe (1988). Powell (1987) reviewed earlier
uses of RBFs, and Poggio and Girosi (1989, 1990) extensively developed and applied this approach.

What we call "Kanerva coding" was introduced by Kanerva (1988) as part of his more general idea of
sparse distributed memory. A good review of this and related memory models is provided by
Kanerva (1993). This approach has been pursued by Gallant (1993) and by Sutton and Whitehead
(1993), among others.

8.4

Q() with function approximation was first explored by Watkins (1989). Sarsa() with function
approximation was first explored by Rummery and Niranjan (1994). The mountain-car example is
based on a similar task studied by Moore (1990). The results on it presented here are from Sutton
(1996) and Singh and Sutton (1996).

Convergence of the control methods presented in this section has not been proved (and seems

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node93.html (2 di 4)22/06/2005 9.09.51

8.8 Bibliographical and Historical Remarks

unlikely for Q() given the results presented in Section 8.5). Convergence results for control
methods with state aggregation and other special kinds of function approximation are proved by
Tsitsiklis and Van Roy (1996), Singh, Jaakkola, and Jordan (1995), and Gordon (1995).

8.5

Baird's counterexample is due to Baird (1995). Tsitsiklis and Van Roy's counterexample is due to
Tsitsiklis and Van Roy (1997a). Averaging methods for function approximation are developed by
Gordon (1995, 1996). Gradient-descent methods for minimizing the Bellman error are due to Baird,
who called them residual-gradient methods. Other examples of instability with off-policy DP
methods and more complex methods of function approximation are given by Boyan and Moore
(1995). Bradtke (1993) gives an example in which Q-learning using linear function approximation in
a linear quadratic regulation problem converges to a destabilizing policy.

The use of function approximation in reinforcement learning goes back to the early neural networks
of Farley and Clark (1954; Clark and Farley, 1955), who used reinforcement learning to adjust the
parameters of linear threshold functions representing policies. The earliest example we know of in
which function approximation methods were used for learning value functions was Samuel's checkers
player (1959, 1967). Samuel followed Shannon's (1950) suggestion that a value function did not have
to be exact to be a useful guide to selecting moves in a game and that it might be approximated by
linear combination of features. In addition to linear function approximation, Samuel experimented
with lookup tables and hierarchical lookup tables called signature tables (Griffith, 1966, 1974; Page,
1977; Biermann, Fairfield, and Beres, 1982).

At about the same time as Samuel's work, Bellman and Dreyfus (1959) proposed using function
approximation methods with DP. (It is tempting to think that Bellman and Samuel had some
influence on one another, but we know of no reference to the other in the work of either.) There is
now a fairly extensive literature on function approximation methods and DP, such as multigrid
methods and methods using splines and orthogonal polynomials (e.g., Bellman and Dreyfus, 1959;
Bellman, Kalaba, and Kotkin, 1973; Daniel, 1976; Whitt, 1978; Reetz, 1977; Schweitzer and
Seidmann, 1985; Chow and Tsitsiklis, 1991; Kushner and Dupuis, 1992; Rust, 1996).

Holland's (1986) classifier system used a selective feature-match technique to generalize evaluation
information across state-action pairs. Each classifier matched a subset of states having specified
values for a subset of features, with the remaining features having arbitrary values ("wild cards").
These subsets were then used in a conventional state-aggregation approach to function
approximation. Holland's idea was to use a genetic algorithm to evolve a set of classifiers that
collectively would implement a useful action-value function. Holland's ideas influenced the early
research of the authors on reinforcement learning, but we focused on different approaches to function
approximation. As function approximators, classifiers are limited in several ways. First, they are state-
aggregation methods, with concomitant limitations in scaling and in representing smooth functions
efficiently. In addition, the matching rules of classifiers can implement only aggregation boundaries
that are parallel to the feature axes. Perhaps the most important limitation of conventional classifier
systems is that the classifiers are learned via the genetic algorithm, an evolutionary method. As we

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node93.html (3 di 4)22/06/2005 9.09.51

8.8 Bibliographical and Historical Remarks

discussed in Chapter 1, there is available during learning much more detailed information about how
to learn than can be used by evolutionary methods. This perspective led us to instead adapt
supervised learning methods for use in reinforcement learning, specifically gradient-descent and
neural network methods. These differences between Holland's approach and ours are not surprising
because Holland's ideas were developed during a period when neural networks were generally
regarded as being too weak in computational power to be useful, whereas our work was at the
beginning of the period that saw widespread questioning of that conventional wisdom. There remain
many opportunities for combining aspects of these different approaches.

A number of reinforcement learning studies using function approximation methods that we have not
covered previously should be mentioned. Barto, Sutton, and Brouwer (1981) and Barto and Sutton
(1981b) extended the idea of an associative memory network (e.g., Kohonen, 1977; Anderson,
Silverstein, Ritz, and Jones, 1977) to reinforcement learning. Hampson (1983, 1989) was an early
proponent of multilayer neural networks for learning value functions. Anderson (1986, 1987) coupled
a TD algorithm with the error backpropagation algorithm to learn a value function. Barto and
Anandan (1985) introduced a stochastic version of Widrow, Gupta, and Maitra's (1973) selective

bootstrap algorithm, which they called the associative reward-penalty () algorithm. Williams
(1986, 1987, 1988, 1992) extended this type of algorithm to a general class of REINFORCE
algorithms, showing that they perform stochastic gradient ascent on the expected reinforcement.
Gullapalli (1990) and Williams devised algorithms for learning generalizing policies for the case of
continuous actions. Phansalkar and Thathachar (1995) proved both local and global convergence
theorems for modified versions of REINFORCE algorithms. Christensen and Korf (1986)
experimented with regression methods for modifying coefficients of linear value function
approximations in the game of chess. Chapman and Kaelbling (1991) and Tan (1991) adapted
decision-tree methods for learning value functions. Explanation-based learning methods have also
been adapted for learning value functions, yielding compact representations (Yee, Saxena, Utgoff,
and Barto, 1990; Dietterich and Flann, 1995).

Next: 9. Planning and Learning Up: 8. Generalization and Function Previous: 8.7 Summary
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node93.html (4 di 4)22/06/2005 9.09.51

9. Planning and Learning

Next: 9.1 Models and Planning Up: III. A Unified View Previous: 8.8 Bibliographical and Historical
 Contents

9. Planning and Learning

In this chapter we develop a unified view of methods that require a model of the environment, such as
dynamic programming and heuristic search, and methods that can be used without a model, such as
Monte Carlo and temporal-difference methods. We think of the former as planning methods and of
the latter as learning methods. Although there are real differences between these two kinds of
methods, there are also great similarities. In particular, the heart of both kinds of methods is the
computation of value functions. Moreover, all the methods are based on looking ahead to future
events, computing a backed-up value, and then using it to update an approximate value function.
Earlier in this book we presented Monte Carlo and temporal-difference methods as distinct
alternatives, then showed how they can be seamlessly integrated by using eligibility traces such as in

TD(). Our goal in this chapter is a similar integration of planning and learning methods. Having
established these as distinct in earlier chapters, we now explore the extent to which they can be
intermixed.

Subsections

● 9.1 Models and Planning
● 9.2 Integrating Planning, Acting, and Learning
● 9.3 When the Model Is Wrong
● 9.4 Prioritized Sweeping
● 9.5 Full vs. Sample Backups
● 9.6 Trajectory Sampling
● 9.7 Heuristic Search
● 9.8 Summary
● 9.9 Bibliographical and Historical Remarks

❍ 9.1
❍ 9.2-3
❍ 9.4
❍ 9.5
❍ 9.7

Next: 9.1 Models and Planning Up: III. A Unified View Previous: 8.8 Bibliographical and Historical

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node94.html (1 di 2)22/06/2005 9.09.52

9. Planning and Learning

 Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node94.html (2 di 2)22/06/2005 9.09.52

9.1 Models and Planning

Next: 9.2 Integrating Planning, Acting, Up: 9. Planning and Learning Previous: 9. Planning and Learning Contents

9.1 Models and Planning

By a model of the environment we mean anything that an agent can use to predict how the environment will respond to its
actions. Given a state and an action, a model produces a prediction of the resultant next state and next reward. If the model is
stochastic, then there are several possible next states and next rewards, each with some probability of occurring. Some models
produce a description of all possibilities and their probabilities; these we call distribution models. Other models produce just
one of the possibilities, sampled according to the probabilities; these we call sample models. For example, consider modeling
the sum of a dozen dice. A distribution model would produce all possible sums and their probabilities of occurring, whereas a
sample model would produce an individual sum drawn according to this probability distribution. The kind of model assumed in

dynamic programming--estimates of the state transition probabilities and expected rewards, and --is a distribution
model. The kind of model used in the blackjack example in Chapter 5 is a sample model. Distribution models are stronger than
sample models in that they can always be used to produce samples. However, in surprisingly many applications it is much
easier to obtain sample models than distribution models.

Models can be used to mimic or simulate experience. Given a starting state and action, a sample model produces a possible
transition, and a distribution model generates all possible transitions weighted by their probabilities of occurring. Given a
starting state and a policy, a sample model could produce an entire episode, and a distribution model could generate all possible
episodes and their probabilities. In either case, we say the model is used to simulate the environment and produce simulated
experience.

The word planning is used in several different ways in different fields. We use the term to refer to any computational process
that takes a model as input and produces or improves a policy for interacting with the modeled environment:

Within artificial intelligence, there are two distinct approaches to planning according to our definition. In state-space planning,
which includes the approach we take in this book, planning is viewed primarily as a search through the state space for an
optimal policy or path to a goal. Actions cause transitions from state to state, and value functions are computed over states. In
what we call plan-space planning, planning is instead viewed as a search through the space of plans. Operators transform one
plan into another, and value functions, if any, are defined over the space of plans. Plan-space planning includes evolutionary
methods and partial-order planning, a popular kind of planning in artificial intelligence in which the ordering of steps is not
completely determined at all stages of planning. Plan-space methods are difficult to apply efficiently to the stochastic optimal
control problems that are the focus in reinforcement learning, and we do not consider them further (but see Section 11.6 for one
application of reinforcement learning within plan-space planning).

The unified view we present in this chapter is that all state-space planning methods share a common structure, a structure that
is also present in the learning methods presented in this book. It takes the rest of the chapter to develop this view, but there are
two basic ideas: (1) all state-space planning methods involve computing value functions as a key intermediate step toward
improving the policy, and (2) they compute their value functions by backup operations applied to simulated experience. This
common structure can be diagrammed as follows:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node95.html (1 di 2)22/06/2005 9.09.54

9.1 Models and Planning

Dynamic programming methods clearly fit this structure: they make sweeps through the space of states, generating for each
state the distribution of possible transitions. Each distribution is then used to compute a backed-up value and update the state's
estimated value. In this chapter we argue that various other state-space planning methods also fit this structure, with individual
methods differing only in the kinds of backups they do, the order in which they do them, and in how long the backed-up
information is retained.

Viewing planning methods in this way emphasizes their relationship to the learning methods that we have described in this
book. The heart of both learning and planning methods is the estimation of value functions by backup operations. The
difference is that whereas planning uses simulated experience generated by a model, learning methods use real experience
generated by the environment. Of course this difference leads to a number of other differences, for example, in how
performance is assessed and in how flexibly experience can be generated. But the common structure means that many ideas
and algorithms can be transferred between planning and learning. In particular, in many cases a learning algorithm can be
substituted for the key backup step of a planning method. Learning methods require only experience as input, and in many
cases they can be applied to simulated experience just as well as to real experience. Figure 9.1 shows a simple example of a
planning method based on one-step tabular Q-learning and on random samples from a sample model. This method, which we
call random-sample one-step tabular Q-planning, converges to the optimal policy for the model under the same conditions that
one-step tabular Q-learning converges to the optimal policy for the real environment (each state-action pair must be selected an

infinite number of times in Step 1, and must decrease appropriately over time).

Figure 9.1:Random-sample one-step tabular Q-planning

In addition to the unified view of planning and learning methods, a second theme in this chapter is the benefits of planning in
small, incremental steps. This enables planning to be interrupted or redirected at any time with little wasted computation,
which appears to be a key requirement for efficiently intermixing planning with acting and with learning of the model. More
surprisingly, later in this chapter we present evidence that planning in very small steps may be the most efficient approach even
on pure planning problems if the problem is too large to be solved exactly.

Next: 9.2 Integrating Planning, Acting, Up: 9. Planning and Learning Previous: 9. Planning and Learning Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node95.html (2 di 2)22/06/2005 9.09.54

9.2 Integrating Planning, Acting, and Learning

Next: 9.3 When the Model Up: 9. Planning and Learning Previous: 9.1 Models and Planning
Contents

9.2 Integrating Planning, Acting, and Learning

When planning is done on-line, while interacting with the environment, a number of interesting issues
arise. New information gained from the interaction may change the model and thereby interact with
planning. It may be desirable to customize the planning process in some way to the states or decisions
currently under consideration, or expected in the near future. If decision-making and model-learning
are both computation-intensive processes, then the available computational resources may need to be
divided between them. To begin exploring these issues, in this section we present Dyna-Q, a simple
architecture integrating the major functions needed in an on-line planning agent. Each function appears
in Dyna-Q in a simple, almost trivial, form. In subsequent sections we elaborate some of the alternate
ways of achieving each function and the trade-offs between them. For now, we seek merely to
illustrate the ideas and stimulate your intuition.

Within a planning agent, there are at least two roles for real experience: it can be used to improve the
model (to make it more accurately match the real environment) and it can be used to directly improve
the value function and policy using the kinds of reinforcement learning methods we have discussed in
previous chapters. The former we call model-learning, and the latter we call direct reinforcement
learning (direct RL). The possible relationships between experience, model, values, and policy are
summarized in Figure 9.2. Each arrow shows a relationship of influence and presumed improvement.
Note how experience can improve value and policy functions either directly or indirectly via the
model. It is the latter, which is sometimes called indirect reinforcement learning, that is involved in
planning.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node96.html (1 di 6)22/06/2005 9.09.59

9.2 Integrating Planning, Acting, and Learning

Figure 9.2:Relationships among learning, planning, and acting.

Both direct and indirect methods have advantages and disadvantages. Indirect methods often make
fuller use of a limited amount of experience and thus achieve a better policy with fewer environmental
interactions. On the other hand, direct methods are much simpler and are not affected by biases in the
design of the model. Some have argued that indirect methods are always superior to direct ones, while
others have argued that direct methods are responsible for most human and animal learning. Related
debates in psychology and AI concern the relative importance of cognition as opposed to trial-and-
error learning, and of deliberative planning as opposed to reactive decision-making. Our view is that
the contrast between the alternatives in all these debates has been exaggerated, that more insight can
be gained by recognizing the similarities between these two sides than by opposing them. For
example, in this book we have emphasized the deep similarities between dynamic programming and
temporal-difference methods, even though one was designed for planning and the other for modelfree
learning.

Dyna-Q includes all of the processes shown in Figure 9.2--planning, acting, model-learning, and
direct RL--all occurring continually. The planning method is the random-sample one-step tabular Q-
planning method given in Figure 9.1. The direct RL method is one-step tabular Q-learning. The model
-learning method is also table-based and assumes the world is deterministic. After each transition

, the model records in its table entry for the prediction that will
deterministically follow. Thus, if the model is queried with a state-action pair that has been
experienced before, it simply returns the last-observed next state and next reward as its prediction.
During planning, the Q-planning algorithm randomly samples only from state-action pairs that have
previously been experienced (in Step 1), so the model is never queried with a pair about which it has
no information.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node96.html (2 di 6)22/06/2005 9.09.59

9.2 Integrating Planning, Acting, and Learning

Figure 9.3:The general Dyna Architecture

The overall architecture of Dyna agents, of which the Dyna-Q algorithm is one example, is shown in
Figure 9.3. The central column represents the basic interaction between agent and environment,
giving rise to a trajectory of real experience. The arrow on the left of the figure represents direct
reinforcement learning operating on real experience to improve the value function and the policy. On
the right are model-based processes. The model is learned from real experience and gives rise to
simulated experience. We use the term search control to refer to the process that selects the starting
states and actions for the simulated experiences generated by the model. Finally, planning is achieved
by applying reinforcement learning methods to the simulated experiences just as if they had really
happened. Typically, as in Dyna-Q, the same reinforcement learning method is used both for learning
from real experience and for planning from simulated experience. The reinforcement learning method
is thus the "final common path" for both learning and planning. Learning and planning are deeply
integrated in the sense that they share almost all the same machinery, differing only in the source of
their experience.

Conceptually, planning, acting, model-learning, and direct RL occur simultaneously and in parallel in
Dyna agents. For concreteness and implementation on a serial computer, however, we fully specify the
order in which they occur within a time step. In Dyna-Q, the acting, model-learning, and direct RL
processes require little computation, and we assume they consume just a fraction of the time. The
remaining time in each step can be devoted to the planning process, which is inherently computation-
intensive. Let us assume that there is time in each step, after acting, model-learning, and direct RL, to
complete iterations (Steps 1-3) of the Q-planning algorithm. Figure 9.4 shows the complete
algorithm for Dyna-Q.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node96.html (3 di 6)22/06/2005 9.09.59

9.2 Integrating Planning, Acting, and Learning

Figure 9.4:Dyna-Q Algorithm. denotes the contents of the model (predicted next state
and reward) for state-action pair . Direct reinforcement learning, model-learning, and planning are

implemented by steps (d), (e), and (f), respectively. If (e) and (f) were omitted, the remaining
algorithm would be one-step tabular Q-learning.

Example 9.1: Dyna Maze Consider the simple maze shown inset in Figure 9.5. In each of the 47
states there are four actions, up, down, right, and left, which take the agent deterministically to
the corresponding neighboring states, except when movement is blocked by an obstacle or the edge of
the maze, in which case the agent remains where it is. Reward is zero on all transitions, except those
into the goal state, on which it is . After reaching the goal state (G), the agent returns to the start

state (S) to begin a new episode. This is a discounted, episodic task with .

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node96.html (4 di 6)22/06/2005 9.09.59

9.2 Integrating Planning, Acting, and Learning

Figure 9.5:A simple maze (inset) and the average learning curves for Dyna-Q agents varying in their
number of planning steps per real step. The task is to travel from S to S as quickly as possible.

The main part of Figure 9.5 shows average learning curves from an experiment in which Dyna-Q
agents were applied to the maze task. The initial action values were zero, the step-size parameter was

, and the exploration parameter was . When selecting greedily among actions, ties
were broken randomly. The agents varied in the number of planning steps, , they performed per real
step. For each , the curves show the number of steps taken by the agent in each episode, averaged
over 30 repetitions of the experiment. In each repetition, the initial seed for the random number
generator was held constant across algorithms. Because of this, the first episode was exactly the same
(about 1700 steps) for all values of , and its data are not shown in the figure. After the first episode,
performance improved for all values of , but much more rapidly for larger values. Recall that the

 agent is a nonplanning agent, utilizing only direct reinforcement learning (one-step tabular Q-
learning). This was by far the slowest agent on this problem, despite the fact that the parameter values (

 and) were optimized for it. The nonplanning agent took about 25 episodes to reach (-)optimal
performance, whereas the agent took about five episodes, and the agent took only
three episodes.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node96.html (5 di 6)22/06/2005 9.09.59

9.2 Integrating Planning, Acting, and Learning

Figure 9.6:Policies found by planning and nonplanning Dyna-Q agents halfway through the second
episode. The arrows indicate the greedy action in each state; no arrow is shown for a state if all of its

action values are equal. The black square indicates the location of the agent.

Figure 9.6 shows why the planning agents found the solution so much faster than the nonplanning
agent. Shown are the policies found by the and agents halfway through the second
episode. Without planning (), each episode adds only one additional step to the policy, and so
only one step (the last) has been learned so far. With planning, again only one step is learned during
the first episode, but here during the second episode an extensive policy has been developed that by
the episode's end will reach almost back to the start state. This policy is built by the planning process
while the agent is still wandering near the start state. By the end of the third episode a complete
optimal policy will have been found and perfect performance attained.

In Dyna-Q, learning and planning are accomplished by exactly the same algorithm, operating on real
experience for learning and on simulated experience for planning. Because planning proceeds
incrementally, it is trivial to intermix planning and acting. Both proceed as fast as they can. The agent
is always reactive and always deliberative, responding instantly to the latest sensory information and
yet always planning in the background. Also ongoing in the background is the model-learning process.
As new information is gained, the model is updated to better match reality. As the model changes, the
ongoing planning process will gradually compute a different way of behaving to match the new model.

Exercise 9.1 The nonplanning method looks particularly poor in Figure 9.6 because it is a one-step
method; a method using eligibility traces would do better. Do you think an eligibility trace method
could do as well as the Dyna method? Explain why or why not.

Next: 9.3 When the Model Up: 9. Planning and Learning Previous: 9.1 Models and Planning
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node96.html (6 di 6)22/06/2005 9.09.59

9.3 When the Model Is Wrong

Next: 9.4 Prioritized Sweeping Up: 9. Planning and Learning Previous: 9.2 Integrating Planning,
Acting, Contents

9.3 When the Model Is Wrong

In the maze example presented in the previous section, the changes in the model were relatively
modest. The model started out empty, and was then filled only with exactly correct information. In
general, we cannot expect to be so fortunate. Models may be incorrect because the environment is
stochastic and only a limited number of samples have been observed, because the model was learned
using function approximation that has generalized imperfectly, or simply because the environment
has changed and its new behavior has not yet been observed. When the model is incorrect, the
planning process will compute a suboptimal policy.

In some cases, the suboptimal policy computed by planning quickly leads to the discovery and
correction of the modeling error. This tends to happen when the model is optimistic in the sense of
predicting greater reward or better state transitions than are actually possible. The planned policy
attempts to exploit these opportunities and in doing so discovers that they do not exist.

Example 9.2: Blocking Maze A maze example illustrating this relatively minor kind of modeling
error and recovery from it is shown in Figure 9.7. Initially, there is a short path from start to goal, to
the right of the barrier, as shown in the upper left of the figure. After 1000 time steps, the short path
is "blocked," and a longer path is opened up along the left-hand side of the barrier, as shown in upper
right of the figure. The graph shows average cumulative reward for Dyna-Q and two other Dyna
agents. The first part of the graph shows that all three Dyna agents found the short path within 1000
steps. When the environment changed, the graphs become flat, indicating a period during which the
agents obtained no reward because they were wandering around behind the barrier. After a while,
however, they were able to find the new opening and the new optimal behavior.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node97.html (1 di 4)22/06/2005 9.10.01

9.3 When the Model Is Wrong

Figure 9.7:Average performance of Dyna agents on a blocking task. The left environment was used
for the first 1000 steps, the right environment for the rest. Dyna-Q+ is Dyna-Q with an exploration

bonus that encourages exploration. Dyna-AC is a Dyna agent that uses an actor-critic learning
method instead of Q-learning.

Greater difficulties arise when the environment changes to become better than it was before, and yet
the formerly correct policy does not reveal the improvement. In these cases the modeling error may
not be detected for a long time, if ever, as we see in the next example.

Example 9.3: Shortcut Maze The problem caused by this kind of environmental change is
illustrated by the maze example shown in Figure 9.8. Initially, the optimal path is to go around the
left side of the barrier (upper left). After 3000 steps, however, a shorter path is opened up along the
right side, without disturbing the longer path (upper right). The graph shows that two of the three
Dyna agents never switched to the shortcut. In fact, they never realized that it existed. Their models
said that there was no shortcut, so the more they planned, the less likely they were to step to the right

and discover it. Even with an -greedy policy, it is very unlikely that an agent will take so many
exploratory actions as to discover the shortcut.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node97.html (2 di 4)22/06/2005 9.10.01

9.3 When the Model Is Wrong

Figure 9.8:Average performance of Dyna agents on a shortcut task. The left environment was used
for the first 3000 steps, the right environment for the rest.

The general problem here is another version of the conflict between exploration and exploitation. In a
planning context, exploration means trying actions that improve the model, whereas exploitation
means behaving in the optimal way given the current model. We want the agent to explore to find
changes in the environment, but not so much that performance is greatly degraded. As in the earlier
exploration/exploitation conflict, there probably is no solution that is both perfect and practical, but
simple heuristics are often effective.

The Dyna-Q+ agent that did solve the shortcut maze uses one such heuristic. This agent keeps track
for each state-action pair of how many time steps have elapsed since the pair was last tried in a real
interaction with the environment. The more time that has elapsed, the greater (we might presume) the
chance that the dynamics of this pair has changed and that the model of it is incorrect. To encourage
behavior that tests long-untried actions, a special "bonus reward" is given on simulated experiences
involving these actions. In particular, if the modeled reward for a transition is , and the transition has
not been tried in time steps, then planning backups are done as if that transition produced a reward

of , for some small . This encourages the agent to keep testing all accessible state
transitions and even to plan long sequences of actions in order to carry out such tests. Of course all
this testing has its cost, but in many cases, as in the shortcut maze, this kind of computational
curiosity is well worth the extra exploration.

Exercise 9.2 Why did the Dyna agent with exploration bonus, Dyna-Q+, perform better in the first

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node97.html (3 di 4)22/06/2005 9.10.01

9.3 When the Model Is Wrong

phase as well as in the second phase of the blocking and shortcut experiments?

Exercise 9.3 Careful inspection of Figure 9.8 reveals that the difference between Dyna-Q+ and
Dyna-Q narrowed slightly over the first part of the experiment. What is the reason for this?

Exercise 9.4 (programming) The exploration bonus described above actually changes the

estimated values of states and actions. Is this necessary? Suppose the bonus was used not in
backups, but solely in action selection. That is, suppose the action selected was always that for which

 was maximal. Carry out a gridworld experiment that tests and illustrates the
strengths and weaknesses of this alternate approach.

Next: 9.4 Prioritized Sweeping Up: 9. Planning and Learning Previous: 9.2 Integrating Planning,
Acting, Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node97.html (4 di 4)22/06/2005 9.10.01

9.4 Prioritized Sweeping

Next: 9.5 Full vs. Sample Up: 9. Planning and Learning Previous: 9.3 When the Model Contents

9.4 Prioritized Sweeping

In the Dyna agents presented in the preceding sections, simulated transitions are started in state-action
pairs selected uniformly at random from all previously experienced pairs. But a uniform selection is
usually not the best; planning can be much more efficient if simulated transitions and backups are
focused on particular state-action pairs. For example, consider what happens during the second
episode of the first maze task (Figure 9.6). At the beginning of the second episode, only the state-
action pair leading directly into the goal has a positive value; the values of all other pairs are still
zero. This means that it is pointless to back up along almost all transitions, because they take the
agent from one zero-valued state to another, and thus the backups would have no effect. Only a
backup along a transition into the state just prior to the goal, or from it into the goal, will change any
values. If simulated transitions are generated uniformly, then many wasteful backups will be made
before stumbling onto one of the two useful ones. As planning progresses, the region of useful
backups grows, but planning is still far less efficient than it would be if focused where it would do the
most good. In the much larger problems that are our real objective, the number of states is so large
that an unfocused search would be extremely inefficient.

This example suggests that search might be usefully focused by working backward from goal states.
Of course, we do not really want to use any methods specific to the idea of "goal state." We want
methods that work for general reward functions. Goal states are just a special case, convenient for
stimulating intuition. In general, we want to work back not just from goal states but from any state
whose value has changed. Assume that the values are initially correct given the model, as they were
in the maze example prior to discovering the goal. Suppose now that the agent discovers a change in
the environment and changes its estimated value of one state. Typically, this will imply that the
values of many other states should also be changed, but the only useful one-step backups are those of
actions that lead directly into the one state whose value has already been changed. If the values of
these actions are updated, then the values of the predecessor states may change in turn. If so, then
actions leading into them need to be backed up, and then their predecessor states may have changed.
In this way one can work backward from arbitrary states that have changed in value, either
performing useful backups or terminating the propagation.

As the frontier of useful backups propagates backward, it often grows rapidly, producing many state-
action pairs that could usefully be backed up. But not all of these will be equally useful. The values of
some states may have changed a lot, whereas others have changed little. The predecessor pairs of
those that have changed a lot are more likely to also change a lot. In a stochastic environment,
variations in estimated transition probabilities also contribute to variations in the sizes of changes and
in the urgency with which pairs need to be backed up. It is natural to prioritize the backups according
to a measure of their urgency, and perform them in order of priority. This is the idea behind
prioritized sweeping. A queue is maintained of every state-action pair whose estimated value would
change nontrivially if backed up, prioritized by the size of the change. When the top pair in the queue
is backed up, the effect on each of its predecessor pairs is computed. If the effect is greater than some

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node98.html (1 di 5)22/06/2005 9.10.03

9.4 Prioritized Sweeping

small threshold, then the pair is inserted in the queue with the new priority (if there is a previous entry
of the pair in the queue, then insertion results in only the higher priority entry's remaining in the
queue). In this way the effects of changes are efficiently propagated backward until quiescence. The
full algorithm for the case of deterministic environments is given in Figure 9.9.

Figure 9.9:The prioritized sweeping algorithm for a deterministic environment.

Example 9.4: Prioritized Sweeping on Mazes Prioritized sweeping has been found to dramatically
increase the speed at which optimal solutions are found in maze tasks, often by a factor of 5 to 10. A
typical example is shown in Figure 9.10. These data are for a sequence of maze tasks of exactly the
same structure as the one shown in Figure 9.5, except that they vary in the grid resolution. Prioritized
sweeping maintained a decisive advantage over unprioritized Dyna-Q. Both systems made at most

 backups per environmental interaction.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node98.html (2 di 5)22/06/2005 9.10.03

9.4 Prioritized Sweeping

Figure 9.10:Prioritized sweeping significantly shortens learning time on the Dyna maze task for a
wide range of grid resolutions. Reprinted from Peng and Williams (1993).

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node98.html (3 di 5)22/06/2005 9.10.03

9.4 Prioritized Sweeping

Figure 9.11:A rod-maneuvering task and its solution by prioritized sweeping. Reprinted from Moore
and Atkeson (1993).

Example 9.5: Rod Maneuvering The objective in this task is to maneuver a rod around some
awkwardly placed obstacles to a goal position in the fewest number of steps (Figure 9.11). The rod
can be translated along its long axis or perpendicular to that axis, or it can be rotated in either
direction around its center. The distance of each movement is approximately 1/20 of the work space,
and the rotation increment is 10 degrees. Translations are deterministic and quantized to one of

 positions. The figure shows the obstacles and the shortest solution from start to goal, found
by prioritized sweeping. This problem is still deterministic, but has four actions and 14,400 potential
states (some of these are unreachable because of the obstacles). This problem is probably too large to
be solved with unprioritized methods.

Prioritized sweeping is clearly a powerful idea, but the algorithms that have been developed so far
appear not to extend easily to more interesting cases. The greatest problem is that the algorithms
appear to rely on the assumption of discrete states. When a change occurs at one state, these methods
perform a computation on all the predecessor states that may have been affected. If function
approximation is used to learn the model or the value function, then a single backup could influence a
great many other states. It is not apparent how these states could be identified or processed efficiently.
On the other hand, the general idea of focusing search on the states believed to have changed in value,
and then on their predecessors, seems intuitively to be valid in general. Additional research may
produce more general versions of prioritized sweeping.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node98.html (4 di 5)22/06/2005 9.10.03

9.4 Prioritized Sweeping

Extensions of prioritized sweeping to stochastic environments are relatively straightforward. The
model is maintained by keeping counts of the number of times each state-action pair has been
experienced and of what the next states were. It is natural then to backup each pair not with a sample
backup, as we have been using so far, but with a full backup, taking into account all possible next
states and their probabilities of occurring.

Next: 9.5 Full vs. Sample Up: 9. Planning and Learning Previous: 9.3 When the Model Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node98.html (5 di 5)22/06/2005 9.10.03

9.5 Full vs. Sample Backups

Next: 9.6 Trajectory Sampling Up: 9. Planning and Learning Previous: 9.4 Prioritized Sweeping Contents

9.5 Full vs. Sample Backups

The examples in the previous sections give some idea of the range of possibilities for combining methods of
learning and planning. In the rest of this chapter, we analyze some of the component ideas involved, starting with
the relative advantages of full and sample backups.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node99.html (1 di 4)22/06/2005 9.10.09

9.5 Full vs. Sample Backups

Figure 9.12:The one-step backups.

Much of this book has been about different kinds of backups, and we have considered a great many varieties.
Focusing for the moment on one-step backups, they vary primarily along three binary dimensions. The first two
dimensions are whether they back up state values or action values and whether they estimate the value for the
optimal policy or for an arbitrary given policy. These two dimensions give rise to four classes of backups for

approximating the four value functions, , , , and . The other binary dimension is whether the backups
are full backups, considering all possible events that might happen, or sample backups, considering a single
sample of what might happen. These three binary dimensions give rise to eight cases, seven of which correspond
to specific algorithms, as shown in Figure 9.12. (The eighth case does not seem to correspond to any useful
backup.) Any of these one-step backups can be used in planning methods. The Dyna-Q agents discussed earlier

use sample backups, but they could just as well use full backups, or either full or sample backups. The
Dyna-AC system uses sample backups together with a learning policy structure. For stochastic problems,
prioritized sweeping is always done using one of the full backups.

When we introduced one-step sample backups in Chapter 6, we presented them as substitutes for full backups. In
the absence of a distribution model, full backups are not possible, but sample backups can be done using sample
transitions from the environment or a sample model. Implicit in that point of view is that full backups, if possible,
are preferable to sample backups. But are they? Full backups certainly yield a better estimate because they are
uncorrupted by sampling error, but they also require more computation, and computation is often the limiting
resource in planning. To properly assess the relative merits of full and sample backups for planning we must
control for their different computational requirements.

For concreteness, consider the full and sample backups for approximating , and the special case of discrete

states and actions, a table-lookup representation of the approximate value function, , and a model in the form of

estimated state-transition probabilities, , and expected rewards, . The full backup for a state-action pair,
, is:

(9.1)

The corresponding sample backup for , given a sample next state, , is the Q-learning-like update:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node99.html (2 di 4)22/06/2005 9.10.09

9.5 Full vs. Sample Backups

(9.2)

where is the usual positive step-size parameter and the model's expected value of the reward, is used in
place of the sample reward that is used in applying Q-learning without a model.

The difference between these full and sample backups is significant to the extent that the environment is
stochastic, specifically, to the extent that, given a state and action, many possible next states may occur with
various probabilities. If only one next state is possible, then the full and sample backups given above are identical
(taking). If there are many possible next states, then there may be significant differences. In favor of the

full backup is that it is an exact computation, resulting in a new whose correctness is limited only by the

correctness of the at successor states. The sample backup is in addition affected by sampling error. On
the other hand, the sample backup is cheaper computationally because it considers only one next state, not all
possible next states. In practice, the computation required by backup operations is usually dominated by the

number of state-action pairs at which is evaluated. For a particular starting pair, , let be the branching

factor, the number of possible next states, , for which . Then a full backup of this pair requires roughly
 times as much computation as a sample backup.

If there is enough time to complete a full backup, then the resulting estimate is generally better than that of
sample backups because of the absence of sampling error. But if there is insufficient time to complete a full
backup, then sample backups are always preferable because they at least make some improvement in the value
estimate with fewer than backups. In a large problem with many state-action pairs, we are often in the latter
situation. With so many state-action pairs, full backups of all of them would take a very long time. Before that we
may be much better off with a few sample backups at many state-action pairs than with full backups at a few
pairs. Given a unit of computational effort, is it better devoted to a few full backups or to -times as many sample
backups?

Figure 9.13 shows the results of an analysis that suggests an answer to this question. It shows the estimation error
as a function of computation time for full and sample backups for a variety of branching factors, . The case
considered is that in which all successor states are equally likely and in which the error in the initial estimate is
1. The values at the next states are assumed correct, so the full backup reduces the error to zero upon its

completion. In this case, sample backups reduce the error according to where is the number of sample

backups that have been performed (assuming sample averages, i.e.,). The key observation is that for
moderately large the error falls dramatically with a tiny fraction of backups. For these cases, many state-action
pairs could have their values improved dramatically, to within a few percent of the effect of a full backup, in the
same time that one state-action pair could be backed up fully.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node99.html (3 di 4)22/06/2005 9.10.09

9.5 Full vs. Sample Backups

Figure 9.13:Comparison of efficiency of full and sample backups.

The advantage of sample backups shown in Figure 9.13 is probably an underestimate of the real effect. In a real
problem, the values of the successor states would themselves be estimates updated by backups. By causing
estimates to be more accurate sooner, sample backups will have a second advantage in that the values backed up
from the successor states will be more accurate. These results suggest that sample backups are likely to be
superior to full backups on problems with large stochastic branching factors and too many states to be solved
exactly.

Exercise 9.5 The analysis above assumed that all of the possible next states were equally likely to occur.
Suppose instead that the distribution was highly skewed, that some of the states were much more likely to occur
than most. Would this strengthen or weaken the case for sample backups over full backups? Support your answer.

Next: 9.6 Trajectory Sampling Up: 9. Planning and Learning Previous: 9.4 Prioritized Sweeping Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node99.html (4 di 4)22/06/2005 9.10.09

9.6 Trajectory Sampling

Next: 9.7 Heuristic Search Up: 9. Planning and Learning Previous: 9.5 Full vs. Sample Contents

9.6 Trajectory Sampling

In this section we compare two ways of distributing backups. The classical approach, from dynamic
programming, is to perform sweeps through the entire state (or state-action) space, backing up each state (or
state-action pair) once per sweep. This is problematic on large tasks because there may not be time to complete
even one sweep. In many tasks the vast majority of the states are irrelevant because they are visited only under
very poor policies or with very low probability. Exhaustive sweeps implicitly devote equal time to all parts of
the state space rather than focusing where it is needed. As we discussed in Chapter 4, exhaustive sweeps and
the equal treatment of all states that they imply are not necessary properties of dynamic programming. In
principle, backups can be distributed any way one likes (to assure convergence, all states or state-action pairs
must be visited in the limit an infinite number of times), but in practice exhaustive sweeps are often used.

The second approach is to sample from the state or state-action space according to some distribution. One could
sample uniformly, as in the Dyna-Q agent, but this would suffer from some of the same problems as exhaustive
sweeps. More appealing is to distribute backups according to the on-policy distribution, that is, according to the
distribution observed when following the current policy. One advantage of this distribution is that it is easily
generated; one simply interacts with the model, following the current policy. In an episodic task, one starts in
the start state (or according to the starting-state distribution) and simulates until the terminal state. In a
continuing task, one starts anywhere and just keeps simulating. In either case, sample state transitions and
rewards are given by the model, and sample actions are given by the current policy. In other words, one
simulates explicit individual trajectories and performs backups at the state or state-action pairs encountered
along the way. We call this way of generating experience and backups trajectory sampling.

It is hard to imagine any efficient way of distributing backups according to the on-policy distribution other than
by trajectory sampling. If one had an explicit representation of the on-policy distribution, then one could sweep
through all states, weighting the backup of each according to the on-policy distribution, but this leaves us again
with all the computational costs of exhaustive sweeps. Possibly one could sample and update individual state-
action pairs from the distribution, but even if this could be done efficiently, what benefit would this provide
over simulating trajectories? Even knowing the on-policy distribution in an explicit form is unlikely. The
distribution changes whenever the policy changes, and computing the distribution requires computation
comparable to a complete policy evaluation. Consideration of such other possibilities makes trajectory
sampling seem both efficient and elegant.

Is the on-policy distribution of backups a good one? Intuitively it seems like a good choice, at least better than
the uniform distribution. For example, if you are learning to play chess, you study positions that might arise in
real games, not random positions of chess pieces. The latter may be valid states, but to be able to accurately
value them is a different skill from evaluating positions in real games. We also know from the Chapter 8 that
the on-policy distribution has significant advantages when function approximation is used. At the current time
this is the only distribution for which we can guarantee convergence with general linear function
approximation. Whether or not function approximation is used, one might expect on-policy focusing to
significantly improve the speed of planning.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node100.html (1 di 3)22/06/2005 9.10.11

9.6 Trajectory Sampling

Figure 9.14:Relative efficiency of backups distributed uniformly across the state space versus focused on
simulated on-policy trajectories. Results are for randomly generated tasks of two sizes and various branching

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node100.html (2 di 3)22/06/2005 9.10.11

9.6 Trajectory Sampling

factors, .

Focusing on the on-policy distribution could be beneficial because it causes vast, uninteresting parts of the
space to be ignored, or it could be detrimental because it causes the same old parts of the space to be backed up
over and over. We conducted a small experiment to assess the effect empirically. To isolate the effect of the
backup distribution, we used entirely one-step full tabular backups, as defined by (9.1). In the uniform case, we
cycled through all state-action pairs, backing up each in place, and in the on-policy case we simulated episodes,
backing up each state-action pair that occurred under the current -greedy policy (). The tasks were

undiscounted episodic tasks, generated randomly as follows. From each of the states, two actions were
possible, each of which resulted in one of next states, all equally likely, with a different random selection of
states for each state-action pair. The branching factor, , was the same for all state-action pairs. In addition, on
all transitions there was a 0.1 probability of transition to the terminal state, ending the episode. We used
episodic tasks to get a clear measure of the quality of the current policy. At any point in the planning process

one can stop and exhaustively compute , the true value of the start state under the greedy policy, ,

given the current action-value function, , as an indication of how well the agent would do on a new episode
on which it acted greedily (all the while assuming the model is correct).

The upper part of Figure 9.14 shows results averaged over 200 sample tasks with 1000 states and branching
factors of 1, 3, and 10. The quality of the policies found is plotted as a function of the number of full backups
completed. In all cases, sampling according to the on-policy distribution resulted in faster planning initially and
retarded planning in the long run. The effect was stronger, and the initial period of faster planning was longer,
at smaller branching factors. In other experiments, we found that these effects also became stronger as the
number of states increased. For example, the lower part of Figure 9.14 shows results for a branching factor of
1 for tasks with 10,000 states. In this case the advantage of on-policy focusing is large and long-lasting.

All of these results make sense. In the short term, sampling according to the on-policy distribution helps by
focusing on states that are near descendants of the start state. If there are many states and a small branching
factor, this effect will be large and long-lasting. In the long run, focusing on the on-policy distribution may hurt
because the commonly occurring states all already have their correct values. Sampling them is useless, whereas
sampling other states may actually perform some useful work. This presumably is why the exhaustive,
unfocused approach does better in the long run, at least for small problems. These results are not conclusive
because they are only for problems generated in a particular, random way, but they do suggest that sampling
according to the on-policy distribution can be a great advantage for large problems, in particulardirectly for
problems in which a small subset of the state-action space is visited under the on-policy distribution.

Exercise 9.6 Some of the graphs in Figure 9.14 seem to be scalloped in their early portions, particularly the
upper graph for and the uniform distribution. Why do you think this is? What aspects of the data shown
support your hypothesis?

Exercise 9.7 (programming) If you have access to a moderately large computer, try replicating the
experiment whose results are shown in the lower part of Figure 9.14. Then try the same experiment but with

. Discuss the meaning of your results.

Next: 9.7 Heuristic Search Up: 9. Planning and Learning Previous: 9.5 Full vs. Sample Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node100.html (3 di 3)22/06/2005 9.10.11

9.7 Heuristic Search

Next: 9.8 Summary Up: 9. Planning and Learning Previous: 9.6 Trajectory Sampling Contents

9.7 Heuristic Search

The predominant state-space planning methods in artificial intelligence are collectively known as
heuristic search. Although superficially different from the planning methods we have discussed so far
in this chapter, heuristic search and some of its component ideas can be combined with these methods
in useful ways. Unlike these methods, heuristic search is not concerned with changing the
approximate, or "heuristic," value function, but only with making improved action selections given
the current value function. In other words, heuristic search is planning as part of a policy
computation.

In heuristic search, for each state encountered, a large tree of possible continuations is considered.
The approximate value function is applied to the leaf nodes and then backed up toward the current
state at the root. The backing up within the search tree is just the same as in the max-backups (those

for and) discussed throughout this book. The backing up stops at the state-action nodes for the
current state. Once the backed-up values of these nodes are computed, the best of them is chosen as
the current action, and then all backed-up values are discarded.

In conventional heuristic search no effort is made to save the backed-up values by changing the
approximate value function. In fact, the value function is generally designed by people and never
changed as a result of search. However, it is natural to consider allowing the value function to be
improved over time, using either the backed-up values computed during heuristic search or any of the
other methods presented throughout this book. In a sense we have taken this approach all along. Our

greedy and -greedy action-selection methods are not unlike heuristic search, albeit on a smaller
scale. For example, to compute the greedy action given a model and a state-value function, we must
look ahead from each possible action to each possible next state, backup the rewards and estimated
values, and then pick the best action. Just as in conventional heuristic search, this process computes
backed-up values of the possible actions, but does not attempt to save them. Thus, heuristic search
can be viewed as an extension of the idea of a greedy policy beyond a single step.

The point of searching deeper than one step is to obtain better action selections. If one has a perfect
model and an imperfect action-value function, then in fact deeper search will usually yield better
policies.9.1 Certainly, if the search is all the way to the end of the episode, then the effect of the
imperfect value function is eliminated, and the action determined in this way must be optimal. If the

search is of sufficient depth such that is very small, then the actions will be correspondingly near
optimal. On the other hand, the deeper the search, the more computation is required, usually resulting
in a slower response time. A good example is provided by Tesauro's grandmaster-level backgammon

player, TD-Gammon (Section 11.1). This system used TD() to learn an afterstate value function
through many games of self-play, using a form of heuristic search to make its moves. As a model, TD-
Gammon used a priori knowledge of the probabilities of dice rolls and the assumption that the
opponent always selected the actions that TD-Gammon rated as best for it. Tesauro found that the

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node101.html (1 di 3)22/06/2005 9.10.13

9.7 Heuristic Search

deeper the heuristic search, the better the moves made by TD-Gammon, but the longer it took to make
each move. Backgammon has a large branching factor, yet moves must be made within a few
seconds. It was only feasible to search ahead selectively a few steps, but even so the search resulted in
significantly better action selections.

So far we have emphasized heuristic search as an action-selection technique, but this may not be its
most important aspect. Heuristic search also suggests ways of selectively distributing backups that
may lead to better and faster approximation of the optimal value function. A great deal of research on
heuristic search has been devoted to making the search as efficient as possible. The search tree is
grown selectively, deeper along some lines and shallower along others. For example, the search tree
is often deeper for the actions that seem most likely to be best, and shallower for those that the agent
will probably not want to take anyway. Can we use a similar idea to improve the distribution of
backups? Perhaps it can be done by preferentially updating state-action pairs whose values appear to
be close to the maximum available from the state. To our knowledge, this and other possibilities for
distributing backups based on ideas borrowed from heuristic search have not yet been explored.

We should not overlook the most obvious way in which heuristic search focuses backups: on the
current state. Much of the effectiveness of heuristic search is due to its search tree being tightly
focused on the states and actions that might immediately follow the current state. You may spend
more of your life playing chess than checkers, but when you play checkers, it pays to think about
checkers and about your particular checkers position, your likely next moves, and successor positions.
However you select actions, it is these states and actions that are of highest priority for backups and
where you most urgently want your approximate value function to be accurate. Not only should your
computation be preferentially devoted to imminent events, but so should your limited memory
resources. In chess, for example, there are far too many possible positions to store distinct value
estimates for each of them, but chess programs based on heuristic search can easily store distinct
estimates for the millions of positions they encounter looking ahead from a single position. This great
focusing of memory and computational resources on the current decision is presumably the reason
why heuristic search can be so effective.

The distribution of backups can be altered in similar ways to focus on the current state and its likely
successors. As a limiting case we might use exactly the methods of heuristic search to construct a
search tree, and then perform the individual, one-step backups from bottom up, as suggested by
Figure 9.15. If the backups are ordered in this way and a table-lookup representation is used, then
exactly the same backup would be achieved as in heuristic search. Any state-space search can be
viewed in this way as the piecing together of a large number of individual one-step backups. Thus, the
performance improvement observed with deeper searches is not due to the use of multistep backups
as such. Instead, it is due to the focus and concentration of backups on states and actions immediately
downstream from the current state. By devoting a large amount of computation specifically relevant
to the candidate actions, a much better decision can be made than by relying on unfocused backups.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node101.html (2 di 3)22/06/2005 9.10.13

9.7 Heuristic Search

Figure 9.15:The deep backups of heuristic search can be implemented as a sequence of one-step
backups (shown here outlined). The ordering shown is for a selective depth-first search.

Next: 9.8 Summary Up: 9. Planning and Learning Previous: 9.6 Trajectory Sampling Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node101.html (3 di 3)22/06/2005 9.10.13

9.8 Summary

Next: 9.9 Bibliographical and Historical Up: 9. Planning and Learning Previous: 9.7 Heuristic
Search Contents

9.8 Summary

We have presented a perspective emphasizing the surprisingly close relationships between planning
optimal behavior and learning optimal behavior. Both involve estimating the same value functions,
and in both cases it is natural to update the estimates incrementally, in a long series of small backup
operations. This makes it straightforward to integrate learning and planning processes simply by
allowing both to update the same estimated value function. In addition, any of the learning methods
can be converted into planning methods simply by applying them to simulated (model-generated)
experience rather than to real experience. In this case learning and planning become even more
similar; they are possibly identical algorithms operating on two different sources of experience.

It is straightforward to integrate incremental planning methods with acting and model-learning.
Planning, acting, and model-learning interact in a circular fashion (Figure 9.2), each producing what
the other needs to improve; no other interaction among them is either required or prohibited. The
most natural approach is for all processes to proceed asynchronously and in parallel. If the processes
must share computational resources, then the division can be handled almost arbitrarily--by whatever
organization is most convenient and efficient for the task at hand.

In this chapter we have touched upon a number of dimensions of variation among state-space
planning methods. One of the most important of these is the distribution of backups, that is, of the
focus of search. Prioritized sweeping focuses on the predecessors of states whose values have
recently changed. Heuristic search applied to reinforcement learning focuses, inter alia, on the
successors of the current state. Trajectory sampling is a convenient way of focusing on the on-policy
distribution. All of these approaches can significantly speed planning and are current topics of
research.

Another interesting dimension of variation is the size of backups. The smaller the backups, the more
incremental the planning methods can be. Among the smallest backups are one-step sample backups.
We presented one study suggesting that one-step sample backups may be preferable on very large
problems. A related issue is the depth of backups. In many cases deep backups can be implemented
as sequences of shallow backups.

Next: 9.9 Bibliographical and Historical Up: 9. Planning and Learning Previous: 9.7 Heuristic
Search Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node102.html22/06/2005 9.10.14

9.9 Bibliographical and Historical Remarks

Next: 10. Dimensions of Reinforcement Up: 9. Planning and Learning Previous: 9.8 Summary
Contents

Subsections

● 9.1
● 9.2-3
● 9.4
● 9.5
● 9.7

9.9 Bibliographical and Historical Remarks

9.1

The overall view of planning and learning presented here has developed gradually over a number of
years, in part by the authors (Sutton, 1990, 1991a, 1991b; Barto, Bradtke, and Singh, 1991, 1995;
Sutton and Pinette, 1985; Sutton and Barto, 1981b); it has been strongly influenced by Agre and
Chapman (1990; Agre 1988), Bertsekas and Tsitsiklis (1989), Singh (1993), and others. The authors
were also strongly influenced by psychological studies of latent learning (Tolman, 1932) and by
psychological views of the nature of thought (e.g., Galanter and Gerstenhaber, 1956; Craik, 1943;
Campbell, 1960; Dennett, 1978).

9.2-3

The terms direct and indirect, which we use to describe different kinds of reinforcement learning, are
from the adaptive control literature (e.g., Goodwin and Sin, 1984), where they are used to make the
same kind of distinction. The term system identification is used in adaptive control for what we call
model-learning (e.g., Goodwin and Sin, 1984; Ljung and Söderstrom, 1983; Young, 1984). The Dyna
architecture is due to Sutton (1990), and the results in these sections are based on results reported
there.

9.4

Prioritized sweeping was developed simultaneously and independently by Moore and Atkeson (1993)
and Peng and Williams (1993). The results in Figure 9.10 are due to Peng and Williams (1993). The
results in Figure 9.11 are due to Moore and Atkeson.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node103.html (1 di 2)22/06/2005 9.10.15

9.9 Bibliographical and Historical Remarks

9.5

This section was strongly influenced by the experiments of Singh (1993).

9.7

For further reading on heuristic search, the reader is encouraged to consult texts and surveys such as
those by Russell and Norvig (1995) and Korf (1988). Peng and Williams (1993) explored a forward
focusing of backups much as is suggested in this section.

Next: 10. Dimensions of Reinforcement Up: 9. Planning and Learning Previous: 9.8 Summary
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node103.html (2 di 2)22/06/2005 9.10.15

10. Dimensions of Reinforcement Learning

Next: 10.1 The Unified View Up: III. A Unified View Previous: 9.9 Bibliographical and Historical
Contents

10. Dimensions of Reinforcement Learning

In this book we have tried to present reinforcement learning not as a collection of individual methods,
but as a coherent set of ideas cutting across methods. Each idea can be viewed as a dimension along
which methods vary. The set of such dimensions spans a large space of possible methods. By
exploring this space at the level of dimensions we hope to obtain the broadest and most lasting
understanding. In this chapter we use the concept of dimensions in method space to recapitulate the
view of reinforcement learning we have developed in this book and to identify some of the more
important gaps in our coverage of the field.

Subsections

● 10.1 The Unified View
● 10.2 Other Frontier Dimensions

Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node104.html22/06/2005 9.10.17

10.1 The Unified View

Next: 10.2 Other Frontier Dimensions Up: 10. Dimensions of Reinforcement Previous: 10.
Dimensions of Reinforcement Contents

10.1 The Unified View

All of the reinforcement learning methods we have explored in this book have three key ideas in
common. First, the objective of all of them is the estimation of value functions. Second, all operate by
backing up values along actual or possible state trajectories. Third, all follow the general strategy of
generalized policy iteration (GPI), meaning that they maintain an approximate value function and an
approximate policy, and they continually try to improve each on the basis of the other. These three
ideas that the methods have in common circumscribe the subject covered in this book. We suggest
that value functions, backups, and GPI are powerful organizing principles potentially relevant to any
model of intelligence.

Two of the most important dimensions along which the methods vary are shown in Figure 10.1.
These dimensions have to do with the kind of backup used to improve the value function. The
vertical dimension is whether they are sample backups (based on a sample trajectory) or full backups
(based on a distribution of possible trajectories). Full backups of course require a model, whereas
sample backups can be done either with or without a model (another dimension of variation). The
horizontal dimension corresponds to the depth of backups, that is, to the degree of bootstrapping. At
three of the four corners of the space are the three primary methods for estimating values: DP, TD,
and Monte Carlo. Along the lower edge of the space are the sample-backup methods, ranging from
one-step TD backups to full-return Monte Carlo backups. Between these is a spectrum including

methods based on -step backups and mixtures of -step backups such as the -backups
implemented by eligibility traces.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node105.html (1 di 4)22/06/2005 9.10.19

10.1 The Unified View

Figure 10.1:A slice of the space of reinforcement learning methods.

DP methods are shown in the extreme upper-left corner of the space because they involve one-step
full backups. The upper-right corner is the extreme case of full backups so deep that they run all the
way to terminal states (or, in a continuing task, until discounting has reduced the contribution of any
further rewards to a negligible level). This is the case of exhaustive search. Intermediate methods
along this dimension include heuristic search and related methods that search and backup up to a
limited depth, perhaps selectively. There are also methods that are intermediate along the vertical
dimension. These include methods that mix full and sample backups, as well as the possibility of
methods that mix samples and distributions within a single backup. The interior of the square is filled
in to represent the space of all such intermediate methods.

A third important dimension is that of function approximation. Function approximation can be
viewed as an orthogonal spectrum of possibilities ranging from tabular methods at one extreme
through state aggregation, a variety of linear methods, and then a diverse set of nonlinear methods.
This third dimension might be visualized as perpendicular to the plane of the page in Figure 10.1.

Another dimension that we heavily emphasized in this book is the binary distinction between on-

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node105.html (2 di 4)22/06/2005 9.10.19

10.1 The Unified View

policy and off-policy methods. In the former case, the agent learns the value function for the policy it
is currently following, whereas in the latter case it learns the value function for the policy that it
currently thinks is best. These two policies are often different because of the need to explore. The
interaction between this dimension and the bootstrapping and function approximation dimension
discussed in Chapter 8 illustrates the advantages of analyzing the space of methods in terms of
dimensions. Even though this did involve an interaction between three dimensions, many other
dimensions were found to be irrelevant, greatly simplifying the analysis and increasing its
significance.

In addition to the four dimensions just discussed, we have identified a number of others throughout
the book:

Definition of return
Is the task episodic or continuing, discounted or undiscounted?

Action values vs. state values vs. afterstate values
What kind of values should be estimated? If only state values are estimated, then either a
model or a separate policy (as in actor-critic methods) is required for action selection.

Action selection/exploration
How are actions selected to ensure a suitable trade-off between exploration and exploitation?

We have considered only the simplest ways to do this: -greedy and softmax action selection,
and optimistic initialization of values.

Synchronous vs. asynchronous
Are the backups for all states performed simultaneously or one by one in some order?

Replacing vs. accumulating traces
If eligibility traces are used, which kind is most appropriate?

Real vs. simulated
Should one backup real experience or simulated experience? If both, how much of each?

Location of backups
What states or state-action pairs should be backed up? Modelfree methods can choose only
among the states and state-action pairs actually encountered, but model-based methods can
choose arbitrarily. There are many potent possibilities here.

Timing of backups
Should backups be done as part of selecting actions, or only afterward?

Memory for backups
How long should backed-up values be retained? Should they be retained permanently, or only
while computing an action selection, as in heuristic search?

Of course, these dimensions are neither exhaustive nor mutually exclusive. Individual algorithms
differ in many other ways as well, and many algorithms lie in several places along several
dimensions. For example, Dyna methods use both real and simulated experience to affect the same
value function. It is also perfectly sensible to maintain multiple value functions computed in different
ways or over different state and action representations. These dimensions do, however, constitute a
coherent set of ideas for describing and exploring a wide space of possible methods.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node105.html (3 di 4)22/06/2005 9.10.19

10.1 The Unified View

Next: 10.2 Other Frontier Dimensions Up: 10. Dimensions of Reinforcement Previous: 10.
Dimensions of Reinforcement Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node105.html (4 di 4)22/06/2005 9.10.19

10.2 Other Frontier Dimensions

Next: 11. Case Studies Up: 10. Dimensions of Reinforcement Previous: 10.1 The Unified View
Contents

10.2 Other Frontier Dimensions

Much research remains to be done within this space of reinforcement learning methods. For example,
even for the tabular case no control method using multistep backups has been proved to converge to
an optimal policy. Among planning methods, basic ideas such as trajectory sampling and focusing
sample backups are almost completely unexplored. On closer inspection, parts of the space will
undoubtedly turn out to have far greater complexity and greater internal structure than is now
apparent. There are also other dimensions along which reinforcement learning can be extended, we
have not yet mentioned, that lead to a much larger space of methods. Here we identify some of these
dimensions and note some of the open questions and frontiers that have been left out of the preceding
chapters.

One of the most important extensions of reinforcement learning beyond what we have treated in this
book is to eliminate the requirement that the state representation have the Markov property. There are
a number of interesting approaches to the non-Markov case. Most strive to construct from the given
state signal and its past values a new signal that is Markov, or more nearly Markov. For example, one
approach is based on the theory of partially observable MDPs (POMDPs). POMDPs are finite MDPs
in which the state is not observable, but another "sensation" signal stochastically related to the state is
observable. The theory of POMDPs has been extensively studied for the case of complete knowledge
of the dynamics of the POMDP. In this case, Bayesian methods can be used to compute at each time
step the probability of the environment's being in each state of the underlying MDP. This probability
distribution can then be used as a new state signal for the original problem. The downside for the
Bayesian POMDP approach is its computational expense and its strong reliance on complete
environment models. Some of the recent work pursuing this approach is by Littman, Cassandra, and
Kaelbling (1995), Parr and Russell (1995), and Chrisman (1992). If we are not willing to assume a
complete model of a POMDP's dynamics, then existing theory seems to offer little guidance.
Nevertheless, one can still attempt to construct a Markov state signal from the sequence of sensations.
Various statistical and ad hoc methods along these lines have been explored (e.g., McCallum, 1992,
1993, 1995; Lin and Mitchell, 1992; Chapman and Kaelbling, 1991; Moore, 1994; Rivest and
Schapire, 1987; Colombetti and Dorigo, 1994; Whitehead and Ballard, 1991; Hochreiter and
Schmidhuber, 1997).

All of the above methods involve constructing an improved state representation from the non-Markov
one provided by the environment. Another approach is to leave the state representation unchanged
and use methods that are not too adversely affected by its being non-Markov (e.g., Singh, Jaakkola,
and Jordan, 1994, 1995; Jaakkola, Singh and Jordan, 1995). In fact, most function approximation
methods can be viewed in this way. For example, state aggregation methods for function
approximation are in effect equivalent to a non-Markov representation in which all members of a set
of states are mapped into a common sensation. There are other parallels between the issues of
function approximation and non-Markov representations. In both cases the overall problem divides

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node106.html (1 di 3)22/06/2005 9.10.21

10.2 Other Frontier Dimensions

into two parts: constructing an improved representation, and making do with the current
representation. In both cases the "making do" part is relatively well understood, whereas the
constructive part is unclear and wide open. At this point we can only guess as to whether or not these
parallels point to any common solution methods for the two problems.

Another important direction for extending reinforcement learning beyond what we have covered in
this book is to incorporate ideas of modularity and hierarchy. Introductory reinforcement learning is
about learning value functions and one-step models of the dynamics of the environment. But much of
what people learn does not seem to fall exactly into either of these categories. For example, consider
what we know about tying our shoes, making a phone call, or traveling to London. Having learned
how to do such things, we are then able to choose among them and plan as if they were primitive
actions. What we have learned in order to do this are not conventional value functions or one-step
models. We are able to plan and learn at a variety of levels and flexibly interrelate them. Much of our
learning appears not to be about learning values directly, but about preparing us to quickly estimate
values later in response to new situations or new information. Considerable reinforcement learning
research has been directed at capturing such abilities (e.g., Watkins, 1989; Dayan and Hinton, 1993;
Singh, 1992a, 1992b; Ring, 1994, Kaelbling, 1993b; Sutton, 1995).

Researchers have also explored ways of using the structure of particular tasks to advantage. For
example, many problems have state representations that are naturally lists of variables, like the
readings of multiple sensors or actions that are lists of component actions. The independence or near
independence of some variables from others can sometimes be exploited to obtain more efficient
special forms of reinforcement learning algorithms. It is sometimes even possible to decompose a
problem into several independent subproblems that can be solved by separate learning agents. A
reinforcement learning problem can usually be structured in many different ways, some reflecting
natural aspects of the problem, such as the existence of physical sensors, and others being the result
of explicit attempts to decompose the problem into simpler subproblems. Possibilities for exploiting
structure in reinforcement learning and related planning problems have been studied by many
researchers (e.g., Boutilier, Dearden, and Goldszmidt, 1995; Dean and Lin, 1995). There are also
related studies of multiagent or distributed reinforcement learning (e.g., Littman, 1994; Markey,
1994; Crites and Barto, 1996; Tan, 1993).

Finally, we want to emphasize that reinforcement learning is meant to be a general approach to
learning from interaction. It is general enough not to require special-purpose teachers and domain
knowledge, but also general enough to utilize such things if they are available. For example, it is
often possible to accelerate reinforcement learning by giving advice or hints to the agent (Clouse and
Utgoff, 1992; Maclin and Shavlik, 1994) or by demonstrating instructive behavioral trajectories (Lin,
1992). Another way to make learning easier, related to "shaping" in psychology, is to give the
learning agent a series of relatively easy problems building up to the harder problem of ultimate
interest (e.g., Selfridge, Sutton, and Barto, 1985). These methods, and others not yet developed, have
the potential to give the machine-learning terms training and teaching new meanings that are closer
to their meanings for animal and human learning.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node106.html (2 di 3)22/06/2005 9.10.21

10.2 Other Frontier Dimensions

Next: 11. Case Studies Up: 10. Dimensions of Reinforcement Previous: 10.1 The Unified View
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node106.html (3 di 3)22/06/2005 9.10.21

11. Case Studies

Next: 11.1 TD-Gammon Up: III. A Unified View Previous: 10.2 Other Frontier Dimensions
Contents

11. Case Studies

In this final chapter we present a few case studies of reinforcement learning. Several of these are
substantial applications of potential economic significance. One, Samuel's checkers player, is
primarily of historical interest. Our presentations are intended to illustrate some of the trade-offs and
issues that arise in real applications. For example, we emphasize how domain knowledge is
incorporated into the formulation and solution of the problem. We also highlight the representation
issues that are so often critical to successful applications. The algorithms used in some of these case
studies are substantially more complex than those we have presented in the rest of the book.
Applications of reinforcement learning are still far from routine and typically require as much art as
science. Making applications easier and more straightforward is one of the goals of current research
in reinforcement learning.

Subsections

● 11.1 TD-Gammon
● 11.2 Samuel's Checkers Player
● 11.3 The Acrobot
● 11.4 Elevator Dispatching
● 11.5 Dynamic Channel Allocation
● 11.6 Job-Shop Scheduling

Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node107.html22/06/2005 9.10.22

11.1 TD-Gammon

Next: 11.2 Samuel's Checkers Player Up: 11. Case Studies Previous: 11. Case Studies Contents

11.1 TD-Gammon

One of the most impressive applications of reinforcement learning to date is that by Gerry Tesauro to
the game of backgammon (Tesauro, 1992, 1994, 1995). Tesauro's program, TD-Gammon, required
little backgammon knowledge, yet learned to play extremely well, near the level of the world's
strongest grandmasters. The learning algorithm in TD-Gammon was a straightforward combination

of the TD() algorithm and nonlinear function approximation using a multilayer neural network
trained by backpropagating TD errors.

Backgammon is a major game in the sense that it is played throughout the world, with numerous
tournaments and regular world championship matches. It is in part a game of chance, and it is a
popular vehicle for waging significant sums of money. There are probably more professional
backgammon players than there are professional chess players. The game is played with 15 white and
15 black pieces on a board of 24 locations, called points. Figure 11.1 shows a typical position early
in the game, seen from the perspective of the white player.

Figure 11.1:A backgammon position

In this figure, white has just rolled the dice and obtained a 5 and a 2. This means that he can move
one of his pieces 5 steps and one (possibly the same piece) 2 steps. For example, he could move two
pieces from the 12 point, one to the 17 point, and one to the 14 point. White's objective is to advance
all of his pieces into the last quadrant (points 19-24) and then off the board. The first player to
remove all his pieces wins. One complication is that the pieces interact as they pass each other going

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node108.html (1 di 6)22/06/2005 9.10.26

11.1 TD-Gammon

in different directions. For example, if it were black's move in Figure 11.1, he could use the dice roll
of 2 to move a piece from the 24 point to the 22 point, "hitting" the white piece there. Pieces that
have been hit are placed on the "bar" in the middle of the board (where we already see one previously
hit black piece), from whence they reenter the race from the start. However, if there are two pieces on
a point, then the opponent cannot move to that point; the pieces are protected from being hit. Thus,
white cannot use his 5-2 dice roll to move either of his pieces on the 1 point, because their possible
resulting points are occupied by groups of black pieces. Forming contiguous blocks of occupied
points to block the opponent is one of the elementary strategies of the game.

Backgammon involves several further complications, but the above description gives the basic idea.
With 30 pieces and 24 possible locations (26, counting the bar and off-the-board) it should be clear
that the number of possible backgammon positions is enormous, far more than the number of
memory elements one could have in any physically realizable computer. The number of moves
possible from each position is also large. For a typical dice roll there might be 20 different ways of
playing. In considering future moves, such as the response of the opponent, one must consider the
possible dice rolls as well. The result is that the game tree has an effective branching factor of about
400. This is far too large to permit effective use of the conventional heuristic search methods that
have proved so effective in games like chess and checkers.

On the other hand, the game is a good match to the capabilities of TD learning methods. Although the
game is highly stochastic, a complete description of the game's state is available at all times. The
game evolves over a sequence of moves and positions until finally ending in a win for one player or
the other, ending the game. The outcome can be interpreted as a final reward to be predicted. On the
other hand, the theoretical results we have described so far cannot be usefully applied to this task.
The number of states is so large that a lookup table cannot be used, and the opponent is a source of
uncertainty and time variation.

TD-Gammon used a nonlinear form of TD(). The estimated value, , of any state (board
position) was meant to estimate the probability of winning starting from state . To achieve this,
rewards were defined as zero for all time steps except those on which the game is won. To implement
the value function, TD-Gammon used a standard multilayer neural network, much as shown in
Figure 11.2. (The real network had two additional units in its final layer to estimate the probability of
each player's winning in a special way called a "gammon" or "backgammon.") The network consisted
of a layer of input units, a layer of hidden units, and a final output unit. The input to the network was
a representation of a backgammon position, and the output was an estimate of the value of that
position.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node108.html (2 di 6)22/06/2005 9.10.26

11.1 TD-Gammon

Figure 11.2:The neural network used in TD-Gammon

In the first version of TD-Gammon, TD-Gammon 0.0, backgammon positions were represented to the
network in a relatively direct way that involved little backgammon knowledge. It did, however,
involve substantial knowledge of how neural networks work and how information is best presented to
them. It is instructive to note the exact representation Tesauro chose. There were a total of 198 input
units to the network. For each point on the backgammon board, four units indicated the number of
white pieces on the point. If there were no white pieces, then all four units took on the value zero. If
there was one piece, then the first unit took on the value 1. If there were two pieces, then both the
first and the second unit were 1. If there were three or more pieces on the point, then all of the first
three units were 1. If there were more than three pieces, the fourth unit also came on, to a degree
indicating the number of additional pieces beyond three. Letting denote the total number of pieces

on the point, if , then the fourth unit took on the value . With four units for white
and four for black at each of the 24 points, that made a total of 192 units. Two additional units

encoded the number of white and black pieces on the bar (each took the value , where is the
number of pieces on the bar), and two more encoded the number of black and white pieces already

successfully removed from the board (these took the value , where is the number of pieces
already borne off). Finally, two units indicated in a binary fashion whether it was white's or black's
turn to move. The general logic behind these choices should be clear. Basically, Tesauro tried to
represent the position in a straightforward way, making little attempt to minimize the number of
units. He provided one unit for each conceptually distinct possibility that seemed likely to be
relevant, and he scaled them to roughly the same range, in this case between 0 and 1.

Given a representation of a backgammon position, the network computed its estimated value in the
standard way. Corresponding to each connection from an input unit to a hidden unit was a real-valued
weight. Signals from each input unit were multiplied by their corresponding weights and summed at

the hidden unit. The output, , of hidden unit was a nonlinear sigmoid function of the weighted

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node108.html (3 di 6)22/06/2005 9.10.26

11.1 TD-Gammon

sum:

where is the value of the th input unit and is the weight of its connection to the th hidden
unit. The output of the sigmoid is always between 0 and 1, and has a natural interpretation as a
probability based on a summation of evidence. The computation from hidden units to the output unit
was entirely analogous. Each connection from a hidden unit to the output unit had a separate weight.
The output unit formed the weighted sum and then passed it through the same sigmoid nonlinearity.

TD-Gammon used the gradient-descent form of the TD() algorithm described in Section 8.2, with
the gradients computed by the error backpropagation algorithm (Rumelhart, Hinton, and Williams,
1986). Recall that the general update rule for this case is

(11.1)

where is the vector of all modifiable parameters (in this case, the weights of the network) and is

a vector of eligibility traces, one for each component of , updated by

with . The gradient in this equation can be computed efficiently by the backpropagation

procedure. For the backgammon application, in which and the reward is always zero except

upon winning, the TD error portion of the learning rule is usually just , as
suggested in Figure 11.2.

To apply the learning rule we need a source of backgammon games. Tesauro obtained an unending

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node108.html (4 di 6)22/06/2005 9.10.26

11.1 TD-Gammon

sequence of games by playing his learning backgammon player against itself. To choose its moves,
TD-Gammon considered each of the 20 or so ways it could play its dice roll and the corresponding
positions that would result. The resulting positions are afterstates as discussed in Section 6.8. The
network was consulted to estimate each of their values. The move was then selected that would lead
to the position with the highest estimated value. Continuing in this way, with TD-Gammon making
the moves for both sides, it was possible to easily generate large numbers of backgammon games.
Each game was treated as an episode, with the sequence of positions acting as the states,

. Tesauro applied the nonlinear TD rule (11.1) fully incrementally, that is, after each
individual move.

The weights of the network were set initially to small random values. The initial evaluations were
thus entirely arbitrary. Since the moves were selected on the basis of these evaluations, the initial
moves were inevitably poor, and the initial games often lasted hundreds or thousands of moves
before one side or the other won, almost by accident. After a few dozen games however, performance
improved rapidly.

After playing about 300,000 games against itself, TD-Gammon 0.0 as described above learned to
play approximately as well as the best previous backgammon computer programs. This was a striking
result because all the previous high-performance computer programs had used extensive
backgammon knowledge. For example, the reigning champion program at the time was, arguably,
Neurogammon, another program written by Tesauro that used a neural network but not TD learning.
Neurogammon's network was trained on a large training corpus of exemplary moves provided by
backgammon experts, and, in addition, started with a set of features specially crafted for
backgammon. Neurogammon was a highly tuned, highly effective backgammon program that
decisively won the World Backgammon Olympiad in 1989. TD-Gammon 0.0, on the other hand, was
constructed with essentially zero backgammon knowledge. That it was able to do as well as
Neurogammon and all other approaches is striking testimony to the potential of self-play learning
methods.

The tournament success of TD-Gammon 0.0 with zero backgammon knowledge suggested an
obvious modification: add the specialized backgammon features but keep the self-play TD learning
method. This produced TD-Gammon 1.0. TD-Gammon 1.0 was clearly substantially better than all
previous backgammon programs and found serious competition only among human experts. Later
versions of the program, TD-Gammon 2.0 (40 hidden units) and TD-Gammon 2.1 (80 hidden units),
were augmented with a selective two-ply search procedure. To select moves, these programs looked
ahead not just to the positions that would immediately result, but also to the opponent's possible dice
rolls and moves. Assuming the opponent always took the move that appeared immediately best for
him, the expected value of each candidate move was computed and the best was selected. To save
computer time, the second ply of search was conducted only for candidate moves that were ranked
highly after the first ply, about four or five moves on average. Two-ply search affected only the
moves selected; the learning process proceeded exactly as before. The most recent version of the
program, TD-Gammon 3.0, uses 160 hidden units and a selective three-ply search. TD-Gammon
illustrates the combination of learned value functions and decide-time search as in heuristic search
methods. In more recent work, Tesauro and Galperin (1997) have begun exploring trajectory
sampling methods as an alternative to search.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node108.html (5 di 6)22/06/2005 9.10.26

11.1 TD-Gammon

Table 11.1:Summary of TD-Gammon Results

Program Hidden Training Opponents Results

Units Games

TD-Gam
0.0

40 300,000 other programs tied for best

TD-Gam
1.0

80 300,000 Robertie, Magriel, ... pts / 51 games

TD-Gam
2.0

40 800,000 various Grandmasters pts / 38 games

TD-Gam
2.1

80 1,500,000 Robertie pt / 40 games

TD-Gam
3.0

80 1,500,000 Kazaros pts / 20 games

Tesauro was able to play his programs in a significant number of games against world-class human
players. A summary of the results is given in Table 11.1. Based on these results and analyses by
backgammon grandmasters (Robertie, 1992; see Tesauro, 1995), TD-Gammon 3.0 appears to be at,
or very near, the playing strength of the best human players in the world. It may already be the world
champion. These programs have already changed the way the best human players play the game. For
example, TD-Gammon learned to play certain opening positions differently than was the convention
among the best human players. Based on TD-Gammon's success and further analysis, the best human
players now play these positions as TD-Gammon does (Tesauro, 1995).

Next: 11.2 Samuel's Checkers Player Up: 11. Case Studies Previous: 11. Case Studies Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node108.html (6 di 6)22/06/2005 9.10.26

11.2 Samuel's Checkers Player

Next: 11.3 The Acrobot Up: 11. Case Studies Previous: 11.1 TD-Gammon Contents

11.2 Samuel's Checkers Player

An important precursor to Tesauro's TD-Gammon was the seminal work of Arthur Samuel (1959,
1967) in constructing programs for learning to play checkers. Samuel was one of the first to make
effective use of heuristic search methods and of what we would now call temporal-difference
learning. His checkers players are instructive case studies in addition to being of historical interest.
We emphasize the relationship of Samuel's methods to modern reinforcement learning methods and
try to convey some of Samuel's motivation for using them.

Samuel first wrote a checkers-playing program for the IBM 701 in 1952. His first learning program
was completed in 1955 and was demonstrated on television in 1956. Later versions of the program
achieved good, though not expert, playing skill. Samuel was attracted to game-playing as a domain
for studying machine learning because games are less complicated than problems "taken from life"
while still allowing fruitful study of how heuristic procedures and learning can be used together. He
chose to study checkers instead of chess because its relative simplicity made it possible to focus more
strongly on learning.

Samuel's programs played by performing a lookahead search from each current position. They used
what we now call heuristic search methods to determine how to expand the search tree and when to
stop searching. The terminal board positions of each search were evaluated, or "scored," by a value
function, or "scoring polynomial," using linear function approximation. In this and other respects
Samuel's work seems to have been inspired by the suggestions of Shannon (1950). In particular,
Samuel's program was based on Shannon's minimax procedure to find the best move from the current
position. Working backward through the search tree from the scored terminal positions, each position
was given the score of the position that would result from the best move, assuming that the machine
would always try to maximize the score, while the opponent would always try to minimize it. Samuel
called this the backed-up score of the position. When the minimax procedure reached the search tree's
root--the current position--it yielded the best move under the assumption that the opponent would be
using the same evaluation criterion, shifted to its point of view. Some versions of Samuel's programs
used sophisticated search control methods analogous to what are known as "alpha-beta" cutoffs (e.g.,
see Pearl, 1984).

Samuel used two main learning methods, the simplest of which he called rote learning. It consisted
simply of saving a description of each board position encountered during play together with its
backed-up value determined by the minimax procedure. The result was that if a position that had
already been encountered were to occur again as a terminal position of a search tree, the depth of the
search was effectively amplified since this position's stored value cached the results of one or more
searches conducted earlier. One initial problem was that the program was not encouraged to move
along the most direct path to a win. Samuel gave it a "a sense of direction" by decreasing a position's
value a small amount each time it was backed up a level (called a ply) during the minimax analysis.
"If the program is now faced with a choice of board positions whose scores differ only by the ply

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node109.html (1 di 3)22/06/2005 9.10.28

11.2 Samuel's Checkers Player

number, it will automatically make the most advantageous choice, choosing a low-ply alternative if
winning and a high-ply alternative if losing" (Samuel, 1959, p. 80). Samuel found this discounting-
like technique essential to successful learning. Rote learning produced slow but continuous
improvement that was most effective for opening and endgame play. His program became a "better-
than-average novice" after learning from many games against itself, a variety of human opponents,
and from book games in a supervised learning mode.

Rote learning and other aspects of Samuel's work strongly suggest the essential idea of temporal-
difference learning--that the value of a state should equal the value of likely following states. Samuel
came closest to this idea in his second learning method, his "learning by generalization" procedure for
modifying the parameters of the value function. Samuel's method was the same in concept as that
used much later by Tesauro in TD-Gammon. He played his program many games against another
version of itself and performed a backup operation after each move. The idea of Samuel's backup is
suggested by the diagram in Figure 11.3. Each open circle represents a position where the program
moves next, an on-move position, and each solid circle represents a position where the opponent
moves next. A backup was made to the value of each on-move position after a move by each side,
resulting in a second on-move position. The backup was toward the minimax value of a search
launched from the second on-move position. Thus, the overall effect was that of a backup consisting
of one full move of real events and then a search over possible events, as suggested by Figure 11.3.
Samuel's actual algorithm was significantly more complex than this for computational reasons, but
this was the basic idea.

Figure 11.3:The backup diagram for Samuel's checkers player.

Samuel did not include explicit rewards. Instead, he fixed the weight of the most important feature,
the piece advantage feature, which measured the number of pieces the program had relative to how

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node109.html (2 di 3)22/06/2005 9.10.28

11.2 Samuel's Checkers Player

many its opponent had, giving higher weight to kings, and including refinements so that it was better
to trade pieces when winning than when losing. Thus, the goal of Samuel's program was to improve
its piece advantage, which in checkers is highly correlated with winning.

However, Samuel's learning method may have been missing an essential part of a sound temporal-
difference algorithm. Temporal-difference learning can be viewed as a way of making a value
function consistent with itself, and this we can clearly see in Samuel's method. But also needed is a
way of tying the value function to the true value of the states. We have enforced this via rewards and
by discounting or giving a fixed value to the terminal state. But Samuel's method included no rewards
and no special treatment of the terminal positions of games. As Samuel himself pointed out, his value
function could have become consistent merely by giving a constant value to all positions. He hoped
to discourage such solutions by giving his piece-advantage term a large, nonmodifiable weight. But
although this may decrease the likelihood of finding useless evaluation functions, it does not prohibit
them. For example, a constant function could still be attained by setting the modifiable weights so as
to cancel the effect of the nonmodifiable one.

Since Samuel's learning procedure was not constrained to find useful evaluation functions, it should
have been possible for it to become worse with experience. In fact, Samuel reported observing this
during extensive self-play training sessions. To get the program improving again, Samuel had to
intervene and set the weight with the largest absolute value back to zero. His interpretation was that
this drastic intervention jarred the program out of local optima, but another possibility is that it jarred
the program out of evaluation functions that were consistent but had little to do with winning or
losing the game.

Despite these potential problems, Samuel's checkers player using the generalization learning method
approached "better-than-average" play. Fairly good amateur opponents characterized it as "tricky but
beatable" (Samuel, 1959). In contrast to the rote-learning version, this version was able to develop a
good middle game but remained weak in opening and endgame play. This program also included an
ability to search through sets of features to find those that were most useful in forming the value
function. A later version (Samuel, 1967) included refinements in its search procedure, such as alpha-
beta pruning, extensive use of a supervised learning mode called "book learning," and hierarchical
lookup tables called signature tables (Griffith, 1966) to represent the value function instead of linear
function approximation. This version learned to play much better than the 1959 program, though still
not at a master level. Samuel's checkers-playing program was widely recognized as a significant
achievement in artificial intelligence and machine learning.

Next: 11.3 The Acrobot Up: 11. Case Studies Previous: 11.1 TD-Gammon Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node109.html (3 di 3)22/06/2005 9.10.28

11.3 The Acrobot

Next: 11.4 Elevator Dispatching Up: 11. Case Studies Previous: 11.2 Samuel's Checkers Player Contents

11.3 The Acrobot

Reinforcement learning has been applied to a wide variety of physical control tasks (e.g., for a collection of
robotics applications, see Connell and Mahadevan, 1993). One such task is the acrobot, a two-link, underactuated
robot roughly analogous to a gymnast swinging on a high bar (Figure 11.4). The first joint (corresponding to the
gymnast's hands on the bar) cannot exert torque, but the second joint (corresponding to the gymnast bending at the
waist) can. The system has four continuous state variables: two joint positions and two joint velocities. The
equations of motion are given in Figure 11.5. This system has been widely studied by control engineers (e.g.,
Spong, 1994) and machine-learning researchers (e.g., Dejong and Spong, 1994; Boone, 1997).

Figure 11.4:The acrobot.

Figure 11.5:The equations of motions of the simulated acrobot. A time step of 0.05 seconds was used in the
simulation, with actions chosen after every four time steps. The torque applied at the second joint is denoted by

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node110.html (1 di 4)22/06/2005 9.10.32

11.3 The Acrobot

. There were no constraints on the joint positions, but the angular velocities were limited to

and . The constants were (masses of the links),
(lengths of links), (lengths to center of mass of links), (moments of inertia of links),

and (gravity).

One objective for controlling the acrobot is to swing the tip (the "feet") above the first joint by an amount equal to
one of the links in minimum time. In this task, the torque applied at the second joint is limited to three choices:
positive torque of a fixed magnitude, negative torque of the same magnitude, or no torque. A reward of is given

on all time steps until the goal is reached, which ends the episode. No discounting is used (). Thus, the

optimal value, , of any state, , is the minimum time to reach the goal (an integer number of steps) starting
from .

Sutton (1996) addressed the acrobot swing-up task in an on-line, modelfree context. Although the acrobot was
simulated, the simulator was not available for use by the agent/controller in any way. The training and interaction
were just as if a real, physical acrobot had been used. Each episode began with both links of the acrobot hanging
straight down and at rest. Torques were applied by the reinforcement learning agent until the goal was reached,
which always happened eventually. Then the acrobot was restored to its initial rest position and a new episode was
begun.

The learning algorithm used was Sarsa() with linear function approximation, tile coding, and replacing traces as
in Figure 8.8. With a small, discrete action set, it is natural to use a separate set of tilings for each action. The next
choice is of the continuous variables with which to represent the state. A clever designer would probably represent
the state in terms of the angular position and velocity of the center of mass and of the second link, which might
make the solution simpler and consistent with broad generalization. But since this was just a test problem, a more

naive, direct representation was used in terms of the positions and velocities of the links: , and . The
two angles are restricted to a limited range by the physics of the acrobot (see Figure 11.5) and the two angles are

naturally restricted to . Thus, the state space in this task is a bounded rectangular region in four dimensions.

This leaves the question of what tilings to use. There are many possibilities, as discussed in Chapter 8. One is to use
a complete grid, slicing the four-dimensional space along all dimensions, and thus into many small four-
dimensional tiles. Alternatively, one could slice along only one of the dimensions, making hyperplanar stripes. In
this case one has to pick which dimension to slice along. And of course in all cases one has to pick the width of the
slices, the number of tilings of each kind, and, if there are multiple tilings, how to offset them. One could also slice
along pairs or triplets of dimensions to get other tilings. For example, if one expected the velocities of the two links
to interact strongly in their effect on value, then one might make many tilings that sliced along both of these
dimensions. If one thought the region around zero velocity was particularly critical, then the slices could be more
closely spaced there.

Sutton used tilings that sliced in a variety of simple ways. Each of the four dimensions was divided into six equal
intervals. A seventh interval was added to the angular velocities so that tilings could be offset by a random fraction
of an interval in all dimensions (see Chapter 8, subsection "Tile Coding"). Of the total of 48 tilings, 12 sliced along
all four dimensions as discussed above, dividing the space into tiles each. Another 12
tilings sliced along three dimensions (3 randomly offset tilings each for each of the 4 sets of three dimensions), and
another 12 sliced along two dimensions (2 tilings for each of the 6 sets of two dimensions. Finally, a set of 12
tilings depended each on only one dimension (3 tilings for each of the 4 dimensions). This resulted in a total of
approximately tiles for each action. This number is small enough that hashing was not necessary. All
tilings were offset by a random fraction of an interval in all relevant dimensions.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node110.html (2 di 4)22/06/2005 9.10.32

11.3 The Acrobot

The remaining parameters of the learning algorithm were , , , and . The use of
a greedy policy () seemed preferable on this task because long sequences of correct actions are needed to do
well. One exploratory action could spoil a whole sequence of good actions. Exploration was ensured instead by
starting the action values optimistically, at the low value of 0. As discussed in Section 2.7 and Example 8.2, this
makes the agent continually disappointed with whatever rewards it initially experiences, driving it to keep trying
new things.

Figure 11.6:Learning curves for Sarsa() on the acrobot task.

Figure 11.6 shows learning curves for the acrobot task and the learning algorithm described above. Note from the
single-run curve that single episodes were sometimes extremely long. On these episodes, the acrobot was usually
spinning repeatedly at the second joint while the first joint changed only slightly from vertical down. Although this
often happened for many time steps, it always eventually ended as the action values were driven lower. All runs
ended with an efficient policy for solving the problem, usually lasting about 75 steps. A typical final solution is
shown in Figure 11.7. First the acrobot pumps back and forth several times symmetrically, with the second link
always down. Then, once enough energy has been added to the system, the second link is swung upright and
stabbed to the goal height.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node110.html (3 di 4)22/06/2005 9.10.32

11.3 The Acrobot

Figure 11.7:A typical learned behavior of the acrobot. Each group is a series of consecutive positions, the thicker
line being the first. The arrow indicates the torque applied at the second joint.

Next: 11.4 Elevator Dispatching Up: 11. Case Studies Previous: 11.2 Samuel's Checkers Player Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node110.html (4 di 4)22/06/2005 9.10.32

11.4 Elevator Dispatching

Next: 11.5 Dynamic Channel Allocation Up: 11. Case Studies Previous: 11.3 The Acrobot Contents

11.4 Elevator Dispatching

Waiting for an elevator is a situation with which we are all familiar. We press a button and then wait for an elevator to arrive
traveling in the right direction. We may have to wait a long time if there are too many passengers or not enough elevators. Just how
long we wait depends on the dispatching strategy the elevators use to decide where to go. For example, if passengers on several
floors have requested pickups, which should be served first? If there are no pickup requests, how should the elevators distribute
themselves to await the next request? Elevator dispatching is a good example of a stochastic optimal control problem of economic
importance that is too large to solve by classical techniques such as dynamic programming.

Crites and Barto (1996; Crites, 1996) studied the application of reinforcement learning techniques to the four-elevator, ten-floor
system shown in Figure 11.8. Along the right-hand side are pickup requests and an indication of how long each has been waiting.
Each elevator has a position, direction, and speed, plus a set of buttons to indicate where passengers want to get off. Roughly
quantizing the continuous variables, Crites and Barto estimated that the system has over states. This large state set rules out
classical dynamic programming methods such as value iteration. Even if one state could be backed up every microsecond it would
still require over 1000 years to complete just one sweep through the state space.

Figure 11.8:Four elevators in a ten-story building.

In practice, modern elevator dispatchers are designed heuristically and evaluated on simulated buildings. The simulators are quite
sophisticated and detailed. The physics of each elevator car is modeled in continuous time with continuous state variables.
Passenger arrivals are modeled as discrete, stochastic events, with arrival rates varying frequently over the course of a simulated
day. Not surprisingly, the times of greatest traffic and greatest challenge to the dispatching algorithm are the morning and evening
rush hours. Dispatchers are generally designed primarily for these difficult periods.

The performance of elevator dispatchers is measured in several different ways, all with respect to an average passenger entering the
system. The average waiting time is how long the passenger waits before getting on an elevator, and the average system time is how
long the passenger waits before being dropped off at the destination floor. Another frequently encountered statistic is the percentage
of passengers whose waiting time exceeds 60 seconds. The objective that Crites and Barto focused on is the average squared
waiting time. This objective is commonly used because it tends to keep the waiting times low while also encouraging fairness in
serving all the passengers.

Crites and Barto applied a version of one-step Q-learning augmented in several ways to take advantage of special features of the

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node111.html (1 di 4)22/06/2005 9.10.36

11.4 Elevator Dispatching

problem. The most important of these concerned the formulation of the actions. First, each elevator made its own decisions
independently of the others. Second, a number of constraints were placed on the decisions. An elevator carrying passengers could
not pass by a floor if any of its passengers wanted to get off there, nor could it reverse direction until all of its passengers wanting to
go in its current direction had reached their floors. In addition, a car was not allowed to stop at a floor unless someone wanted to get
on or off there, and it could not stop to pick up passengers at a floor if another elevator was already stopped there. Finally, given a
choice between moving up or down, the elevator was constrained always to move up (otherwise evening rush hour traffic would
tend to push all the elevators down to the lobby). These last three constraints were explicitly included to provide some prior
knowledge and make the problem easier. The net result of all these constraints was that each elevator had to make few and simple
decisions. The only decision that had to be made was whether or not to stop at a floor that was being approached and that had
passengers waiting to be picked up. At all other times, no choices needed to be made.

That each elevator made choices only infrequently permitted a second simplification of the problem. As far as the learning agent
was concerned, the system made discrete jumps from one time at which it had to make a decision to the next. When a continuous-
time decision problem is treated as a discrete-time system in this way it is known as a semi-Markov decision process. To a large
extent, such processes can be treated just like any other Markov decision process by taking the reward on each discrete transition as
the integral of the reward over the corresponding continuous-time interval. The notion of return generalizes naturally from a
discounted sum of future rewards to a discounted integral of future rewards:

where on the left is the usual immediate reward in discrete time and on the right is the instantaneous reward at continuous
time . In the elevator problem the continuous-time reward is the negative of the sum of the squared waiting times of all

waiting passengers. The parameter plays a role similar to that of the discount-rate parameter .

The basic idea of the extension of Q-learning to semi-Markov decision problems can now be explained. Suppose the system is in
state and takes action at time , and then the next decision is required at time in state . After this discrete-event transition,

the semi-Markov Q-learning backup for a tabular action-value function, , would be:

Note how acts as a variable discount factor that depends on the amount of time between events. This method is due to
Bradtke and Duff (1995).

One complication is that the reward as defined--the negative sum of the squared waiting times--is not something that would
normally be known while an actual elevator was running. This is because in a real elevator system one does not know how many
people are waiting at a floor, only how long it has been since the button requesting a pickup on that floor was pressed. Of course
this information is known in a simulator, and Crites and Barto used it to obtain their best results. They also experimented with
another technique that used only information that would be known in an on-line learning situation with a real set of elevators. In
this case one can use how long since each button has been pushed together with an estimate of the arrival rate to compute an
expected summed squared waiting time for each floor. Using this in the reward measure proved nearly as effective as using the
actual summed squared waiting time.

For function approximation, a nonlinear neural network trained by backpropagation was used to represent the action-value function.
Crites and Barto experimented with a wide variety of ways of representing states to the network. After much exploration, their best
results were obtained using networks with 47 input units, 20 hidden units, and two output units, one for each action. The way the
state was encoded by the input units was found to be critical to the effectiveness of the learning. The 47 input units were as follows:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node111.html (2 di 4)22/06/2005 9.10.36

11.4 Elevator Dispatching

● 18 units: Two units encoded information about each of the nine hall buttons for down pickup requests. A real-valued unit
encoded the elapsed time if the button had been pushed, and a binary unit was on if the button had not been pushed.

● 16 units: A unit for each possible location and direction for the car whose decision was required. Exactly one of these units
was on at any given time.

● 10 units: The location of the other elevators superimposed over the 10 floors. Each elevator had a "footprint'' that depended
on its direction and speed. For example, a stopped elevator caused activation only on the unit corresponding to its current
floor, but a moving elevator caused activation on several units corresponding to the floors it was approaching, with the
highest activations on the closest floors. No information was provided about which one of the other cars was at a particular
location.

● 1 unit: This unit was on if the elevator whose decision was required was at the highest floor with a passenger waiting.
● 1 unit: This unit was on if the elevator whose decision was required was at the floor with the passenger who had been

waiting for the longest amount of time.
● 1 unit: Bias unit was always on.

Two architectures were used. In RL1, each elevator was given its own action-value function and its own neural network. In RL2,
there was only one network and one action-value function, with the experiences of all four elevators contributing to learning in the
one network. In both cases, each elevator made its decisions independently of the other elevators, but shared a single reward signal
with them. This introduced additional stochasticity as far as each elevator was concerned because its reward depended in part on the
actions of the other elevators, which it could not control. In the architecture in which each elevator had its own action-value
function, it was possible for different elevators to learn different specialized strategies (although in fact they tended to learn the
same strategy). On the other hand, the architecture with a common action-value function could learn faster because it learned
simultaneously from the experiences of all elevators. Training time was an issue here, even though the system was trained in
simulation. The reinforcement learning methods were trained for about four days of computer time on a 100 mips processor
(corresponding to about 60,000 hours of simulated time). While this is a considerable amount of computation, it is negligible
compared with what would be required by any conventional dynamic programming algorithm.

The networks were trained by simulating a great many evening rush hours while making dispatching decisions using the
developing, learned action-value functions. Crites and Barto used the Gibbs softmax procedure to select actions as described in
Section 2.3, reducing the "temperature" gradually over training. A temperature of zero was used during test runs on which the
performance of the learned dispatchers was assessed.

Figure 11.9:Comparison of elevator dispatchers. The SECTOR dispatcher is similar to what is used in many actual elevator
systems. The RL1 and RL2 dispatchers were constructed through reinforcement learning.

Figure 11.9 shows the performance of several dispatchers during a simulated evening rush hour, what researchers call down-peak
traffic. The dispatchers include methods similar to those commonly used in the industry, a variety of heuristic methods,
sophisticated research algorithms that repeatedly run complex optimization algorithms on-line (Bao et al., 1994), and dispatchers
learned by using the two reinforcement learning architectures. By all of the performance measures, the reinforcement learning
dispatchers compare favorably with the others. Although the optimal policy for this problem is unknown, and the state of the art is
difficult to pin down because details of commercial dispatching strategies are proprietary, these learned dispatchers appeared to
perform very well.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node111.html (3 di 4)22/06/2005 9.10.36

11.4 Elevator Dispatching

Next: 11.5 Dynamic Channel Allocation Up: 11. Case Studies Previous: 11.3 The Acrobot Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node111.html (4 di 4)22/06/2005 9.10.36

11.5 Dynamic Channel Allocation

Next: 11.6 Job-Shop Scheduling Up: 11. Case Studies Previous: 11.4 Elevator Dispatching
Contents

11.5 Dynamic Channel Allocation

An important problem in the operation of a cellular telephone system is how to efficiently use the
available bandwidth to provide good service to as many customers as possible. This problem is
becoming critical with the rapid growth in the use of cellular telephones. Here we describe a study
due to Singh and Bertsekas (1997) in which they applied reinforcement learning to this problem.

Mobile telephone systems take advantage of the fact that a communication channel--a band of
frequencies--can be used simultaneously by many callers if these callers are spaced physically far
enough apart that their calls do not interfere with each another. The minimum distance at which there
is no interference is called the channel reuse constraint. In a cellular telephone system, the service
area is divided into a number of regions called cells. In each cell is a base station that handles all the
calls made within the cell. The total available bandwidth is divided permanently into a number of
channels. Channels must then be allocated to cells and to calls made within cells without violating the
channel reuse constraint. There are a great many ways to do this, some of which are better than others
in terms of how reliably they make channels available to new calls, or to calls that are "handed off"
from one cell to another as the caller crosses a cell boundary. If no channel is available for a new or a
handed-off call, the call is lost, or blocked. Singh and Bertsekas considered the problem of allocating
channels so that the number of blocked calls is minimized.

A simple example provides some intuition about the nature of the problem. Imagine a situation with
three cells sharing two channels. The three cells are arranged in a line where no two adjacent cells
can use the same channel without violating the channel reuse constraint. If the left cell is serving a
call on channel 1 while the right cell is serving another call on channel 2, as in the left diagram
below, then any new call arriving in the middle cell must be blocked.

Obviously, it would be better for both the left and the right cells to use channel 1 for their calls. Then
a new call in the middle cell could be assigned channel 2, as in the right diagram, without violating
the channel reuse constraint. Such interactions and possible optimizations are typical of the channel
assignment problem. In larger and more realistic cases with many cells, channels, and calls, and

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node112.html (1 di 5)22/06/2005 9.10.39

11.5 Dynamic Channel Allocation

uncertainty about when and where new calls will arrive or existing calls will have to be handed off,
the problem of allocating channels to minimize blocking can become extremely complex.

The simplest approach is to permanently assign channels to cells in such a way that the channel reuse
constraint can never be violated even if all channels of all cells are used simultaneously. This is
called a fixed assignment method. In a dynamic assignment method, in contrast, all channels are
potentially available to all cells and are assigned to cells dynamically as calls arrive. If this is done
right, it can take advantage of temporary changes in the spatial and temporal distribution of calls in
order to serve more users. For example, when calls are concentrated in a few cells, these cells can be
assigned more channels without increasing the blocking rate in the lightly used cells.

The channel assignment problem can be formulated as a semi-Markov decision process much as the
elevator dispatching problem was in the previous section. A state in the semi-MDP formulation has
two components. The first is the configuration of the entire cellular system that gives for each cell the
usage state (occupied or unoccupied) of each channel for that cell. A typical cellular system with 49
cells and 70 channels has a staggering configurations, ruling out the use of conventional
dynamic programming methods. The other state component is an indicator of what kind of event
caused a state transition: arrival, departure, or handoff. This state component determines what kinds
of actions are possible. When a call arrives, the possible actions are to assign it a free channel or to
block it if no channels are available. When a call departs, that is, when a caller hangs up, the system
is allowed to reassign the channels in use in that cell in an attempt to create a better configuration. At
time the immediate reward, , is the number of calls taking place at that time, and the return is

where plays a role similar to that of the discount-rate parameter . Maximizing the
expectation of this return is the same as minimizing the expected (discounted) number of calls
blocked over an infinite horizon.

This is another problem greatly simplified if treated in terms of afterstates (Section 6.8). For each
state and action, the immediate result is a new configuration, an afterstate. A value function is learned
over just these configurations. To select among the possible actions, the resulting configuration was
determined and evaluated. The action was then selected that would lead to the configuration of
highest estimated value. For example, when a new call arrived at a cell, it could be assigned to any of
the free channels, if there were any; otherwise, it had to be blocked. The new configuration that
would result from each assignment was easy to compute because it was always a simple deterministic
consequence of the assignment. When a call terminated, the newly released channel became available
for reassigning to any of the ongoing calls. In this case, the actions of reassigning each ongoing call
in the cell to the newly released channel were considered. An action was then selected leading to the
configuration with the highest estimated value.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node112.html (2 di 5)22/06/2005 9.10.39

11.5 Dynamic Channel Allocation

Linear function approximation was used for the value function: the estimated value of a configuration
was a weighted sum of features. Configurations were represented by two sets of features: an
availability feature for each cell and a packing feature for each cell-channel pair. For any
configuration, the availability feature for a cell gave the number of additional calls it could accept
without conflict if the rest of the cells were frozen in the current configuration. For any given
configuration, the packing feature for a cell-channel pair gave the number of times that channel was
being used in that configuration within a four-cell radius of that cell. All of these features were
normalized to lie between and 1. A semi-Markov version of linear TD(0) was used to update the
weights.

Singh and Bertsekas compared three channel allocation methods using a simulation of a cellular
array with 70 channels. The channel reuse constraint was that calls had to be 3 cells apart to be
allowed to use the same channel. Calls arrived at cells randomly according to Poisson distributions
possibly having different means for different cells, and call durations were determined randomly by
an exponential distribution with a mean of three minutes. The methods compared were a fixed
assignment method (FA), a dynamic allocation method called "borrowing with directional channel
locking" (BDCL), and the reinforcement learning method (RL). BDCL (Zhang and Yum, 1989) was
the best dynamic channel allocation method they found in the literature. It is a heuristic method that
assigns channels to cells as in FA, but channels can be borrowed from neighboring cells when
needed. It orders the channels in each cell and uses this ordering to determine which channels to
borrow and how calls are dynamically reassigned channels within a cell.

Figure 11.10 shows the blocking probabilities of these methods for mean arrival rates of 150, 200,
and 300 calls/hour as well as for a case in which different cells had different mean arrival rates. The
reinforcement learning method learned on-line. The data shown are for its asymptotic performance,
but in fact learning was rapid. The RL method blocked calls less frequently than did the other
methods for all arrival rates and soon after starting to learn. Note that the differences between the
methods decreased as the call arrival rate increased. This is to be expected because as the system gets
saturated with calls there are fewer opportunities for a dynamic allocation method to set up favorable
usage patterns. In practice, however, it is the performance of the unsaturated system that is most
important. For marketing reasons, cellular telephone systems are built with enough capacity that more
than 10% blocking is rare.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node112.html (3 di 5)22/06/2005 9.10.39

11.5 Dynamic Channel Allocation

Figure 11.10:Performance of FA, BDCL, and RL channel allocation methods for different mean call
arrival rates.

Nie and Haykin (1996) also studied the application of reinforcement learning to dynamic channel
allocation. They formulated the problem somewhat differently than Singh and Bertsekas did. Instead
of trying to minimize the probability of blocking a call directly, their system tried to minimize a more
indirect measure of system performance. Cost was assigned to patterns of channel use depending on
the distances between calls using the same channels. Patterns in which channels were being used by
multiple calls that were close to each other were favored over patterns in which channel-sharing calls
were far apart. Nie and Haykin compared their system with a method called MAXAVAIL (Sivarajan,
McEliece, and Ketchum, 1990), considered to be one of the best dynamic channel allocation
methods. For each new call, it selects the channel that maximizes the total number of channels
available in the entire system. Nie and Haykin showed that the blocking probability achieved by their
reinforcement learning system was closely comparable to that of MAXAVAIL under a variety of
conditions in a 49-cell, 70-channel simulation. A key point, however, is that the allocation policy
produced by reinforcement learning can be implemented on-line much more efficiently than
MAXAVAIL, which requires so much on-line computation that it is not feasible for large systems.

The studies we described in this section are so recent that the many questions they raise have not yet
been answered. We can see, though, that there can be different ways to apply reinforcement learning
to the same real-world problem. In the near future, we expect to see many refinements of these
applications, as well as many new applications of reinforcement learning to problems arising in
communication systems.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node112.html (4 di 5)22/06/2005 9.10.39

11.5 Dynamic Channel Allocation

Next: 11.6 Job-Shop Scheduling Up: 11. Case Studies Previous: 11.4 Elevator Dispatching
Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node112.html (5 di 5)22/06/2005 9.10.39

11.6 Job-Shop Scheduling

Next: Bibliography Up: 11. Case Studies Previous: 11.5 Dynamic Channel Allocation Contents

11.6 Job-Shop Scheduling

Many jobs in industry and elsewhere require completing a collection of tasks while satisfying temporal and
resource constraints. Temporal constraints say that some tasks have to be finished before others can be started;
resource constraints say that two tasks requiring the same resource cannot be done simultaneously (e.g., the same
machine cannot do two tasks at once). The objective is to create a schedule specifying when each task is to begin
and what resources it will use that satisfies all the constraints while taking as little overall time as possible. This is
the job-shop scheduling problem. In its general form, it is NP-complete, meaning that there is probably no
efficient procedure for exactly finding shortest schedules for arbitrary instances of the problem. Job-shop
scheduling is usually done using heuristic algorithms that take advantage of special properties of each specific
instance.

Zhang and Dietterich (1995, 1996; Zhang, 1996) were motivated to apply reinforcement learning to job-shop
scheduling because the design of domain-specific, heuristic algorithms can be expensive and time-consuming.
Their goal was to show how reinforcement learning can be used to learn how to quickly find constraint-satisfying
schedules of short duration in specific domains, thereby reducing the amount of hand engineering required. They
addressed the NASA space shuttle payload processing problem (SSPP), which requires scheduling the tasks
required for installation and testing of shuttle cargo bay payloads. An SSPP typically requires scheduling for two
to six shuttle missions, each requiring between 34 and 164 tasks. An example of a task is MISSION-SEQUENCE-
TEST, which has a duration of 7200 time units and requires the following resources: two quality control officers,
two technicians, one ATE, one SPCDS, and one HITS. Some resources are divided into pools, and if a task needs
more than one resource of a specific type, the resources must belong to the same pool, and the pool has to be the
right one. For example, if a task needs two quality control officers, they both have to be in the pool of quality
control officers working on the same shift at the right site. It is not too hard to find a conflict-free schedule for a
job, one that meets all the temporal and resource constraints, but the objective is to find a conflict-free schedule
with the shortest possible total duration, which is much more difficult.

How can you do this using reinforcement learning? Job-shop scheduling is usually formulated as a search in the
space of schedules, what is called a discrete, or combinatorial, optimization problem. A typical solution method
would sequentially generate schedules, attempting to improve each over its predecessor in terms of constraint
violations and duration (a hill-climbing, or local search, method). You could think of this as a nonassociative
reinforcement learning problem of the type we discussed in Chapter 2 with a very large number of possible
actions: all the possible schedules! But aside from the problem of having so many actions, any solution obtained
this way would just be a single schedule for a single job instance. In contrast, what Zhang and Dietterich wanted
their learning system to end up with was a policy that could quickly find good schedules for any SSPP. They
wanted it to learn a skill for job-shop scheduling in this specific domain.

For clues about how to do this, they looked to an existing optimization approach to SSPP, in fact, the one actually
in use by NASA at the time of their research: the iterative repair method developed by Zweben and Daun (1994).
The starting point for the search is a critical path schedule, a schedule that meets the temporal constraints but
ignores the resource constraints. This schedule can be constructed efficiently by scheduling each task prior to
launch as late as the temporal constraints permit, and each task after landing as early as these constraints permit.
Resource pools are assigned randomly. Two types of operators are used to modify schedules. They can be applied
to any task that violates a resource constraint. A REASSIGN-POOL operator changes the pool assigned to one of
the task's resources. This type of operator applies only if it can reassign a pool so that the resource requirement is
satisfied. A MOVE operator moves a task to the first earlier or later time at which its resource needs can be

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node113.html (1 di 5)22/06/2005 9.10.42

11.6 Job-Shop Scheduling

satisfied and uses the critical path method to reschedule all of the task's temporal dependents.

At each step of the iterative repair search, one operator is applied to the current schedule, selected according to
the following rules. The earliest task with a resource constraint violation is found, and a REASSIGN-POOL
operator is applied to this task if possible. If more than one applies, that is, if several different pool reassignments
are possible, one is selected at random. If no REASSIGN-POOL operator applies, then a MOVE operator is selected
at random based on a heuristic that prefers short-distance moves of tasks having few temporal dependents and
whose resource requirements are close to the task's overallocation. After an operator is applied, the number of
constraint violations of the resulting schedule is determined. A simulated annealing procedure is used decide
whether to accept or reject this new schedule. If denotes the number of constraint violations removed by the

repair, then the new schedule is accepted with probability , where is the current computational
temperature that is gradually decreased throughout the search. If accepted, the new schedule becomes the current
schedule for the next iteration; otherwise, the algorithm attempts to repair the old schedule again, which will
usually produce different results due to the random decisions involved. Search stops when all constraints are
satisfied. Short schedules are obtained by running the algorithm several times and selecting the shortest of the
resulting conflict-free schedules.

Zhang and Dietterich treated entire schedules as states in the sense of reinforcement learning. The actions were
the applicable REASSIGN-POOL and MOVE operators, typically numbering about 20. The problem was treated as
episodic, each episode starting with the same critical path schedule that the iterative repair algorithm would start
with and ending when a schedule was found that did not violate any constraint. The initial state--a critical path
schedule--is denoted . The rewards were designed to promote the quick construction of conflict-free schedules
of short duration. The system received a small negative reward () on each step that resulted in a schedule
that still violated a constraint. This encouraged the agent to find conflict-free schedules quickly, that is, with a
small number of repairs to . Encouraging the system to find short schedules is more difficult because what it
means for a schedule to be short depends on the specific SSPP instance. The shortest schedule for a difficult
instance, one with a lot of tasks and constraints, will be longer than the shortest schedule for a simpler instance.
Zhang and Dietterich devised a formula for a resource dilation factor (RDF), intended to be an instance-
independent measure of a schedule's duration. To account for an instance's intrinsic difficulty, the formula makes
use of a measure of the resource overallocation of . Since longer schedules tend to produce larger RDFs, the
negative of the RDF of the final conflict-free schedule was used as a reward at the end of each episode. With this
reward function, if it takes repairs starting from a schedule to obtain a final conflict-free schedule, , the

return from is .

This reward function was designed to try to make a system learn to satisfy the two goals of finding conflict-free
schedules of short duration and finding conflict-free schedules quickly. But the reinforcement learning system
really has only one goal--maximizing expected return--so the particular reward values determine how a learning
system will tend to trade off these two goals. Setting the immediate reward to the small value of means
that the learning system will regard one repair, one step in the scheduling process, as being worth units of
RDF. So, for example, if from some schedule it is possible to produce a conflict-free schedule with one repair or
with two, an optimal policy will take extra repair only if it promises a reduction in final RDF of more than .

Zhang and Dietterich used TD() to learn the value function. Function approximation was by a multilayer neural

network trained by backpropagating TD errors. Actions were selected by an -greedy policy, with decreasing
during learning. One-step lookahead search was used to find the greedy action. Their knowledge of the problem
made it easy to predict the schedules that would result from each repair operation. They experimented with a
number of modifications to this basic procedure to improve its performance. One was to use the TD() algorithm
backward after each episode, with the eligibility trace extending to future rather than to past states. Their results
suggested that this was more accurate and efficient than forward learning. In updating the weights of the network,
they also sometimes performed multiple weight updates when the TD error was large. This is apparently

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node113.html (2 di 5)22/06/2005 9.10.42

11.6 Job-Shop Scheduling

equivalent to dynamically varying the step-size parameter in an error-dependent way during learning.

They also tried an experience replay technique due to Lin (1992). At any point in learning, the agent remembered
the best episode up to that point. After every four episodes, it replayed this remembered episode, learning from it
as if it were a new episode. At the start of training, they similarly allowed the system to learn from episodes
generated by a good scheduler, and these could also be replayed later in learning. To make the lookahead search
faster for large-scale problems, which typically had a branching factor of about 20, they used a variant they called
random sample greedy search that estimated the greedy action by considering only random samples of actions,
increasing the sample size until a preset confidence was reached that the greedy action of the sample was the true
greedy action. Finally, having discovered that learning could be slowed considerably by excessive looping in the
scheduling process, they made their system explicitly check for loops and alter action selections when a loop was
detected. Although all of these techniques could improve the efficiency of learning, it is not clear how crucial all
of them were for the success of the system.

Zhang and Dietterich experimented with two different network architectures. In the first version of their system,
each schedule was represented using a set of 20 handcrafted features. To define these features, they studied small
scheduling problems to find features that had some ability to predict RDF. For example, experience with small
problems showed that only four of the resource pools tended to cause allocation problems. The mean and standard
deviation of each of these pools' unused portions over the entire schedule were computed, resulting in 10 real-
valued features. Two other features were the RDF of the current schedule and the percentage of its duration
during which it violated resource constraints. The network had 20 input units, one for each feature, a hidden layer
of 40 sigmoidal units, and an output layer of 8 sigmoidal units. The output units coded the value of a schedule
using a code in which, roughly, the location of the activity peak over the 8 units represented the value. Using the
appropriate TD error, the network weights were updated using error backpropagation, with the multiple weight-
update technique mentioned above.

The second version of the system (Zhang and Dietterich, 1996) used a more complicated time-delay neural
network (TDNN) borrowed from the field of speech recognition (Lang, Waibel, and Hinton, 1990). This version
divided each schedule into a sequence of blocks (maximal time intervals during which tasks and resource
assignments did not change) and represented each block by a set of features similar to those used in the first
program. It then scanned a set of "kernel" networks across the blocks to create a set of more abstract features.
Since different schedules had different numbers of blocks, another layer averaged these abstract features over
each third of the blocks. Then a final layer of 8 sigmoidal output units represented the schedule's value using the
same code as in the first version of the system. In all, this network had 1123 adjustable weights.

A set of 100 artificial scheduling problems was constructed and divided into subsets used for training,
determining when to stop training (a validation set), and final testing. During training they tested the system on
the validation set after every 100 episodes and stopped training when performance on the validation set stopped
changing, which generally took about 10,000 episodes. They trained networks with different values of (0.2 and
0.7), with three different training sets, and they saved both the final set of weights and the set of weights
producing the best performance on the validation set. Counting each set of weights as a different network, this
produced 12 networks, each of which corresponded to a different scheduling algorithm.

Figure 11.11 shows how the mean performance of the 12 TDNN networks (labeled G12TDN) compared with the
performances of two versions of Zweben and Daun's iterative repair algorithm, one using the number of
constraint violations as the function to be minimized by simulated annealing (IR-V) and the other using the RDF
measure (IR-RDF). The figure also shows the performance of the first version of their system that did not use a
TDNN (G12N). The mean RDF of the best schedule found by repeatedly running an algorithm is plotted against
the total number of schedule repairs (using a log scale). These results show that the learning system produced
scheduling algorithms that needed many fewer repairs to find conflict-free schedules of the same quality as those
found by the iterative repair algorithms. Figure 11.12 compares the computer time required by each scheduling

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node113.html (3 di 5)22/06/2005 9.10.42

11.6 Job-Shop Scheduling

algorithm to find schedules of various RDFs. According to this measure of performance, the best trade-off
between computer time and schedule quality is produced by the non-TDNN algorithm (G12N). The TDNN
algorithm (G12TDN) suffered due to the time it took to apply the kernel-scanning process, but Zhang and
Dietterich point out that there are many ways to make it run faster.

Figure 11.11:Comparison of accepted schedule repairs. Reprinted with permission from Zhang and Dietterich,
1996.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node113.html (4 di 5)22/06/2005 9.10.42

11.6 Job-Shop Scheduling

Figure 11.12:Comparison of CPU time. Reprinted with permission from Zhang and Dietterich, 1996.

These results do not unequivocally establish the utility of reinforcement learning for job-shop scheduling or for
other difficult search problems. But they do suggest that it is possible to use reinforcement learning methods to
learn how to improve the efficiency of search. Zhang and Dietterich's job-shop scheduling system is the first
successful instance of which we are aware in which reinforcement learning was applied in plan-space, that is, in
which states are complete plans (job-shop schedules in this case), and actions are plan modifications. This is a
more abstract application of reinforcement learning than we are used to thinking about. Note that in this
application the system learned not just to efficiently create one good schedule, a skill that would not be
particularly useful; it learned how to quickly find good schedules for a class of related scheduling problems. It is
clear that Zhang and Dietterich went through a lot of trial-and-error learning of their own in developing this
example. But remember that this was a groundbreaking exploration of a new aspect of reinforcement learning.
We expect that future applications of this kind and complexity will become more routine as experience
accumulates.

Next: Bibliography Up: 11. Case Studies Previous: 11.5 Dynamic Channel Allocation Contents
Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node113.html (5 di 5)22/06/2005 9.10.42

Bibliography

Next: Index Up: Book Previous: 11.6 Job-Shop Scheduling Contents

Bibliography

Agre, 1988
Agre, P. E. (1988).
The Dynamic Structure of Everyday Life.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.
AI-TR 1085, MIT Artificial Intelligence Laboratory.

Agre and Chapman, 1990
Agre, P. E. and Chapman, D. (1990).
What are plans for?
Robotics and Autonomous Systems, 6:17-34.

Albus, 1971
Albus, J. S. (1971).
A theory of cerebellar function.
Mathematical Biosciences, 10:25-61.

Albus, 1981
Albus, J. S. (1981).
Brain, Behavior, and Robotics.
Byte Books.

Anderson, 1986
Anderson, C. W. (1986).
Learning and Problem Solving with Multilayer Connectionist Systems.
PhD thesis, University of Massachusetts, Amherst, MA.

Anderson, 1987
Anderson, C. W. (1987).
Strategy learning with multilayer connectionist representations.
Technical Report TR87-509.3, GTE Laboratories, Incorporated, Waltham, MA.
(This is a corrected version of the report published in Proceedings of the Fourth International
Workshop on Machine Learning,103-114, 1987, San Mateo, CA: Morgan Kaufmann.).

Anderson et al., 1977
Anderson, J. A., Silversten, J. W., Ritz, S. A., and Jones, R. S. (1977).
Distinctive features, categorical perception, and probability learning: Some applications of a
neural model.
Psychological Review, 84:413-451.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (1 di 39)22/06/2005 9.10.46

Bibliography

Andreae, 1963
Andreae, J. H. (1963).
STELLA: A scheme for a learning machine.
In Proceedings of the 2nd IFAC Congress, Basle, pages 497-502, London. Butterworths.

Andreae, 1969a
Andreae, J. H. (1969a).
A learning machine with monologue.
International Journal of Man-Machine Studies, 1:1-20.

Andreae, 1969b
Andreae, J. H. (1969b).
Learning machines--a unified view.
In Meetham, A. R. and Hudson, R. A., editors, Encyclopedia of Information, Linguistics, and
Control, pages 261-270. Pergamon, Oxford.

Andreae, 1977
Andreae, J. H. (1977).
Thinking with the Teachable Machine.
Academic Press, London.

Baird, 1995
Baird, L. C. (1995).
Residual algorithms: Reinforcement learning with function approximation.
In Prieditis, A. and Russell, S., editors, Proceedings of the Twelfth International Conference
on Machine Learning, pages 30-37, San Francisco, CA. Morgan Kaufmann.

Bao et al., 1994
Bao, G., Cassandras, C. G., Djaferis, T. E., Gandhi, A. D., and Looze, D. P. (1994).
Elevator dispatchers for down peak traffic.
Technical report, ECE Department, University of Massachusetts.

Barnard, 1993
Barnard, E. (1993).
Temporal-difference methods and Markov models.
IEEE Transactions on Systems, Man, and Cybernetics, 23:357-365.

Barto, 1985
Barto, A. G. (1985).
Learning by statistical cooperation of self-interested neuron-like computing elements.
Human Neurobiology, 4:229-256.

Barto, 1986
Barto, A. G. (1986).
Game-theoretic cooperativity in networks of self-interested units.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (2 di 39)22/06/2005 9.10.46

Bibliography

In Denker, J. S., editor, Neural Networks for Computing, pages 41-46. American Institute of
Physics, New York.

Barto, 1990
Barto, A. G. (1990).
Connectionist learning for control: An overview.
In Miller, T., Sutton, R. S., and Werbos, P. J., editors, Neural Networks for Control, pages 5-
58. MIT Press, Cambridge, MA.

Barto, 1991
Barto, A. G. (1991).
Some learning tasks from a control perspective.
In Nadel, L. and Stein, D. L., editors, 1990 Lectures in Complex Systems, pages 195-223.
Addison-Wesley Publishing Company, The Advanced Book Program, Redwood City, CA.

Barto, 1992
Barto, A. G. (1992).
Reinforcement learning and adaptive critic methods.
In White, D. A. and Sofge, D. A., editors, Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches, pages 469-491. Van Nostrand Reinhold, New York.

Barto, 1995a
Barto, A. G. (1995a).
Adaptive critics and the basal ganglia.
In Houk, J. C., Davis, J. L., and Beiser, D. G., editors, Models of Information Processing in
the Basal Ganglia, pages 215-232. MIT Press, Cambridge, MA.

Barto, 1995b
Barto, A. G. (1995b).
Reinforcement learning.
In Arbib, M. A., editor, Handbook of Brain Theory and Neural Networks, pages 804-809. The
MIT Press, Cambridge, MA.

Barto and Anandan, 1985
Barto, A. G. and Anandan, P. (1985).
Pattern recognizing stochastic learning automata.
IEEE Transactions on Systems, Man, and Cybernetics, 15:360-375.

Barto and Anderson, 1985
Barto, A. G. and Anderson, C. W. (1985).
Structural learning in connectionist systems.
In Program of the Seventh Annual Conference of the Cognitive Science Society, pages 43-54,
Irvine, CA.

Barto et al., 1982

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (3 di 39)22/06/2005 9.10.46

Bibliography

Barto, A. G., Anderson, C. W., and Sutton, R. S. (1982).
Synthesis of nonlinear control surfaces by a layered associative search network.
Biological Cybernetics, 43:175-185.

Barto et al., 1991
Barto, A. G., Bradtke, S. J., and Singh, S. P. (1991).
Real-time learning and control using asynchronous dynamic programming.
Technical Report 91-57, Department of Computer and Information Science, University of
Massachusetts, Amherst, MA.

Barto et al., 1995
Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995).
Learning to act using real-time dynamic programming.
Artificial Intelligence, 72:81-138.

Barto and Duff, 1994
Barto, A. G. and Duff, M. (1994).
Monte carlo matrix inversion and reinforcement learning.
In Cohen, J. D., Tesauro, G., and Alspector, J., editors, Advances in Neural Information
Processing Systems: Proceedings of the 1993 Conference, pages 687-694, San Francisco, CA.
Morgan Kaufmann.

Barto and Jordan, 1987
Barto, A. G. and Jordan, M. I. (1987).
Gradient following without back-propagation in layered networks.
In Caudill, M. and Butler, C., editors, Proceedings of the IEEE First Annual Conference on
Neural Networks, pages II629-II636, San Diego, CA.

Barto and Sutton, 1981a
Barto, A. G. and Sutton, R. S. (1981a).
Goal seeking components for adaptive intelligence: An initial assessment.
Technical Report AFWAL-TR-81-1070, Air Force Wright Aeronautical Laboratories/
Avionics Laboratory, Wright-Patterson AFB, OH.

Barto and Sutton, 1981b
Barto, A. G. and Sutton, R. S. (1981b).
Landmark learning: An illustration of associative search.
Biological Cybernetics, 42:1-8.

Barto and Sutton, 1982
Barto, A. G. and Sutton, R. S. (1982).
Simulation of anticipatory responses in classical conditioning by a neuron-like adaptive
element.
Behavioural Brain Research, 4:221-235.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (4 di 39)22/06/2005 9.10.46

Bibliography

Barto et al., 1983
Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983).
Neuronlike elements that can solve difficult learning control problems.
IEEE Transactions on Systems, Man, and Cybernetics, 13:835-846.
Reprinted in J. A. Anderson and E. Rosenfeld, Neurocomputing: Foundations of Research,
MIT Press, Cambridge, MA, 1988.

Barto et al., 1981
Barto, A. G., Sutton, R. S., and Brouwer, P. S. (1981).
Associative search network: A reinforcement learning associative memory.
IEEE Transactions on Systems, Man, and Cybernetics, 40:201-211.

Bellman and Dreyfus, 1959
Bellman, R. and Dreyfus, S. E. (1959).
Functional approximations and dynamic programming.
Math Tables and Other Aides to Computation, 13:247-251.

Bellman et al., 1973
Bellman, R., Kalaba, R., and Kotkin, B. (1973).
Polynomial approximation--A new computational technique in dynamic programming:
Allocation processes.
Mathematical Computation, 17:155-161.

Bellman, 1956
Bellman, R. E. (1956).
A problem in the sequential design of experiments.
Sankhya, 16:221-229.

Bellman, 1957a
Bellman, R. E. (1957a).
Dynamic Programming.
Princeton University Press, Princeton, NJ.

Bellman, 1957b
Bellman, R. E. (1957b).
A Markov decision process.
Journal of Mathematical Mech., 6:679-684.

Berry and Fristedt, 1985
Berry, D. A. and Fristedt, B. (1985).
Bandit Problems.
Chapman and Hall, London.

Bertsekas, 1982
Bertsekas, D. P. (1982).

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (5 di 39)22/06/2005 9.10.46

Bibliography

Distributed dynamic programming.
IEEE Transactions on Automatic Control, 27:610-616.

Bertsekas, 1983
Bertsekas, D. P. (1983).
Distributed asynchronous computation of fixed points.
Mathematical Programming, 27:107-120.

Bertsekas, 1987
Bertsekas, D. P. (1987).
Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Englewood Cliffs, NJ.

Bertsekas, 1995
Bertsekas, D. P. (1995).
Dynamic Programming and Optimal Control.
Athena, Belmont, MA.

Bertsekas and Tsitsiklis, 1989
Bertsekas, D. P. and Tsitsiklis, J. N. (1989).
Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, Englewood Cliffs, NJ.

Bertsekas and Tsitsiklis, 1996
Bertsekas, D. P. and Tsitsiklis, J. N. (1996).
Neural Dynamic Programming.
Athena Scientific, Belmont, MA.

Biermann et al., 1982
Biermann, A. W., Fairfield, J. R. C., and Beres, T. R. (1982).
Signature table systems and learning.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-12:635-648.

Bishop, 1995
Bishop, C. M. (1995).
Neural Networks for Pattern Recognition.
Clarendon, Oxford.

Booker, 1982
Booker, L. B. (1982).
Intelligent Behavior as an Adaptation to the Task Environment.
PhD thesis, University of Michigan, Ann Arbor, MI.

Boone, 1997
Boone, G. (1997).

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (6 di 39)22/06/2005 9.10.46

Bibliography

Minimum-time control of the acrobot.
In 1997 International Conference on Robotics and Automation, Albuquerque, NM.

Boutilier et al., 1995
Boutilier, C., Dearden, R., and Goldszmidt, M. (1995).
Exploiting structure in policy construction.
In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence.

Boyan and Moore, 1995
Boyan, J. A. and Moore, A. W. (1995).
Generalization in reinforcement learning: Safely approximating the value functions.
In G. Tesauro, D. Touretzky, T. L., editor, Advances in Neural Information Processing
Systems: Proceedings of the 1994 Conference, pages 369-376, San Mateo, CA. Morgan
Kaufmann.

Boyan et al., 1995
Boyan, J. A., Moore, A. W., and Sutton, R. S., editors (1995).
Proceedings of the Workshop on Value Function Approximation. Machine Learning
Conference 1995, Pittsburgh, PA. School of Computer Science, Carnegie Mellon University.
Technical Report CMU-CS-95-206.

Bradtke, 1993
Bradtke, S. J. (1993).
Reinforcement learning applied to linear quadratic regulation.
In S. J. Hanson, J. D. Cowan, C. L. G., editor, Advances in Neural Information Processing
Systems: Proceedings of the 1992 Conference, pages 295-302, San Mateo, CA. Morgan
Kaufmann.

Bradtke, 1994
Bradtke, S. J. (1994).
Incremental Dynamic Programming for On-Line Adaptive Optimal Control.
PhD thesis, University of Massachusetts, Amherst.
Appeared as CMPSCI Technical Report 94-62.

Bradtke and Barto, 1996
Bradtke, S. J. and Barto, A. G. (1996).
Linear least-squares algorithms for temporal difference learning.
Machine Learning, 22:33-57.

Bradtke and Duff, 1995
Bradtke, S. J. and Duff, M. O. (1995).
Reinforcement learning methods for continuous-time Markov decision problems.
In G. Tesauro, D. Touretzky, T. L., editor, Advances in Neural Information Processing
Systems: Proceedings of the 1994 Conference, pages 393-400, San Mateo, CA. Morgan
Kaufmann.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (7 di 39)22/06/2005 9.10.46

Bibliography

Bridle, 1990
Bridle, J. S. (1990).
Training stochastic model recognition algorithms as networks can lead to maximum mutual
information estimates of parameters.
In Touretzky, D. S., editor, Advances in Neural Information Processing Systems 2, pages 211-
217, San Mateo, CA. Morgan Kaufmann.

Broomhead and Lowe, 1988
Broomhead, D. S. and Lowe, D. (1988).
Multivariable functional interpolation and adaptive networks.
Complex Systems, 2:321-355.

Bryson, 1996
Bryson, Jr., A. E. (1996).
Optimal control--1950 to 1985.
IEEE Control Systems, 13(3):26-33.

Bush and Mosteller, 1955
Bush, R. R. and Mosteller, F. (1955).
Stochastic Models for Learning.
Wiley, New York.

Byrne et al., 1990
Byrne, J. H., Gingrich, K. J., and Baxter, D. A. (1990).
Computational capabilities of single neurons: Relationship to simple forms of associative and
nonassociative learning in aplysia.
In Hawkins, R. D. and Bower, G. H., editors, Computational Models of Learning, pages 31-
63. Academic Press, New York.

Campbell, 1959
Campbell, D. T. (1959).
Blind variation and selective survival as a general strategy in knowledge-processes.
In Yovits, M. C. and Cameron, S., editors, Self-Organizing Systems, pages 205-231.
Pergamon.

Carlström and Nordström, 1997
Carlström, J. and Nordström, E. (1997).
Control of self-similar ATM call traffic by reinforcement learning.
In Proceedings of the International Workshop on Applications of Neural Networks to
Telecommunications 3, Hillsdale NJ. Lawrence Erlbaum.

Chapman and Kaelbling, 1991
Chapman, D. and Kaelbling, L. P. (1991).
Input generalization in delayed reinforcement learning: An algorithm and performance
comparisons.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (8 di 39)22/06/2005 9.10.46

Bibliography

In Proceedings of the 1991 International Joint Conference on Artificial Intelligence.

Chow and Tsitsiklis, 1991
Chow, C.-S. and Tsitsiklis, J. N. (1991).
An optimal one-way multigrid algorithm for discrete-time stochastic control.
IEEE Transactions on Automatic Control, 36:898-914.

Chrisman, 1992
Chrisman, L. (1992).
Reinforcement learning with perceptual aliasing: The perceptual distinctions approach.
In Proceedings of the Tenth National Conference on Artificial Intelligence, pages 183-188,
Menlo Park, CA. AAAI Press/MIT Press.

Christensen and Korf, 1986
Christensen, J. and Korf, R. E. (1986).
A unified theory of heuristic evaluation functions and its application to learning.
In Proceedings of the Fifth National Conference on Artificial Intelligence AAAI-86, pages 148-
152, San Mateo, CA. Morgan Kaufmann.

Cichosz, 1995
Cichosz, P. (1995).

Truncating temporal differences: On the efficient implementation of TD() for
reinforcement learning.
Journal of Artificial Intelligence Research, 2:287-318.

Clark and Farley, 1955
Clark, W. A. and Farley, B. G. (1955).
Generalization of pattern recognition in a self-organizing system.
In Proceedings of the 1955 Western Joint Computer Conference, pages 86-91.

Clouse, 1997
Clouse, J. (1997).
On Integrating Apprentice Learning and Reinforcement Learning TITLE2.
PhD thesis, University of Massachusetts, Amherst.
Appeared as CMPSCI Technical Report 96-026.

Clouse and Utgoff, 1992
Clouse, J. and Utgoff, P. (1992).
A teaching method for reinforcement learning systems.
In Proceedings of the Ninth International Machine Learning Conference, pages 92-101.

Colombetti and Dorigo, 1994
Colombetti, M. and Dorigo, M. (1994).
Training agent to perform sequential behavior.
Adaptive Behavior, 2(3):247-275.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (9 di 39)22/06/2005 9.10.46

Bibliography

Connell, 1989
Connell, J. (1989).
A colony architecture for an artificial creature.
Technical Report AI-TR-1151, MIT Artificial Intelligence Laboratory, Cambridge, MA.

Craik, 1943
Craik, K. J. W. (1943).
The Nature of Explanation.
Cambridge University Press, Cambridge.

Crites, 1996
Crites, R. H. (1996).
Large-Scale Dynamic Optimization Using Teams of Reinforcement Learning Agents.
PhD thesis, University of Massachusetts, Amherst, MA.

Crites and Barto, 1996
Crites, R. H. and Barto, A. G. (1996).
Improving elevator performance using reinforcement learning.
In D. S. Touretzky, M. C. Mozer, M. E. H., editor, Advances in Neural Information
Processing Systems: Proceedings of the 1995 Conference, pages 1017-1023, Cambridge, MA.
MIT Press.

Curtiss, 1954
Curtiss, J. H. (1954).
A theoretical comparison of the efficiencies of two classical methods and a monte carlo
method for computing one component of the solution of a set of linear algebraic equations.
In Meyer, H. A., editor, Symposium on Monte Carlo Methods, pages 191-233. Wiley, New
York.

Cziko, 1995
Cziko, G. (1995).
Without Miracles. Universal Selection Theory and the Second Darvinian Revolution.
The MIT Press.

Daniel, 1976
Daniel, J. W. (1976).
Splines and efficiency in dynamic programming.
Journal of Mathematical Analysis and Applications, 54:402-407.

Dayan, 1991
Dayan, P. (1991).
Reinforcement comparison.
In Touretzky, D. S., Elman, J. L., Sejnowski, T. J., and Hinton, G. E., editors, Connectionist
Models: Proceedings of the 1990 Summer School, pages 45-51. Morgan Kaufmann, San

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (10 di 39)22/06/2005 9.10.46

Bibliography

Mateo, CA.

Dayan, 1992
Dayan, P. (1992).

The convergence of TD() for general .
Machine Learning, 8:341-362.

Dayan and Hinton, 1993
Dayan, P. and Hinton, G. E. (1993).
Feudal reinforcement learning.
In Hanson, S. J., Cohen, J. D., and Giles, C. L., editors, Advances in Neural Information
Processing Systems: Proceedings of the 1992 Conference, pages 271-278, San Mateo, CA.
Morgan Kaufmann.

Dayan and Sejnowski, 1994
Dayan, P. and Sejnowski, T. (1994).

TD() converges with probability 1.
Machine Learning, 14:295-301.

Dean and Lin, 1995
Dean, T. and Lin, S.-H. (1995).
Decomposition techniques for planning in stochastic domains.
In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence.

DeJong and Spong, 1994
DeJong, G. and Spong, M. W. (1994).
Swinging up the acrobot: An example of intelligent control.
In Proceedings of the American Control Conference, pages 2158-2162.

Denardo, 1967
Denardo, E. V. (1967).
Contraction mappings in the theory underlying dynamic programming.
SIAM Review, 9:165-177.

Dennett, 1978
Dennett, D. C. (1978).
Brainstorms, chapter Why the Law-of-Effect Will Not Go Away, pages 71-89.
Bradford/MIT Press, Cambridge, MA.

Dietterich and Flann, 1995
Dietterich, T. G. and Flann, N. S. (1995).
Explanation-based learning and reinforcement learning: A unified view.
In Prieditis, A. and Russell, S., editors, Proceedings of the Twelfth International Conference
on Machine Learning, pages 176-184, San Francisco, CA. Morgan Kaufmann.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (11 di 39)22/06/2005 9.10.46

Bibliography

Doya, 1996
Doya, K. (1996).
Temporal difference learing in continuous time and space.
In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors, Advances in Neural
Information Processing Systems: Proceedings of the 1995 Conference, pages 1073-1079,
Cambridge, MA. MIT Press.

Doyle and Snell, 1984
Doyle, P. G. and Snell, J. L. (1984).
Random Walks and Electric Networks.
The Mathematical Association of America.
Carus Mathematical Monograph 22.

Dreyfus and Law, 1977
Dreyfus, S. E. and Law, A. M. (1977).
The Art and Theory of Dynamic Programming.
Academic Press, New York.

Duda and Hart, 1973
Duda, R. O. and Hart, P. E. (1973).
Pattern Classification and Scene Analysis.
Wiley, New York.

Duff, 1995
Duff, M. O. (1995).
Q-learning for bandit problems.
In Prieditis, A. and Russell, S., editors, Proceedings of the Twelfth International Conference
on Machine Learning, pages 209-217, San Francisco, CA. Morgan Kaufmann.

Estes, 1950
Estes, W. K. (1950).
Toward a statistical theory of learning.
Psychololgical Review, 57:94-107.

Farley and Clark, 1954
Farley, B. G. and Clark, W. A. (1954).
Simulation of self-organizing systems by digital computer.
IRE Transactions on Information Theory, 4:76-84.

Feldbaum, 1960
Feldbaum, A. A. (1960).
Optimal Control Theory.
Academic Press, New York.

Friston et al., 1994

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (12 di 39)22/06/2005 9.10.46

Bibliography

Friston, K. J., Tononi, G., Reeke, G. N., Sporns, O., and Edelman, G. M. (1994).
Value-dependent selection in the brain: Simulation in a synthetic neural model.
Neuroscience, 59:229-243.

Fu, 1970
Fu, K. S. (1970).
Learning control systems--Review and outlook.
IEEE Transactions on Automatic Control, pages 210-221.

Galanter and Gerstenhaber, 1956
Galanter, E. and Gerstenhaber, M. (1956).
On thought: The extrinsic theory.
Psychological Review, 63:218-227.

Gällmo and Asplund, 1995
Gällmo, O. and Asplund, H. (1995).
Reinforcement learning by construction of hypothetical targets.
In Alspector, J., Goodman, R., and Brown, T. X., editors, Proceedings of the International
Workshop on Applications of Neural Networks to Telecommunications 2, pages 300-307.
Stockholm, Sweden.

Gardner, 1973
Gardner, M. (1973).
Mathematical games.
Scientific American, 228:108.

Gelperin et al., 1985
Gelperin, A., Hopfield, J. J., and Tank, D. W. (1985).
The logic of limax learning.
In Selverston, A., editor, Model Neural Networks and Behavior. Plenum Press, New York.

Gittins and Jones, 1974
Gittins, J. C. and Jones, D. M. (1974).
A dynamic allocation index for the sequential design of experiments.
Progress in Statistics, pages 241-266.

Goldberg, 1989
Goldberg, D. E. (1989).
Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, MA.

Goldstein, 1957
Goldstein, H. (1957).
Classical Mechanics.
Addison-Wesley, Reading, MA.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (13 di 39)22/06/2005 9.10.46

Bibliography

Goodwin and Sin, 1984
Goodwin, G. C. and Sin, K. S. (1984).
Adaptive Filtering Prediction and Control.
Prentice-Hall, Englewood Cliffs, N.J.

Gordon, 1995
Gordon, G. J. (1995).
Stable function approximation in dynamic programming.
In Prieditis, A. and Russell, S., editors, Proceedings of the Twelfth International Conference
on Machine Learning, pages 261-268, San Francisco, CA. Morgan Kaufmann.
An expanded version was published as Technical Report CMU-CS-95-103, Carnegie Mellon
University, Pittsburgh, PA, 1995.

Gordon, 1996
Gordon, G. J. (1996).
Stable fitted reinforcement learning.
In D. S. Touretzky, M. C. Mozer, M. E. H., editor, Advances in Neural Information
Processing Systems: Proceedings of the 1995 Conference, pages 1052-1058, Cambridge, MA.
MIT Press.

Griffith, 1966
Griffith, A. K. (1966).
A new machine learning technique applied to the game of checkers.
Technical Report Project MAC Artificial Intelligence Memo 94, Massachusetts Institute of
Technology.

Griffith, 1974
Griffith, A. K. (1974).
A comparison and evaluation of three machine learning procedures as applied to the game of
checkers.
Artificial Intelligence, 5:137-148.

Gullapalli, 1990
Gullapalli, V. (1990).
A stochastic reinforcement algorithm for learning real-valued functions.
Neural Networks, 3:671-692.

Gurvits et al., 1994
Gurvits, L., Lin, L.-J., and Hanson, S. J. (1994).
Incremental learning of evaluation functions for absorbing Markov chains: New methods and
theorems.
Preprint.

Hampson, 1983

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (14 di 39)22/06/2005 9.10.46

Bibliography

Hampson, S. E. (1983).
A Neural Model of Adaptive Behavior.
PhD thesis, University of California, Irvine, CA.

Hampson, 1989
Hampson, S. E. (1989).
Connectionist Problem Solving: Computational Aspects of Biological Learning.
Birkhauser, Boston.

Hawkins and Kandel, 1984
Hawkins, R. D. and Kandel, E. R. (1984).
Is there a cell-biological alphabet for simple forms of learning?
Psychological Review, 91:375-391.

Hersh and Griego, 1969
Hersh, R. and Griego, R. J. (1969).
Brownian motion and potential theory.
Scientific American, pages 66-74.

Hilgard and Bower, 1975
Hilgard, E. R. and Bower, G. H. (1975).
Theories of Learning.
Prentice-Hall, Englewood Cliffs, NJ.

Hinton, 1984
Hinton, G. E. (1984).
Distributed representations.
Technical Report CMU-CS-84-157, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA.

Hochreiter and Schmidhuber, 1997
Hochreiter, S. and Schmidhuber, J. (1997).
Long short-term memory.
Neural Computation.

Holland, 1975
Holland, J. H. (1975).
Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor.

Holland, 1976
Holland, J. H. (1976).
Adaptation.
In Rosen, R. and Snell, F. M., editors, Progress in Theoretical Biology, volume 4, pages 263-
293. Academic Press, NY.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (15 di 39)22/06/2005 9.10.46

Bibliography

Holland, 1986
Holland, J. H. (1986).
Escaping brittleness: The possibility of general-purpose learning algorithms applied to rule-
based systems.
In Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., editors, Machine Learning: An
Artificial Intelligence Approach, Volume II, pages 593-623. Morgan Kaufmann, San Mateo,
CA.

Houk et al., 1995
Houk, J. C., Adams, J. L., and Barto, A. G. (1995).
A model of how the basal ganglia generates and uses neural signals that predict reinforcement.
In Houk, J. C., Davis, J. L., and Beiser, D. G., editors, Models of Information Processing in
the Basal Ganglia, pages 249-270. MIT Press, Cambridge, MA.

Howard, 1960
Howard, R. (1960).
Dynamic Programming and Markov Processes.
MIT Press, Cambridge, MA.

Hull, 1943
Hull, C. L. (1943).
Principles of Behavior.
D. Appleton-Century, NY.

Hull, 1952
Hull, C. L. (1952).
A Behavior System.
Wiley, NY.

Jaakkola et al., 1994
Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994).
On the convergence of stochastic iterative dynamic programming algorithms.
Neural Computation, 6.

Jaakkola et al., 1995
Jaakkola, T., Singh, S. P., and Jordan, M. I. (1995).
Reinforcement learning algorithm for partially observable Markov decision problems.
In G. Tesauro, D. Touretzky, T. L., editor, Advances in Neural Information Processing
Systems: Proceedings of the 1994 Conference, pages 345-352, San Mateo, CA. Morgan
Kaufmann.

Kaelbling, 1996
Kaelbling (1996).
A special issue of machine learning on reinforcement learning.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (16 di 39)22/06/2005 9.10.46

Bibliography

22.

Kaelbling, 1993a
Kaelbling, L. (1993a).
Hierarchical learning in stochastic domains: Preliminary results.
In Proceedings of the Tenth International Conference on Machine Learning, pages 167-173.
Morgan Kaufmann.

Kaelbling, 1993b
Kaelbling, L. P. (1993b).
Learning in Embedded Systems.
MIT Press, Cambridge MA.

Kaelbling et al., 1996
Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996).
Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4.

Kakutani, 1945
Kakutani, S. (1945).
Markov processes and the dirichlet problem.
Proc. Jap. Acad., 21:227-233.

Kalos and Whitlock, 1986
Kalos, M. H. and Whitlock, P. A. (1986).
Monte Carlo Methods.
Wiley, NY.

Kanerva, 1988
Kanerva, P. (1988).
Sparse Distributed Memory.
MIT Press, Cambridge, MA.

Kanerva, 1993
Kanerva, P. (1993).
Sparse distributed memory and related models.
In Hassoun, M. H., editor, Associative Neural Memories: Theory and Implementation, pages
50-76. Oxford University Press, NY.

Kashyap et al., 1970
Kashyap, R. L., Blaydon, C. C., and Fu, K. S. (1970).
Stochastic approximation.
In Mendel, J. M. and Fu, K. S., editors, Adaptive, Learning, and Pattern Recognition Systems:
Theory and Applications. Academic Press, New York.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (17 di 39)22/06/2005 9.10.46

Bibliography

Keerthi and Ravindran, 1997
Keerthi, S. S. and Ravindran, B. (1997).
Reinforcement learning.
In Fiesler, E. and Beale, R., editors, Handbook of Neural Computation. Oxford University
Press, USA.

Kimble, 1961
Kimble, G. A. (1961).
Hilgard and Marquis' Contitioning and Learning.
Appleton-Century-Crofts, Inc., New York.

Kimble, 1967
Kimble, G. A. (1967).
Foundations of Conditioning and Learning.
Appleton-Century-Crofts.

Kirkpatrick et al., 1983
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983).
Optimization by simulated annealing.
Science, 220:671-680.

Klopf, 1972
Klopf, A. H. (1972).
Brain function and adaptive systems--A heterostatic theory.
Technical Report AFCRL-72-0164, Air Force Cambridge Research Laboratories, Bedford,
MA.
A summary appears in Proceedings of the International Conference on Systems, Man, and
Cybernetics, 1974, IEEE Systems, Man, and Cybernetics Society, Dallas, TX.

Klopf, 1975
Klopf, A. H. (1975).
A comparison of natural and artificial intelligence.
SIGART Newsletter, 53:11-13.

Klopf, 1982
Klopf, A. H. (1982).
The Hedonistic Neuron: A Theory of Memory, Learning, and Intelligence.
Hemisphere, Washington, D.C.

Klopf, 1988
Klopf, A. H. (1988).
A neuronal model of classical conditioning.
Psychobiology, 16:85-125.

Kohonen, 1977

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (18 di 39)22/06/2005 9.10.46

Bibliography

Kohonen, T. (1977).
Associative Memory: A System Theoretic Approach.
Springer-Varlag, Berlin.

Korf, 1988
Korf, R. E. (1988).
Optimal path finding algorithms.
In Kanal, L. N. and Kumar, V., editors, Search in Artificial Intelligence, pages 223-267.
Springer Verlag, Berlin.

Kraft and Campagna, 1990
Kraft, L. G. and Campagna, D. P. (1990).
A summary comparison of CMAC neural network and traditional adaptive control systems.
In Miller, T., Sutton, R. S., and Werbos, P. J., editors, Neural Networks for Control, pages 143-
169. MIT Press, Cambridge, MA.

Kraft et al., 1992
Kraft, L. G., Miller, W. T., and Dietz, D. (1992).
Development and application of CMAC neural network-based control.
In White, D. A. and Sofge, D. A., editors, Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches, pages 215-232. Van Nostrand Reinhold, New York.

Kuman and Varaiya, 1986
Kuman, P. R. and Varaiya, P. (1986).
Stochastic Systems: Estimation, Identification, and Adaptive Control.
Prentice-Hall, Englewood Cliffs, NJ.

Kumar, 1985
Kumar, P. R. (1985).
A survey of some results in stochastic adaptive control.
SIAM Journal of Control and Optimization, 23:329-380.

Kumar and Kanal, 1988
Kumar, V. and Kanal, L. N. (1988).
The CDP: A unifying formulation for heuristic search, dynamic programming, and branch-and-
bound.
In Kanal, L. N. and Kumar, V., editors, Search in Artificial Intelligence, pages 1-37. Springer-
Verlag.

Kushner and Dupuis, 1992
Kushner, H. J. and Dupuis, P. (1992).
Numerical Methods for Stochastic Control Problems in Continuous Time.
Springer-Verlag, New York.

Lai, 1987

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (19 di 39)22/06/2005 9.10.46

Bibliography

Lai, T. L. (1987).
Adaptive treatment allocation and the multi-armed bandit problem.
The Annals of Statistics, 15(3):1091-1114.

Lang et al., 1990
Lang, K. J., Waibel, A. H., and Hinton, G. E. (1990).
A time-delay neural network architecture for isolated word recognition.
Neural Networks, 3:33-43.

Lin and Kim, 1991
Lin, C.-S. and Kim, H. (1991).
Cmac-based adaptive critic self-learning control.
IEEE Transactions on Neural Networks, 2:530-533.

Lin, 1992
Lin, L.-J. (1992).
Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine Learning, 8:293-321.

Lin and Mitchell, 1992
Lin, L.-J. and Mitchell, T. (1992).
Reinforcement learning with hidden states.
In Proceedings of the Second International Conference on Simulation of Adaptive Behavior:
From Animals to Animats, pages 271-280. MIT Press.

Littman, 1994
Littman, M. L. (1994).
Markov games as a framework for multi-agent reinforcement learning.
In Proceedings of the Eleventh International Conference on Machine Learning, pages 157-
163, San Francisco, CA. Morgan Kaufmann.

Littman et al., 1995a
Littman, M. L., Cassandra, A. R., and Kaelbling, L. P. (1995a).
Learning policies for partially observable environments: Scaling up.
In Prieditis, A. and Russell, S., editors, Proceedings of the Twelfth International Conference
on Machine Learning, pages 362-370, San Francisco, CA. Morgan Kaufmann.

Littman et al., 1995b
Littman, M. L., Dean, T. L., and Kaelbling, L. P. (1995b).
On the complexity of solving Markov decision processes.
In Proceedings of the Eleventh International Conference on Uncertainty in Artificial
Intelligence.

Ljung and Söderstrom, 1983
Ljung, L. and Söderstrom, T. (1983).

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (20 di 39)22/06/2005 9.10.46

Bibliography

Theory and Practice of Recursive Identification.
MIT Press, Cambridge, MA.

Lovejoy, 1991
Lovejoy, W. S. (1991).
A survey of algorithmic methods for partially observed Markov decision processes.
Annals of Operations Research, 28:47-66.

Luce, 1959
Luce, D. (1959).
Individual Choice Behavior.
Wiley, NY.

M. Zweben, 1994
M. Zweben, B. Daun, M. D. (1994).
Scheduling and rescheduling with iterative repair.
In Zweben, M. and Fox, M. S., editors, Intelligent Scheduling, pages 241-255. Morgan
Kaufmann, San Francisco, CA.

Maclin and Shavlik, 1994
Maclin, R. and Shavlik, J. W. (1994).
Incorporating advice into agents that learn from reinforcements.
In Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94).

Mahadevan, 1996
Mahadevan, S. (1996).
Average reward reinforcement learning: Foundations, algorithms, and empirical results.
Machine Learning, 22:159-196.

Markey, 1994
Markey, K. L. (1994).
Efficient learning of multiple degree-of-freedom control problems with quasi-independent q-
agents.
In Mozer, M. C., Smolensky, P., Touretzky, D. S., Elman, J. L., and Weigend, A. S., editors,
Proceedings of the 1009 Connectionist Models Summer School, Hillsdale, NJ. Erlbaum.

Mazur, 1994
Mazur, J. E. (1994).
Learning and Behavior, Third Edition.
Prentice-Hall, Englewood Cliffs, NJ.

McCallum, 1992
McCallum, A. K. (1992).
Reinforcement learning with perceptual aliasing: The perceptual distinctions approach.
In Proceedings of the Tenth National Conference on Artificial Intelligence, pages 183-188,

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (21 di 39)22/06/2005 9.10.46

Bibliography

Menlo Park, CA. AAAI Press/MIT Press.

McCallum, 1993
McCallum, A. K. (1993).
Overcoming incomplete perception with utile distinction memory.
In Proceedings of the Tenth International Conference on Machine Learning, pages 190-196.
Morgan Kaufmann.

McCallum, 1995
McCallum, A. K. (1995).
Reinforcement Learning with Selective Perception and Hidden State.
PhD thesis, University of Rochester, Rochester.

Mendel, 1966
Mendel, J. M. (1966).
Applications of artificial intelligence techniques to a spacecraft control problem.
Technical Report NASA CR-755, National Aeronautics and Space Administration.

Mendel and McLaren, 1970
Mendel, J. M. and McLaren, R. W. (1970).
Reinforcement learning control and pattern recognition systems.
In Mendel, J. M. and Fu, K. S., editors, Adaptive, Learning and Pattern Recognition Systems:
Theory and Applications, pages 287-318. Academic Press, New York.

Michie, 1961
Michie, D. (1961).
Trial and error.
In Barnett, S. A. and McLaren, A., editors, Science Survey, Part 2, pages 129-145,
Harmondsworth. Penguin.

Michie, 1963
Michie, D. (1963).
Experiments on the mechanisation of game learning. 1. characterization of the model and its
parameters.
Computer Journal, 1:232-263.

Michie, 1974
Michie, D. (1974).
On Machine Intelligence.
Edinburgh University Press.

Michie and Chambers, 1968
Michie, D. and Chambers, R. A. (1968).
BOXES: An experiment in adaptive control.
In Dale, E. and Michie, D., editors, Machine Intelligence 2, pages 137-152. Oliver and Boyd.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (22 di 39)22/06/2005 9.10.46

Bibliography

Miller and Williams, 1992
Miller, S. and Williams, R. J. (1992).
Learning to control a bioreactor using a neural net dyna-q system.
In Proceedings of the Seventh Yale Workshop on Adaptive and Learning Systems, pages 167-
172, Center for Systems Science, Dunham Laboratory, Yale University.

Miller et al., 1994
Miller, W. T., Scalera, S. M., and Kim, A. (1994).
Neural network control of dynamic balance for a biped walking robot.
In Proceedings of the Eighth Yale Workshop on Adaptive and Learning Systems, pages 156-
161, Dunham Laboratory, Yale University. Center for Systems Science.

Minsky, 1954
Minsky, M. L. (1954).
Theory of Neural-Analog Reinforcement Systems and its Application to the Brain-Model
Problem.
PhD thesis, Princeton University.

Minsky, 1961
Minsky, M. L. (1961).
Steps toward artificial intelligence.
Proceedings of the Institute of Radio Engineers, 49:8-30.
Reprinted in E. A. Feigenbaum and J. Feldman, editors, Computers and Thought. McGraw-
Hill, New York, 406-450, 1963.

Minsky, 1967
Minsky, M. L. (1967).
Computation: Finite and Infinite Machines.
Prentice Hall, Englewood Cliffs, NJ.

Montague et al., 1996
Montague, P. R., Dayan, P., and Sejnowski, T. J. (1996).
A framework for mesencephalic dopamine systems based on predictive hebbian learning.
Journal of Neuroscience, 16:1936-1947.

Moore, 1990
Moore, A. W. (1990).
Efficient Memory-Based Learning for Robot Control.
PhD thesis, University of Cambridge, Cambridge, UK.

Moore, 1994
Moore, A. W. (1994).
The parti-game algorithm for variable resolution reinforcement learning in multidimensional
spaces.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (23 di 39)22/06/2005 9.10.46

Bibliography

In Cohen, J. D., Tesauro, G., and Alspector, J., editors, Advances in Neural Information
Processing Systems: Proceedings of the 1993 Conference, pages 711-718, San Francisco, CA.
Morgan Kaufmann.

Moore and Atkeson, 1993
Moore, A. W. and Atkeson, C. G. (1993).
Prioritized sweeping: Reinforcement learning with less data and less real time.
Machine Learning, 13:103-130.

Moore et al., 1986
Moore, J. W., Desmond, J. E., Berthier, N. E., Blazis, E. J., Sutton, R. S., and Barto, A. G.
(1986).
Simulation of the classically conditioned nictitating membrane response by a neuron-like
adaptive element: I. Response topography, neuronal firing, and interstimulus intervals.
Behavioural Brain Research, 21:143-154.

Narendra and Thathachar, 1989
Narendra, K. and Thathachar, M. A. L. (1989).
Learning Automata: An Introduction.
Prentice Hall, Englewood Cliffs, NJ.

Narendra and Thathachar, 1974
Narendra, K. S. and Thathachar, M. A. L. (1974).
Learning automata--A survey.
IEEE Transactions on Systems, Man, and Cybernetics, 4:323-334.

Nie and Haykin, 1996
Nie, J. and Haykin, S. (1996).
A dynamic channel assignment policy through q-learning.
CRL Report 334, Hamilton, Ontario, Canada L8S 4K1.

Page, 1977
Page, C. V. (1977).
Heuristics for signature table analysis as a pattern recognition technique.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-7:77-86.

Parr and Russell, 1995
Parr, R. and Russell, S. (1995).
Approximating optimal policies for partially observable stochastic domains.
In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence.

Pavlov, 1927
Pavlov, P. I. (1927).
Conditioned Reflexes.
Oxford, London.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (24 di 39)22/06/2005 9.10.46

Bibliography

Pearl, 1984
Pearl, J. (1984).
Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley.

Peng, 1993
Peng, J. (1993).
Efficient Dynamic Programming-Based Learning for Control.
PhD thesis, Northeastern University, Boston, MA.

Peng and Williams, 1993
Peng, J. and Williams, R. J. (1993).
Efficient learning and planning within the Dyna framework.
Adaptive Behavior, 1(4).

Peng and Williams, 1994
Peng, J. and Williams, R. J. (1994).
Incremental multi-step q-learning.
In Cohen, W. W. and Hirsh, H., editors, Proceedings of the Eleventh International Conference
on Machine Learning, pages 226-232.

Peng and Williams, 1996
Peng, J. and Williams, R. J. (1996).
Incremental multi-step q-learning.
Machine Learning, 22(1/2/3).

Phansalkar and Thathachar, 1995
Phansalkar, V. V. and Thathachar, M. A. L. (1995).
Local and global optimization algorithms for generalized learning automata.
Neural Computation, 7:950-973.

Poggio and Girosi, 1989
Poggio, T. and Girosi, F. (1989).
A theory of networks for approximation and learning.
A.I. Memo 1140, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.

Poggio and Girosi, 1990
Poggio, T. and Girosi, F. (1990).
Regularization algorithms for learning that are equivalent to multilayer networks.
Science, 247:978-982.

Powell, 1987
Powell, M. J. D. (1987).
Radial basis functions for multivariate interpolation: A review.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (25 di 39)22/06/2005 9.10.46

Bibliography

In Mason, J. C. and Cox, M. G., editors, Algorithms for Approximation. Clarendon Press,
Oxford.

Puterman, 1994
Puterman, M. L. (1994).
Markov Decision Problems.
Wiley, NY.

Puterman and Shin, 1978
Puterman, M. L. and Shin, M. C. (1978).
Modified policy iteration algorithms for discounted Markov decision problems.
Management Science, 24:1127-1137.

Reetz, 1977
Reetz, D. (1977).
Approximate solutions of a discounted Markovian decision process.
Bonner Mathematische Schriften, vol 98: Dynamische Optimierung, pages 77-92.

Ring, 1994
Ring, M. B. (1994).
Continual Learning in Reinforcement Environments.
PhD thesis, University of Texas at Austin, Austin, Texas 78712.

Rivest and Schapire, 1987
Rivest, R. L. and Schapire, R. E. (1987).
Diversity-based inference of finite automata.
In Proceedings of the Twenty-Eighth Annual Symposium on Foundations of Computer
Science, pages 78-87.

Robbins, 1952
Robbins, H. (1952).
Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society, 58:527-535.

Robertie, 1992
Robertie, B. (1992).
Carbon versus silicon: Matching wits with TD-gammon.
Inside Backgammon, 2(2):14-22.

Rosenblatt, 1961
Rosenblatt, F. (1961).
Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms.
Spartan Books, 6411 Chillum Place N.W., Washington, D.C.

Ross, 1983

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (26 di 39)22/06/2005 9.10.46

Bibliography

Ross, S. (1983).
Introduction to Stochastic Dynamic Programming.
Academic Press, New York.

Rubinstein, 1981
Rubinstein, R. Y. (1981).
Simulation and the Monte Carlo Method.
Wiley, NY.

Rumelhart et al., 1986
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning internal representations by error propagation.
In Rumelhart, D. E. and McClelland, J. L., editors, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, vol.1: Foundations. Bradford Books/MIT
Press, Cambridge, MA.

Rummery, 1995
Rummery, G. A. (1995).
Problem Solving with Reinforcement Learning.
PhD thesis, Cambridge University.

Rummery and Niranjan, 1994
Rummery, G. A. and Niranjan, M. (1994).
On-line q-learning using connectionist systems.
Technical Report CUED/F-INFENG/TR 166, Cambridge University Engineering Department.

Russell and Norvig, 1995
Russell, S. and Norvig, P. (1995).
Artificial Intelligence: A Modern Approach.
Prentice Hall, Englewood Cliffs, NJ.

Rust, 1996
Rust, J. (1996).
Numerical dynamic programming in economics.
In Amman, H., Kendrick, D., and Rust, J., editors, Handbook of Computational Economics,
pages 614-722. Elsevier, Amsterdam.

S. J. Bradtke, 1994
S. J. Bradtke, B. E. Ydstie, A. G. B. (1994).
Adaptive linear quadratic control using policy iteration.
In Proceedings of the American Control Conference.

Samuel, 1959
Samuel, A. L. (1959).
Some studies in machine learning using the game of checkers.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (27 di 39)22/06/2005 9.10.46

Bibliography

IBM Journal on Research and Development, pages 210-229.
Reprinted in E. A. Feigenbaum and J. Feldman, editors, Computers and Thought, McGraw-
Hill, New York, 1963.

Samuel, 1967
Samuel, A. L. (1967).
Some studies in machine learning using the game of checkers. II--Recent progress.
IBM Journal on Research and Development, pages 601-617.

Schultz and Melsa, 1967
Schultz, D. G. and Melsa, J. L. (1967).
State Functions and Linear Control Systems.
McGraw-Hill, New York.

Schultz et al., 1997
Schultz, W., Dayan, P., and Montague, P. R. (1997).
A neural substrate of prediction and reward.
Science, 275:1593-1598.

Schwartz, 1993
Schwartz, A. (1993).
A reinforcement learning method for maximizing undiscounted rewards.
In Proceedings of the Tenth International Conference on Machine Learning, pages 298-305.
Morgan Kaufmann.

Schweitzer and Seidmann, 1985
Schweitzer, P. J. and Seidmann, A. (1985).
Generalized polynomial approximations in Markovian decision processes.
Journal of Mathematical Analysis and Applications, 110:568-582.

Selfridge et al., 1985
Selfridge, O. J., Sutton, R. S., and Barto, A. G. (1985).
Training and tracking in robotics.
In Joshi, A., editor, Proceedings of the Ninth International Joint Conference of Artificial
Intelligence, pages 670-672, San Mateo, CA. Morgan Kaufmann.

Shannon, 1950
Shannon, C. E. (1950).
Programming a computer for playing chess.
Philosophical Magazine, 41:256-275.

Shewchuk and Dean, 1990
Shewchuk, J. and Dean, T. (1990).
Towards learning time-varying functions with high input dimensionality.
In Proceedings of the Fifth IEEE International Symposium on Intelligent Control, pages 383-

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (28 di 39)22/06/2005 9.10.46

Bibliography

388. IEEE.

Singh, 1992a
Singh, S. P. (1992a).
Reinforcement learning with a hierarchy of abstract models.
In Proceedings of the Tenth National Conference on Artificial Intelligence, pages 202-207,
Menlo Park, CA. AAAI Press/MIT Press.

Singh, 1992b
Singh, S. P. (1992b).
Scaling reinforcement learning algorithms by learning variable temporal resolution models.
In Proceedings of the Ninth International Machine Learning Conference, pages 406-415, San
Mateo, CA. Morgan Kaufmann.

Singh, 1993
Singh, S. P. (1993).
Learning to Solve Markovian Decision Processes.
PhD thesis, University of Massachusetts, Amherst.
Appeared as CMPSCI Technical Report 93-77.

Singh and Bertsekas, 1997
Singh, S. P. and Bertsekas, D. (1997).
Reinforcement learning for dynamic channel allocation in cellular telephone systems.
In Advances in Neural Information Processing Systems: Proceedings of the 1996 Conference,
Cambridge, MA. MIT Press.

Singh et al., 1994
Singh, S. P., Jaakkola, T., and Jordan, M. I. (1994).
Learning without state-estimation in partially observable Markovian decision problems.
In Cohen, W. W. and Hirsch, H., editors, Proceedings of the Eleventh International
Conference on Machine Learning, pages 284-292, San Francisco, CA. Morgan Kaufmann.

Singh et al., 1995
Singh, S. P., Jaakkola, T., and Jordan, M. I. (1995).
Reinforcement learing with soft state aggregation.
In G. Tesauro, D. Touretzky, T. L., editor, Advances in Neural Information Processing
Systems: Proceedings of the 1994 Conference, pages 359-368, Cambridge, MA. MIT Press.

Singh and Sutton, 1996
Singh, S. P. and Sutton, R. S. (1996).
Reinforcement learning with replacing eligibility traces.
Machine Learning, 22:123-158.

Sivarajan et al., 1990
Sivarajan, K. N., McEliece, R. J., and Ketchum, J. W. (1990).

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (29 di 39)22/06/2005 9.10.46

Bibliography

Dynamic channel assignment in cellular radio.
In Proceedings of the 40th Vehicular Technology Conference, pages 631-637.

Skinner, 1938
Skinner, B. F. (1938).
The Behavior of Organisms.
Appleton-Century, NY.

Sofge and White, 1992
Sofge, D. A. and White, D. A. (1992).
Applied learning: Optimal control for manufacturing.
In White, D. A. and Sofge, D. A., editors, Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches, pages 259-281. Van Nostrand Reinhold, New York.

Spong, 1994
Spong, M. W. (1994).
Swing up control of the acrobot.
In Proceedings of the 1994 IEEE Conference on Robotics and Automation, San Diego, CA.

Staddon, 1983
Staddon, J. E. R. (1983).
Adaptive Behavior and Learning.
Cambridge University Press, Cambridge.

Sutton, 1978a
Sutton, R. S. (1978a).
Learning theory support for a single channel theory of the brain.

Sutton, 1978b
Sutton, R. S. (1978b).
Single channel theory: A neuronal theory of learning.
Brain Theory Newsletter, 4:72-75.

Sutton, 1978c
Sutton, R. S. (1978c).
A unified theory of expectation in classical and instrumental conditioning.

Sutton, 1984
Sutton, R. S. (1984).
Temporal Credit Assignment in Reinforcement Learning.
PhD thesis, University of Massachusetts, Amherst, MA.

Sutton, 1988
Sutton, R. S. (1988).
Learning to predict by the method of temporal differences.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (30 di 39)22/06/2005 9.10.46

Bibliography

Machine Learning, 3:9-44.

Sutton, 1990
Sutton, R. S. (1990).
Integrated architectures for learning, planning, and reacting based on approximating dynamic
programming.
In Proceedings of the Seventh International Conference on Machine Learning, pages 216-224,
San Mateo, CA. Morgan Kaufmann.

Sutton, 1991a
Sutton, R. S. (1991a).
Dyna, an integrated architecture for learning, planning, and reacting.
SIGART Bulletin, 2:160-163.
Also appeared in Working Notes of the 1991 AAAI Spring Symposium, pages 151-155.

Sutton, 1991b
Sutton, R. S. (1991b).
Planning by incremental dynamic programming.
In Birnbaum, L. A. and Collins, G. C., editors, Proceedings of the Eighth International
Workshop on Machine Learning, pages 353-357, San Mateo, CA. Morgan Kaufmann.

Sutton, 1992
Sutton, R. S., editor (1992).
A Special Issue of Machine Learning on Reinforcement Learning, volume 8. Machine
Learning.
Also published as Reinforcement Learnng, Kluwer Academic Press, Boston, MA 1992.

Sutton, 1995
Sutton, R. S. (1995).
TD models: Modeling the world at a mixture of time scales.
In Prieditis, A. and Russell, S., editors, Proceedings of the Twelfth International Conference
on Machine Learning, pages 531-539, San Francisco, CA. Morgan Kaufmann.

Sutton, 1996
Sutton, R. S. (1996).
Generalization in reinforcement learning: Successful examples using sparse coarse coding.
In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors, Advances in Neural
Information Processing Systems: Proceedings of the 1995 Conference, pages 1038-1044,
Cambridge, MA. MIT Press.

Sutton and Barto, 1981a
Sutton, R. S. and Barto, A. G. (1981a).
An adaptive network that constructs and uses an internal model of its world.
Cognition and Brain Theory, 3:217-246.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (31 di 39)22/06/2005 9.10.46

Bibliography

Sutton and Barto, 1981b
Sutton, R. S. and Barto, A. G. (1981b).
Toward a modern theory of adaptive networks: Expectation and prediction.
Psychological Review, 88:135-170.

Sutton and Barto, 1987
Sutton, R. S. and Barto, A. G. (1987).
A temporal-difference model of classical conditioning.
In Proceedings of the Ninth Annual Conference of the Cognitive Science Society, Hillsdale,
NJ. Erlbaum.

Sutton and Barto, 1990
Sutton, R. S. and Barto, A. G. (1990).
Time-derivative models of pavlovian reinforcement.
In Gabriel, M. and Moore, J., editors, Learning and Computational Neuroscience:
Foundations of Adaptive Networks, pages 497-537. MIT Press, Cambridge, MA.

Sutton and Pinette, 1985
Sutton, R. S. and Pinette, B. (1985).
The learning of world models by connectionist networks.
In Proceedings of the Seventh Annual Conference of the Cognitive Science Society, Irvine,
CA.

Sutton and Singh, 1994
Sutton, R. S. and Singh, S. (1994).
On bias and step size in temporal-difference learning.
In Proceedings of the Eighth Yale Workshop on Adaptive and Learning Systems, pages 91-96,
New Haven, CT. Yale University.

Tadepally and Ok, 1994
Tadepally, P. and Ok, D. (1994).
H-learning: A reinforcement learning method to optimize undiscounted average reward.
Technical Report 94-30-01, Oregon State University.

Tan, 1991
Tan, M. (1991).
Learning a cost-sensitive internal representation for reinforcement learning.
In Birnbaum, L. A. and Collins, G. C., editors, Proceedings of the Eighth International
Workshop on Machine Learning, pages 358-362, San Mateo, CA. Morgan Kaufmann.

Tan, 1993
Tan, M. (1993).
Multi-agent reinforcement learning: Independent vs. cooperative agents.
In Proceedings of the Tenth International Conference on Machine Learning, pages 330-337.
Morgan Kaufmann.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (32 di 39)22/06/2005 9.10.46

Bibliography

Tesauro, 1986
Tesauro, G. J. (1986).
Simple neural models of classical conditioning.
Biological Cybernetics, 55:187-200.

Tesauro, 1992
Tesauro, G. J. (1992).
Practical issues in temporal difference learning.
Machine Learning, 8:257-277.

Tesauro, 1994
Tesauro, G. J. (1994).
TD-gammon, a self-teaching backgammon program, achieves master-level play.
Neural Computation, 6(2):215-219.

Tesauro, 1995
Tesauro, G. J. (1995).
Temporal difference learning and TD-Gammon.
Communications of the ACM, 38:58-68.

Tesauro and Galperin, 1997
Tesauro, G. J. and Galperin, G. R. (1997).
On-line policy improvement using monte-carlo search.
In Advances in Neural Information Processing Systems: Proceedings of the 1996 Conference,
Cambridge, MA. MIT Press.

Tham, 1994
Tham, C. K. (1994).
Modular On-Line Function Approximation for Scaling up Reinforcement Learning.
PhD thesis, Cambridge University.

Thathachar and Sastry, 1995
Thathachar, M. A. L. and Sastry, P. S. (1995).
A new approach to the design of reinforcement schemes for learning automata.
IEEE Transactions on Systems, Man, and Cybernetics, 15:168-175.

Thompson, 1933
Thompson, W. R. (1933).
On the likelihood that one unknown probability exceeds another in view of the evidence of
two samples.
Biometrika, 25:285-294.

Thompson, 1934
Thompson, W. R. (1934).

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (33 di 39)22/06/2005 9.10.46

Bibliography

On the theory of apportionment.
American Journal of Mathematics, 57:450-457.

Thorndike, 1911
Thorndike, E. L. (1911).
Animal Intelligence.
Hafner, Darien, Conn.

Thorp, 1966
Thorp, E. O. (1966).
Beat the Dealer: A Winning Strategy for the Game of Twenty-One.
Random House, New York.

Tolman, 1932
Tolman, E. C. (1932).
Purposive Behavior in Animals and Men.
Century, New York.

Tsetlin, 1973
Tsetlin, M. L. (1973).
Automaton Theory and Modeling of Biological Systems.
Academic Press, New York.

Tsitsiklis, 1994
Tsitsiklis, J. N. (1994).
Asynchronous stochastic approximation and q-learning.
Machine Learning, 16:185-202.

Tsitsiklis and Van Roy, 1996
Tsitsiklis, J. N. and Van Roy, B. (1996).
Feature-based methods for large scale dynamic programming.
Machine Learning, 22:59-94.

Tsitsiklis and Van Roy, 1997
Tsitsiklis, J. N. and Van Roy, B. (1997).
An analysis of temporal-difference learning with function approximation.
IEEE Transactions on Automatic Control.

Ungar, 1990
Ungar, L. H. (1990).
A bioreactor benchmark for adaptive network-based process control.
In Miller, W. T., Sutton, R. S., and Werbos, P. J., editors, Neural Networks for Control, pages
387-402. MIT Press, Cambridge, MA.

Waltz and Fu, 1965

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (34 di 39)22/06/2005 9.10.46

Bibliography

Waltz, M. D. and Fu, K. S. (1965).
A heuristic approach to reinforcment learning control systems.
IEEE Transactions on Automatic Control, 10:390-398.

Watkins, 1989
Watkins, C. J. C. H. (1989).
Learning from Delayed Rewards.
PhD thesis, Cambridge University, Cambridge, England.

Watkins and Dayan, 1992
Watkins, C. J. C. H. and Dayan, P. (1992).
Q-learning.
Machine Learning, 8:279-292.

Werbos, 1992
Werbos, P. (1992).
Approximate dynamic programming for real-time control and neural modeling.
In White, D. A. and Sofge, D. A., editors, Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches, pages 493-525. Van Nostrand Reinhold, New York.

Werbos, 1977
Werbos, P. J. (1977).
Advanced forecasting methods for global crisis warning and models of intelligence.
General Systems Yearbook, 22:25-38.

Werbos, 1982
Werbos, P. J. (1982).
Applications of advances in nonlinear sensitivity analysis.
In Drenick, R. F. and Kosin, F., editors, System Modeling an Optimization. Springer-Verlag.
Proceedings of the Tenth IFIP Conference, New York, 1981.

Werbos, 1987
Werbos, P. J. (1987).
Building and understanding adaptive systems: A statistical/numerical approach to factory
automation and brain research.
IEEE Transactions on Systems, Man, and Cybernetics, pages 7-20.

Werbos, 1988
Werbos, P. J. (1988).
Generalization of back propagation with applications to a recurrent gas market model.
Neural Networks, 1:339-356.

Werbos, 1989
Werbos, P. J. (1989).
Neural networks for control and system identification.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (35 di 39)22/06/2005 9.10.46

Bibliography

In Proceedings of the 28th Conference on Decision and Control, pages 260-265, Tampa,
Florida.

Werbos, 1990
Werbos, P. J. (1990).
Consistency of HDP applied to simple reinforcement learning problem.
Neural Networks, 3:179-189.

White, 1969
White, D. J. (1969).
Dynamic Programming.
Holden-Day, San Francisco.

White, 1985
White, D. J. (1985).
Real applications of Markov decision processes.
Interfaces, 15:73-83.

White, 1988
White, D. J. (1988).
Further real applications of Markov decision processes.
Interfaces, 18:55-61.

White, 1993
White, D. J. (1993).
A survey of applications of Markov decision processes.
Journal of the Operational Research Society, 44:1073-1096.

Whitehead and Ballard, 1991
Whitehead, S. D. and Ballard, D. H. (1991).
Learning to perceive and act by trial and error.
Machine Learning, 7(1):45-83.

Whitt, 1978
Whitt, W. (1978).
Approximations of dynamic programs I.
Mathematics of Operations Research, 3:231-243.

Whittle, 1982
Whittle, P. (1982).
Optimization over Time, volume 1.
Wiley, NY.

Whittle, 1983
Whittle, P. (1983).

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (36 di 39)22/06/2005 9.10.46

Bibliography

Optimization over Time, volume 2.
Wiley, NY.

Widrow et al., 1973
Widrow, B., Gupta, N. K., and Maitra, S. (1973).
Punish/reward: Learning with a critic in adaptive threshold systems.
IEEE Transactions on Systems, Man, and Cybernetics, 5:455-465.

Widrow and Hoff, 1960
Widrow, B. and Hoff, M. E. (1960).
Adaptive switching circuits.
In 1960 WESCON Convention Record Part IV, pages 96-104.
Reprinted in J. A. Anderson and E. Rosenfeld, Neurocomputing: Foundations of Research,
MIT Press, Cambridge, MA, 1988.

Widrow and Smith, 1964
Widrow, B. and Smith, F. W. (1964).
Pattern-recognizing control systems.
In Computer and Information Sciences (COINS) Proceedings, Washington, D.C. Spartan.

Widrow and Stearns, 1985
Widrow, B. and Stearns, S. D. (1985).
Adaptive Signal Processing.
Prentice-Hall, Inc., Englewood Cliffs, N.J.

Williams, 1986
Williams, R. J. (1986).
Reinforcement learning in connectionist networks: A mathematical analysis.
Technical Report ICS 8605, Institute for Cognitive Science, University of California at San
Diego, La Jolla, CA.

Williams, 1987
Williams, R. J. (1987).
Reinforcement-learning connectionist systems.
Technical Report NU-CCS-87-3, College of Computer Science, Northeastern University,
Boston, MA.

Williams, 1988
Williams, R. J. (1988).
On the use of backpropagation in associative reinforcement learning.
In Proceedings of the IEEE International Conference on Neural Networks, pages 263-270,
San Diego, CA.

Williams, 1992
Williams, R. J. (1992).

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (37 di 39)22/06/2005 9.10.46

Bibliography

Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 8:229-256.

Williams and Baird, 1990
Williams, R. J. and Baird, L. C. (1990).
A mathematical analysis of actor-critic architectures for learning optimal controls through
incremental dynamic programming.
In Proceedings of the Sixth Yale Workshop on Adaptive and Learning Systems, pages 96-101,
New Haven, CT.

Wilson, 1994
Wilson, S. W. (1994).
ZCS: A zeroth order classifier system.
Evolutionary Compuation, 2:1-18.

Witten, 1976
Witten, I. H. (1976).
The apparent conflict between estimation and control--A survey of the two-armed problem.
Journal of the Franklin Institute, 301:161-189.

Witten, 1977
Witten, I. H. (1977).
An adaptive optimal controller for discrete-time Markov environments.
Information and Control, 34:286-295.

Witten and Corbin, 1973
Witten, I. H. and Corbin, M. J. (1973).
Human operators and automatic adaptive controllers: A comparative study on a particular
control task.
International Journal of Man-Machine Studies, 5:75-104.

Yee et al., 1990
Yee, R. C., Saxena, S., Utgoff, P. E., and Barto, A. G. (1990).
Explaining temporal differences to create useful concepts for evaluating states.
In Proceedings of the Eighth National Conference on Artificial Intelligence, pages 882-888,
Cambridge, MA.

Young, 1984
Young, P. (1984).
Recursive Estimation and Time-Series Analysis.
Springer-Verlag.

Zhang and Yum, 1989
Zhang, M. and Yum, T. P. (1989).
Comparisons of channel-assignment strategies in cellular mobile telephone systems.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (38 di 39)22/06/2005 9.10.46

Bibliography

IEEE Transactions on Vehicular Technology, 38.

Zhang, 1996
Zhang, W. (1996).
Reinforcement Learning for Job-shop Scheduling.
PhD thesis, Oregon State University.
Tech Report CS-96-30-1.

Zhang and Dietterich, 1995
Zhang, W. and Dietterich, T. G. (1995).
A reinforcement learning approach to job-shop scheduling.
In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence,
pages 1114-1120.

Zhang and Dietterich, 1996
Zhang, W. and Dietterich, T. G. (1996).

High-performance job-shop scheduling with a time-delay TD network.

In D. S. Touretzky, M. C. Mozer, M. E. H., editor, Advances in Neural Information
Processing Systems: Proceedings of the 1995 Conference, pages 1024-1030, Cambridge, MA.
MIT Press.

Subsections

❍ Index

Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node114.html (39 di 39)22/06/2005 9.10.46

Index

Up: Bibliography Previous: Bibliography Contents

Index

Mark Lee 2005-01-04

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node115.html22/06/2005 9.10.47

Footnotes

... selection.2.1

The difference between instruction and evaluation can be clarified by contrasting two types of
function optimization algorithms. One type is used when information about the gradient of the
function being minimized (or maximized) is directly available. The gradient instructs the
algorithm as to how it should move in the search space. The errors used by many supervised
learning algorithms are gradients (or approximate gradients). The other type of optimization
algorithm uses only function values, corresponding to evaluative information, and has to
actively probe the function at additional points in the search space in order to decide where to
go next. Classical examples of these types of algorithms are, respectively, the Robbins-Monro
and the Kiefer-Wolfowitz stochastic approximation algorithms (see, e.g., Kashyap, Blaydon,
and Fu, 1970).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... probability.2.2

Our description is actually a considerable simplification of these learning automata

http://www.cs.ualberta.ca/%7Esutton/book/ebook/footnode.html (1 di 8)22/06/2005 9.10.49

Footnotes

algorithms. For example, they are defined as well for and often use a different step-
size parameter on success and on failure. Nevertheless, the limitations identified in this section
still apply.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... agent.3.1

We use the terms agent, environment, and action instead of the engineers' terms controller,
controlled system (or plant), and control signal because they are meaningful to a wider
audience.

.

.

.

.

.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/footnode.html (2 di 8)22/06/2005 9.10.49

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... .3.2

We restrict attention to discrete time to keep things as simple as possible, even though many
of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis,
1996; Werbos, 1992; Doya, 1996).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/footnode.html (3 di 8)22/06/2005 9.10.49

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... .3.3

We use instead of to denote the immediate reward due to the action taken at time
because it emphasizes that the next reward and the next state, , are jointly determined.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/footnode.html (4 di 8)22/06/2005 9.10.49

Footnotes

.

.

.

.

... do.3.4

Better places for imparting this kind of prior knowledge are the initial policy or value
function, or in influences on these. See Lin (1992), Maclin and Shavlik (1994), and Clouse
(1996).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...episodes,3.5

Episodes are often called "trials" in the literature.

.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/footnode.html (5 di 8)22/06/2005 9.10.49

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... both3.6

Ways to formulate tasks that are both continuing and undiscounted are the subject of current
research (e.g., Mahadevan, 1996; Schwartz, 1993; Tadepalli and Ok, 1994). Some of the ideas
are discussed in Section 6.7.

.

.

.

.

.

.

.

.

.

.

.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/footnode.html (6 di 8)22/06/2005 9.10.49

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... journey.6.1

If this were a control problem with the objective of minimizing travel time, then we would of
course make the rewards the negative of the elapsed time. But since we are concerned here
only with prediction (policy evaluation), we can keep things simple by using positive
numbers.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/footnode.html (7 di 8)22/06/2005 9.10.49

Footnotes

.

.

.

.

.

.

.

.

.

.

... policies.9.1

There are interesting exceptions to this. See, e.g., Pearl (1984).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/footnode.html (8 di 8)22/06/2005 9.10.49

	www.cs.ualberta.ca
	Book
	Contents
	Preface
	Series Forward
	Summary of Notation
	I. The Problem
	1. Introduction
	1.1 Reinforcement Learning
	1.2 Examples
	1.3 Elements of Reinforcement Learning
	1.4 An Extended Example: Tic-Tac-Toe
	1.5 Summary
	1.6 History of Reinforcement Learning
	1.7 Bibliographical Remarks
	2. Evaluative Feedback
	2.1 An -Armed Bandit Problem
	2.2 Action-Value Methods
	2.3 Softmax Action Selection
	2.4 Evaluation Versus Instruction
	2.5 Incremental Implementation
	2.6 Tracking a Nonstationary Problem
	2.7 Optimistic Initial Values
	2.8 Reinforcement Comparison
	2.9 Pursuit Methods
	2.10 Associative Search
	2.11 Conclusions
	2.12 Bibliographical and Historical Remarks
	3. The Reinforcement Learning Problem
	3.1 The Agent-Environment Interface
	3.2 Goals and Rewards
	3.3 Returns
	3.4 Unified Notation for Episodic and Continuing Tasks
	3.5 The Markov Property
	3.6 Markov Decision Processes
	3.7 Value Functions
	3.8 Optimal Value Functions
	3.9 Optimality and Approximation
	3.10 Summary
	3.11 Bibliographical and Historical Remarks
	II. Elementary Solution Methods
	4. Dynamic Programming
	4.1 Policy Evaluation
	4.2 Policy Improvement
	4.3 Policy Iteration
	4.4 Value Iteration
	4.5 Asynchronous Dynamic Programming
	4.6 Generalized Policy Iteration
	4.7 Efficiency of Dynamic Programming
	4.8 Summary
	4.9 Bibliographical and Historical Remarks
	5. Monte Carlo Methods
	5.1 Monte Carlo Policy Evaluation
	5.2 Monte Carlo Estimation of Action Values
	5.3 Monte Carlo Control
	5.4 On-Policy Monte Carlo Control
	5.5 Evaluating One Policy While Following Another
	5.6 Off-Policy Monte Carlo Control
	5.7 Incremental Implementation
	5.8 Summary
	5.9 Bibliographical and Historical Remarks
	6. Temporal-Difference Learning
	6.1 TD Prediction
	6.2 Advantages of TD Prediction Methods
	6.3 Optimality of TD(0)
	6.4 Sarsa: On-Policy TD Control
	6.5 Q-Learning: Off-Policy TD Control
	6.6 Actor-Critic Methods
	6.7 R-Learning for Undiscounted Continuing Tasks
	6.8 Games, Afterstates, and Other Special Cases
	6.9 Summary
	6.10 Bibliographical and Historical Remarks
	III. A Unified View
	7. Eligibility Traces
	7.1 -Step TD Prediction
	7.2 The Forward View of TD()
	7.3 The Backward View of TD()
	7.4 Equivalence of Forward and Backward Views
	7.5 Sarsa()
	7.6 Q()
	7.7 Eligibility Traces for Actor-Critic Methods
	7.8 Replacing Traces
	7.9 Implementation Issues
	7.10 Variable
	7.11 Conclusions
	7.12 Bibliographical and Historical Remarks
	8. Generalization and Function Approximation
	8.1 Value Prediction with Function Approximation
	8.2 Gradient-Descent Methods
	8.3 Linear Methods
	8.4 Control with Function Approximation
	8.5 Off-Policy Bootstrapping
	8.6 Should We Bootstrap?
	8.7 Summary
	8.8 Bibliographical and Historical Remarks
	9. Planning and Learning
	9.1 Models and Planning
	9.2 Integrating Planning, Acting, and Learning
	9.3 When the Model Is Wrong
	9.4 Prioritized Sweeping
	9.5 Full vs. Sample Backups
	9.6 Trajectory Sampling
	9.7 Heuristic Search
	9.8 Summary
	9.9 Bibliographical and Historical Remarks
	10. Dimensions of Reinforcement Learning
	10.1 The Unified View
	10.2 Other Frontier Dimensions
	11. Case Studies
	11.1 TD-Gammon
	11.2 Samuel's Checkers Player
	11.3 The Acrobot
	11.4 Elevator Dispatching
	11.5 Dynamic Channel Allocation
	11.6 Job-Shop Scheduling
	Bibliography
	Index
	Footnotes

