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Preface 

We first came to focus on what is now known as reinforcement learning in late 1979. We were both 
at the University of Massachusetts, working on one of the earliest projects to revive the idea that 
networks of neuronlike adaptive elements might prove to be a promising approach to artificial 
adaptive intelligence. The project explored the "heterostatic theory of adaptive systems" developed 
by A. Harry Klopf. Harry's work was a rich source of ideas, and we were permitted to explore them 
critically and compare them with the long history of prior work in adaptive systems. Our task became 
one of teasing the ideas apart and understanding their relationships and relative importance. This 
continues today, but in 1979 we came to realize that perhaps the simplest of the ideas, which had long 
been taken for granted, had received surprisingly little attention from a computational perspective. 
This was simply the idea of a learning system that wants something, that adapts its behavior in order 
to maximize a special signal from its environment. This was the idea of a "hedonistic" learning 
system, or, as we would say now, the idea of reinforcement learning. 

Like others, we had a sense that reinforcement learning had been thoroughly explored in the early 
days of cybernetics and artificial intelligence. On closer inspection, though, we found that it had been 
explored only slightly. While reinforcement learning had clearly motivated some of the earliest 
computational studies of learning, most of these researchers had gone on to other things, such as 
pattern classification, supervised learning, and adaptive control, or they had abandoned the study of 
learning altogether. As a result, the special issues involved in learning how to get something from the 
environment received relatively little attention. In retrospect, focusing on this idea was the critical 
step that set this branch of research in motion. Little progress could be made in the computational 
study of reinforcement learning until it was recognized that such a fundamental idea had not yet been 
thoroughly explored. 

The field has come a long way since then, evolving and maturing in several directions. 
Reinforcement learning has gradually become one of the most active research areas in machine 
learning, artificial intelligence, and neural network research. The field has developed strong 
mathematical foundations and impressive applications. The computational study of reinforcement 
learning is now a large field, with hundreds of active researchers around the world in diverse 
disciplines such as psychology, control theory, artificial intelligence, and neuroscience. Particularly 
important have been the contributions establishing and developing the relationships to the theory of 
optimal control and dynamic programming. The overall problem of learning from interaction to 
achieve goals is still far from being solved, but our understanding of it has improved significantly. 
We can now place component ideas, such as temporal-difference learning, dynamic programming, 
and function approximation, within a coherent perspective with respect to the overall problem. 

Our goal in writing this book was to provide a clear and simple account of the key ideas and 
algorithms of reinforcement learning. We wanted our treatment to be accessible to readers in all of 
the related disciplines, but we could not cover all of these perspectives in detail. Our treatment takes 
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almost exclusively the point of view of artificial intelligence and engineering, leaving coverage of 
connections to psychology, neuroscience, and other fields to others or to another time. We also chose 
not to produce a rigorous formal treatment of reinforcement learning. We did not reach for the 
highest possible level of mathematical abstraction and did not rely on a theorem-proof format. We 
tried to choose a level of mathematical detail that points the mathematically inclined in the right 
directions without distracting from the simplicity and potential generality of the underlying ideas. 

The book consists of three parts. Part I is introductory and problem oriented. We focus on the 
simplest aspects of reinforcement learning and on its main distinguishing features. One full chapter is 
devoted to introducing the reinforcement learning problem whose solution we explore in the rest of 
the book. Part II presents what we see as the three most important elementary solution methods: 
dynamic programming, simple Monte Carlo methods, and temporal-difference learning. The first of 
these is a planning method and assumes explicit knowledge of all aspects of a problem, whereas the 
other two are learning methods. Part III is concerned with generalizing these methods and blending 
them. Eligibility traces allow unification of Monte Carlo and temporal-difference methods, and 
function approximation methods such as artificial neural networks extend all the methods so that they 
can be applied to much larger problems. We bring planning and learning methods together again and 
relate them to heuristic search. Finally, we summarize our view of the state of reinforcement learning 
research and briefly present case studies, including some of the most impressive applications of 
reinforcement learning to date. 

This book was designed to be used as a text in a one-semester course, perhaps supplemented by 
readings from the literature or by a more mathematical text such as the excellent one by Bertsekas 
and Tsitsiklis (1996). This book can also be used as part of a broader course on machine learning, 
artificial intelligence, or neural networks. In this case, it may be desirable to cover only a subset of 
the material. We recommend covering Chapter 1 for a brief overview, Chapter 2 through Section 2.2, 
Chapter 3 except Sections 3.4, 3.5 and 3.9, and then selecting sections from the remaining chapters 
according to time and interests. Chapters 4, 5, and 6 build on each other and are best covered in 
sequence; of these, Chapter 6 is the most important for the subject and for the rest of the book. A 
course focusing on machine learning or neural networks should cover Chapter 8, and a course 
focusing on artificial intelligence or planning should cover Chapter 9. Chapter 10 should almost 
always be covered because it is short and summarizes the overall unified view of reinforcement 
learning methods developed in the book. Throughout the book, sections that are more difficult and 
not essential to the rest of the book are marked with a . These can be omitted on first reading without 
creating problems later on. Some exercises are marked with a  to indicate that they are more 
advanced and not essential to understanding the basic material of the chapter. 

The book is largely self-contained. The only mathematical background assumed is familiarity with 
elementary concepts of probability, such as expectations of random variables. Chapter 8 is 
substantially easier to digest if the reader has some knowledge of artificial neural networks or some 
other kind of supervised learning method, but it can be read without prior background. We strongly 
recommend working the exercises provided throughout the book. Solution manuals are available to 
instructors. This and other related and timely material is available via the Internet. 

At the end of most chapters is a section entitled "Bibliographical and Historical Remarks," wherein 
we credit the sources of the ideas presented in that chapter, provide pointers to further reading and 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node2.html (2 di 3)22/06/2005 9.04.33



Preface

ongoing research, and describe relevant historical background. Despite our attempts to make these 
sections authoritative and complete, we have undoubtedly left out some important prior work. For 
that we apologize, and welcome corrections and extensions for incorporation into a subsequent 
edition. 

In some sense we have been working toward this book for twenty years, and we have lots of people 
to thank. First, we thank those who have personally helped us develop the overall view presented in 
this book: Harry Klopf, for helping us recognize that reinforcement learning needed to be revived; 
Chris Watkins, Dimitri Bertsekas, John Tsitsiklis, and Paul Werbos, for helping us see the value of 
the relationships to dynamic programming; John Moore and Jim Kehoe, for insights and inspirations 
from animal learning theory; Oliver Selfridge, for emphasizing the breadth and importance of 
adaptation; and, more generally, our colleagues and students who have contributed in countless ways: 
Ron Williams, Charles Anderson, Satinder Singh, Sridhar Mahadevan, Steve Bradtke, Bob Crites, 
Peter Dayan, and Leemon Baird. Our view of reinforcement learning has been significantly enriched 
by discussions with Paul Cohen, Paul Utgoff, Martha Steenstrup, Gerry Tesauro, Mike Jordan, Leslie 
Kaelbling, Andrew Moore, Chris Atkeson, Tom Mitchell, Nils Nilsson, Stuart Russell, Tom 
Dietterich, Tom Dean, and Bob Narendra. We thank Michael Littman, Gerry Tesauro, Bob Crites, 
Satinder Singh, and Wei Zhang for providing specifics of Sections 4.7, 11.1, 11.4, 11.5, and 11.6 
respectively. We thank the the Air Force Office of Scientific Research, the National Science 
Foundation, and GTE Laboratories for their long and farsighted support. 

We also wish to thank the many people who have read drafts of this book and provided valuable 
comments, including Tom Kalt, John Tsitsiklis, Pawel Cichosz, Olle Gällmo, Chuck Anderson, 
Stuart Russell, Ben Van Roy, Paul Steenstrup, Paul Cohen, Sridhar Mahadevan, Jette Randlov, Brian 
Sheppard, Thomas O'Connell, Richard Coggins, Cristina Versino, John H. Hiett, Andreas Badelt, Jay 
Ponte, Joe Beck, Justus Piater, Martha Steenstrup, Satinder Singh, Tommi Jaakkola, Dimitri 
Bertsekas, Torbjörn Ekman, Christina Björkman, Jakob Carlström, and Olle Palmgren. Finally, we 
thank Gwyn Mitchell for helping in many ways, and Harry Stanton and Bob Prior for being our 
champions at MIT Press. 
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Series Forward 

I am pleased to have this book by Richard Sutton and Andrew Barto as one of the first books in the 
new Adaptive Computation and Machine Learning series. This textbook presents a comprehensive 
introduction to the exciting field of reinforcement learning. Written by two of the pioneers in this 
field, it provides students, practitioners, and researchers with an intuitive understanding of the central 
concepts of reinforcement learning as well as a precise presentation of the underlying mathematics. 
The book also communicates the excitement of recent practical applications of reinforcement 
learning and the relationship of reinforcement learning to the core questions in artifical intelligence. 
Reinforcement learning promises to be an extremely important new technology with immense 
practical impact and important scientific insights into the organization of intelligent systems. 

The goal of building systems that can adapt to their environments and learn from their experience has 
attracted researchers from many fields, including computer science, engineering, mathematics, 
physics, neuroscience, and cognitive science. Out of this research has come a wide variety of learning 
techniques that have the potential to transform many industrial and scientific fields. Recently, several 
research communities have begun to converge on a common set of issues surrounding supervised, 
unsupervised, and reinforcement learning problems. The MIT Press series on Adaptive Computation 
and Machine Learning seeks to unify the many diverse strands of machine learning research and to 
foster high quality research and innovative applications. 

Thomas Diettrich 
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Summary of Notation 

discrete time step

final time step of an episode

state at 

action at 

reward at , dependent, like , on  and 

return (cumulative discounted reward) following 

-step return (Section 7.1)

-return (Section 7.2)

policy, decision-making rule

action taken in state  under deterministic policy 

probability of taking action  in state  under stochastic policy 

set of all nonterminal states

set of all states, including the terminal state

set of actions possible in state 

  

probability of transition from state  to state  under action 

expected immediate reward on transition from  to  under action 

value of state  under policy  (expected return)

value of state  under the optimal policy

, estimates of  or 

value of taking action  in state  under policy 

value of taking action  in state  under the optimal policy

, estimates of  or 

vector of parameters underlying  or 

vector of features representing state 
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temporal-difference error at 

eligibility trace for state  at 

eligibility trace for a state-action pair

  

discount-rate parameter

probability of random action in -greedy policy

step-size parameters

decay-rate parameter for eligibility traces
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1. Introduction 

The idea that we learn by interacting with our environment is probably the first to occur to us when 
we think about the nature of learning. When an infant plays, waves its arms, or looks about, it has no 
explicit teacher, but it does have a direct sensorimotor connection to its environment. Exercising this 
connection produces a wealth of information about cause and effect, about the consequences of 
actions, and about what to do in order to achieve goals. Throughout our lives, such interactions are 
undoubtedly a major source of knowledge about our environment and ourselves. Whether we are 
learning to drive a car or to hold a conversation, we are acutely aware of how our environment 
responds to what we do, and we seek to influence what happens through our behavior. Learning from 
interaction is a foundational idea underlying nearly all theories of learning and intelligence. 

In this book we explore a computational approach to learning from interaction. Rather than directly 
theorizing about how people or animals learn, we explore idealized learning situations and evaluate 
the effectiveness of various learning methods. That is, we adopt the perspective of an artificial 
intelligence researcher or engineer. We explore designs for machines that are effective in solving 
learning problems of scientific or economic interest, evaluating the designs through mathematical 
analysis or computational experiments. The approach we explore, called reinforcement learning, is 
much more focused on goal-directed learning from interaction than are other approaches to machine 
learning. 
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1.1 Reinforcement Learning 

Reinforcement learning is learning what to do--how to map situations to actions--so as to maximize a 
numerical reward signal. The learner is not told which actions to take, as in most forms of machine 
learning, but instead must discover which actions yield the most reward by trying them. In the most 
interesting and challenging cases, actions may affect not only the immediate reward but also the next 
situation and, through that, all subsequent rewards. These two characteristics--trial-and-error search 
and delayed reward--are the two most important distinguishing features of reinforcement learning. 

Reinforcement learning is defined not by characterizing learning methods, but by characterizing a 
learning problem. Any method that is well suited to solving that problem, we consider to be a 
reinforcement learning method. A full specification of the reinforcement learning problem in terms of 
optimal control of Markov decision processes must wait until Chapter 3, but the basic idea is simply 
to capture the most important aspects of the real problem facing a learning agent interacting with its 
environment to achieve a goal. Clearly, such an agent must be able to sense the state of the 
environment to some extent and must be able to take actions that affect the state. The agent also must 
have a goal or goals relating to the state of the environment. The formulation is intended to include 
just these three aspects--sensation, action, and goal--in their simplest possible forms without 
trivializing any of them. 

Reinforcement learning is different from supervised learning, the kind of learning studied in most 
current research in machine learning, statistical pattern recognition, and artificial neural networks. 
Supervised learning is learning from examples provided by a knowledgable external supervisor. This 
is an important kind of learning, but alone it is not adequate for learning from interaction. In 
interactive problems it is often impractical to obtain examples of desired behavior that are both 
correct and representative of all the situations in which the agent has to act. In uncharted territory--
where one would expect learning to be most beneficial--an agent must be able to learn from its own 
experience. 

One of the challenges that arise in reinforcement learning and not in other kinds of learning is the 
trade-off between exploration and exploitation. To obtain a lot of reward, a reinforcement learning 
agent must prefer actions that it has tried in the past and found to be effective in producing reward. 
But to discover such actions, it has to try actions that it has not selected before. The agent has to 
exploit what it already knows in order to obtain reward, but it also has to explore in order to make 
better action selections in the future. The dilemma is that neither exploration nor exploitation can be 
pursued exclusively without failing at the task. The agent must try a variety of actions and 
progressively favor those that appear to be best. On a stochastic task, each action must be tried many 
times to gain a reliable estimate its expected reward. The exploration-exploitation dilemma has been 
intensively studied by mathematicians for many decades (see Chapter 2). For now, we simply note 
that the entire issue of balancing exploration and exploitation does not even arise in supervised 
learning as it is usually defined. 
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Another key feature of reinforcement learning is that it explicitly considers the whole problem of a 
goal-directed agent interacting with an uncertain environment. This is in contrast with many 
approaches that consider subproblems without addressing how they might fit into a larger picture. For 
example, we have mentioned that much of machine learning research is concerned with supervised 
learning without explicitly specifying how such an ability would finally be useful. Other researchers 
have developed theories of planning with general goals, but without considering planning's role in 
real-time decision-making, or the question of where the predictive models necessary for planning 
would come from. Although these approaches have yielded many useful results, their focus on 
isolated subproblems is a significant limitation. 

Reinforcement learning takes the opposite tack, starting with a complete, interactive, goal-seeking 
agent. All reinforcement learning agents have explicit goals, can sense aspects of their environments, 
and can choose actions to influence their environments. Moreover, it is usually assumed from the 
beginning that the agent has to operate despite significant uncertainty about the environment it faces. 
When reinforcement learning involves planning, it has to address the interplay between planning and 
real-time action selection, as well as the question of how environmental models are acquired and 
improved. When reinforcement learning involves supervised learning, it does so for specific reasons 
that determine which capabilities are critical and which are not. For learning research to make 
progress, important subproblems have to be isolated and studied, but they should be subproblems that 
play clear roles in complete, interactive, goal-seeking agents, even if all the details of the complete 
agent cannot yet be filled in. 

One of the larger trends of which reinforcement learning is a part is that toward greater contact 
between artificial intelligence and other engineering disciplines. Not all that long ago, artificial 
intelligence was viewed as almost entirely separate from control theory and statistics. It had to do 
with logic and symbols, not numbers. Artificial intelligence was large LISP programs, not linear 
algebra, differential equations, or statistics. Over the last decades this view has gradually eroded. 
Modern artificial intelligence researchers accept statistical and control algorithms, for example, as 
relevant competing methods or simply as tools of their trade. The previously ignored areas lying 
between artificial intelligence and conventional engineering are now among the most active, 
including new fields such as neural networks, intelligent control, and our topic, reinforcement 
learning. In reinforcement learning we extend ideas from optimal control theory and stochastic 
approximation to address the broader and more ambitious goals of artificial intelligence. 
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1.2 Examples 

A good way to understand reinforcement learning is to consider some of the examples and possible 
applications that have guided its development. 

●     A master chess player makes a move. The choice is informed both by planning--anticipating 
possible replies and counterreplies--and by immediate, intuitive judgments of the desirability 
of particular positions and moves. 

●     An adaptive controller adjusts parameters of a petroleum refinery's operation in real time. The 
controller optimizes the yield/cost/quality trade-off on the basis of specified marginal costs 
without sticking strictly to the set points originally suggested by engineers. 

●     A gazelle calf struggles to its feet minutes after being born. Half an hour later it is running at 
20 miles per hour. 

●     A mobile robot decides whether it should enter a new room in search of more trash to collect 
or start trying to find its way back to its battery recharging station. It makes its decision based 
on how quickly and easily it has been able to find the recharger in the past. 

●     Phil prepares his breakfast. Closely examined, even this apparently mundane activity reveals a 
complex web of conditional behavior and interlocking goal-subgoal relationships: walking to 
the cupboard, opening it, selecting a cereal box, then reaching for, grasping, and retrieving the 
box. Other complex, tuned, interactive sequences of behavior are required to obtain a bowl, 
spoon, and milk jug. Each step involves a series of eye movements to obtain information and 
to guide reaching and locomotion. Rapid judgments are continually made about how to carry 
the objects or whether it is better to ferry some of them to the dining table before obtaining 
others. Each step is guided by goals, such as grasping a spoon or getting to the refrigerator, 
and is in service of other goals, such as having the spoon to eat with once the cereal is 
prepared and ultimately obtaining nourishment. 

These examples share features that are so basic that they are easy to overlook. All involve interaction 
between an active decision-making agent and its environment, within which the agent seeks to 
achieve a goal despite uncertainty about its environment. The agent's actions are permitted to affect 
the future state of the environment (e.g., the next chess position, the level of reservoirs of the 
refinery, the next location of the robot), thereby affecting the options and opportunities available to 
the agent at later times. Correct choice requires taking into account indirect, delayed consequences of 
actions, and thus may require foresight or planning. 
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At the same time, in all these examples the effects of actions cannot be fully predicted; thus the agent 
must monitor its environment frequently and react appropriately. For example, Phil must watch the 
milk he pours into his cereal bowl to keep it from overflowing. All these examples involve goals that 
are explicit in the sense that the agent can judge progress toward its goal based on what it can sense 
directly. The chess player knows whether or not he wins, the refinery controller knows how much 
petroleum is being produced, the mobile robot knows when its batteries run down, and Phil knows 
whether or not he is enjoying his breakfast. 

In all of these examples the agent can use its experience to improve its performance over time. The 
chess player refines the intuition he uses to evaluate positions, thereby improving his play; the gazelle 
calf improves the efficiency with which it can run; Phil learns to streamline making his breakfast. The 
knowledge the agent brings to the task at the start--either from previous experience with related tasks 
or built into it by design or evolution--influences what is useful or easy to learn, but interaction with 
the environment is essential for adjusting behavior to exploit specific features of the task. 
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1.3 Elements of Reinforcement Learning 

Beyond the agent and the environment, one can identify four main subelements of a reinforcement 
learning system: a policy, a reward function, a value function, and, optionally, a model of the 
environment. 

A policy defines the learning agent's way of behaving at a given time. Roughly speaking, a policy is a 
mapping from perceived states of the environment to actions to be taken when in those states. It 
corresponds to what in psychology would be called a set of stimulus-response rules or associations. 
In some cases the policy may be a simple function or lookup table, whereas in others it may involve 
extensive computation such as a search process. The policy is the core of a reinforcement learning 
agent in the sense that it alone is sufficient to determine behavior. In general, policies may be 
stochastic. 

A reward function defines the goal in a reinforcement learning problem. Roughly speaking, it maps 
each perceived state (or state-action pair) of the environment to a single number, a reward, indicating 
the intrinsic desirability of that state. A reinforcement learning agent's sole objective is to maximize 
the total reward it receives in the long run. The reward function defines what are the good and bad 
events for the agent. In a biological system, it would not be inappropriate to identify rewards with 
pleasure and pain. They are the immediate and defining features of the problem faced by the agent. 
As such, the reward function must necessarily be unalterable by the agent. It may, however, serve as 
a basis for altering the policy. For example, if an action selected by the policy is followed by low 
reward, then the policy may be changed to select some other action in that situation in the future. In 
general, reward functions may be stochastic. 

Whereas a reward function indicates what is good in an immediate sense, a value function specifies 
what is good in the long run. Roughly speaking, the value of a state is the total amount of reward an 
agent can expect to accumulate over the future, starting from that state. Whereas rewards determine 
the immediate, intrinsic desirability of environmental states, values indicate the long-term desirability 
of states after taking into account the states that are likely to follow, and the rewards available in 
those states. For example, a state might always yield a low immediate reward but still have a high 
value because it is regularly followed by other states that yield high rewards. Or the reverse could be 
true. To make a human analogy, rewards are like pleasure (if high) and pain (if low), whereas values 
correspond to a more refined and farsighted judgment of how pleased or displeased we are that our 
environment is in a particular state. Expressed this way, we hope it is clear that value functions 
formalize a basic and familiar idea. 

Rewards are in a sense primary, whereas values, as predictions of rewards, are secondary. Without 
rewards there could be no values, and the only purpose of estimating values is to achieve more 
reward. Nevertheless, it is values with which we are most concerned when making and evaluating 
decisions. Action choices are made based on value judgments. We seek actions that bring about states 
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of highest value, not highest reward, because these actions obtain the greatest amount of reward for 
us over the long run. In decision-making and planning, the derived quantity called value is the one 
with which we are most concerned. Unfortunately, it is much harder to determine values than it is to 
determine rewards. Rewards are basically given directly by the environment, but values must be 
estimated and reestimated from the sequences of observations an agent makes over its entire lifetime. 
In fact, the most important component of almost all reinforcement learning algorithms is a method for 
efficiently estimating values. The central role of value estimation is arguably the most important 
thing we have learned about reinforcement learning over the last few decades. 

Although all the reinforcement learning methods we consider in this book are structured around 
estimating value functions, it is not strictly necessary to do this to solve reinforcement learning 
problems. For example, search methods such as genetic algorithms, genetic programming, simulated 
annealing, and other function optimization methods have been used to solve reinforcement learning 
problems. These methods search directly in the space of policies without ever appealing to value 
functions. We call these evolutionary methods because their operation is analogous to the way 
biological evolution produces organisms with skilled behavior even when they do not learn during 
their individual lifetimes. If the space of policies is sufficiently small, or can be structured so that 
good policies are common or easy to find, then evolutionary methods can be effective. In addition, 
evolutionary methods have advantages on problems in which the learning agent cannot accurately 
sense the state of its environment. 

Nevertheless, what we mean by reinforcement learning involves learning while interacting with the 
environment, which evolutionary methods do not do. It is our belief that methods able to take 
advantage of the details of individual behavioral interactions can be much more efficient than 
evolutionary methods in many cases. Evolutionary methods ignore much of the useful structure of the 
reinforcement learning problem: they do not use the fact that the policy they are searching for is a 
function from states to actions; they do not notice which states an individual passes through during its 
lifetime, or which actions it selects. In some cases this information can be misleading (e.g., when 
states are misperceived), but more often it should enable more efficient search. Although evolution 
and learning share many features and can naturally work together, as they do in nature, we do not 
consider evolutionary methods by themselves to be especially well suited to reinforcement learning 
problems. For simplicity, in this book when we use the term "reinforcement learning" we do not 
include evolutionary methods. 

The fourth and final element of some reinforcement learning systems is a model of the environment. 
This is something that mimics the behavior of the environment. For example, given a state and action, 
the model might predict the resultant next state and next reward. Models are used for planning, by 
which we mean any way of deciding on a course of action by considering possible future situations 
before they are actually experienced. The incorporation of models and planning into reinforcement 
learning systems is a relatively new development. Early reinforcement learning systems were 
explicitly trial-and-error learners; what they did was viewed as almost the opposite of planning. 
Nevertheless, it gradually became clear that reinforcement learning methods are closely related to 
dynamic programming methods, which do use models, and that they in turn are closely related to 
state-space planning methods. In Chapter 9 we explore reinforcement learning systems that 
simultaneously learn by trial and error, learn a model of the environment, and use the model for 
planning. Modern reinforcement learning spans the spectrum from low-level, trial-and-error learning 
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to high-level, deliberative planning. 
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1.4 An Extended Example: Tic-Tac-Toe 

To illustrate the general idea of reinforcement learning and contrast it with other approaches, we next 
consider a single example in more detail. 

Consider the familiar child's game of tic-tac-toe. Two players take turns playing on a three-by-three 
board. One player plays Xs and the other Os until one player wins by placing three marks in a row, 
horizontally, vertically, or diagonally, as the X player has in this game: 

 
 

 

 
If the board fills up with neither player getting three in a row, the game is a draw. Because a skilled 
player can play so as never to lose, let us assume that we are playing against an imperfect player, one 
whose play is sometimes incorrect and allows us to win. For the moment, in fact, let us consider 
draws and losses to be equally bad for us. How might we construct a player that will find the 
imperfections in its opponent's play and learn to maximize its chances of winning? 

Although this is a simple problem, it cannot readily be solved in a satisfactory way through classical 
techniques. For example, the classical "minimax" solution from game theory is not correct here 
because it assumes a particular way of playing by the opponent. For example, a minimax player 
would never reach a game state from which it could lose, even if in fact it always won from that state 
because of incorrect play by the opponent. Classical optimization methods for sequential decision 
problems, such as dynamic programming, can compute an optimal solution for any opponent, but 
require as input a complete specification of that opponent, including the probabilities with which the 
opponent makes each move in each board state. Let us assume that this information is not available a 
priori for this problem, as it is not for the vast majority of problems of practical interest. On the other 
hand, such information can be estimated from experience, in this case by playing many games against 
the opponent. About the best one can do on this problem is first to learn a model of the opponent's 
behavior, up to some level of confidence, and then apply dynamic programming to compute an 
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optimal solution given the approximate opponent model. In the end, this is not that different from 
some of the reinforcement learning methods we examine later in this book. 

An evolutionary approach to this problem would directly search the space of possible policies for one 
with a high probability of winning against the opponent. Here, a policy is a rule that tells the player 
what move to make for every state of the game--every possible configuration of X s and Os on the 
three-by-three board. For each policy considered, an estimate of its winning probability would be 
obtained by playing some number of games against the opponent. This evaluation would then direct 
which policy or policies were considered next. A typical evolutionary method would hill-climb in 
policy space, successively generating and evaluating policies in an attempt to obtain incremental 
improvements. Or, perhaps, a genetic-style algorithm could be used that would maintain and evaluate 
a population of policies. Literally hundreds of different optimization methods could be applied. By 
directly searching the policy space we mean that entire policies are proposed and compared on the 
basis of scalar evaluations. 

Here is how the tic-tac-toe problem would be approached using reinforcement learning and 
approximate value functions. First we set up a table of numbers, one for each possible state of the 
game. Each number will be the latest estimate of the probability of our winning from that state. We 
treat this estimate as the state's value, and the whole table is the learned value function. State A has 
higher value than state B, or is considered "better" than state B, if the current estimate of the 
probability of our winning from A is higher than it is from B. Assuming we always play X s, then for 
all states with three Xs in a row the probability of winning is 1, because we have already won. 
Similarly, for all states with three Os in a row, or that are "filled up," the correct probability is 0, as 
we cannot win from them. We set the initial values of all the other states to 0.5, representing a guess 
that we have a 50% chance of winning. 

We play many games against the opponent. To select our moves we examine the states that would 
result from each of our possible moves (one for each blank space on the board) and look up their 
current values in the table. Most of the time we move greedily, selecting the move that leads to the 
state with greatest value, that is, with the highest estimated probability of winning. Occasionally, 
however, we select randomly from among the other moves instead. These are called exploratory 
moves because they cause us to experience states that we might otherwise never see. A sequence of 
moves made and considered during a game can be diagrammed as in Figure  1.1. 
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Figure 1.1:A sequence of tic-tac-toe moves. The solid lines represent the moves taken during a 
game; the dashed lines represent moves that we (our reinforcement learning player) considered but 
did not make. Our second move was an exploratory move, meaning that it was taken even though 
another sibling move, the one leading to , was ranked higher. Exploratory moves do not result in 
any learning, but each of our other moves does, causing backupsas suggested by the curved arrows 

and detailed in the text. 
 

While we are playing, we change the values of the states in which we find ourselves during the game. 
We attempt to make them more accurate estimates of the probabilities of winning. To do this, we 
"back up" the value of the state after each greedy move to the state before the move, as suggested by 
the arrows in Figure  1.1. More precisely, the current value of the earlier state is adjusted to be closer 
to the value of the later state. This can be done by moving the earlier state's value a fraction of the 
way toward the value of the later state. If we let  denote the state before the greedy move, and  the 

state after the move, then the update to the estimated value of , denoted , can be written as  
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where  is a small positive fraction called the step-size parameter, which influences the rate of 
learning. This update rule is an example of a temporal-difference learning method, so called because 

its changes are based on a difference, , between estimates at two different times. 

The method described above performs quite well on this task. For example, if the step-size parameter 
is reduced properly over time, this method converges, for any fixed opponent, to the true probabilities 
of winning from each state given optimal play by our player. Furthermore, the moves then taken 
(except on exploratory moves) are in fact the optimal moves against the opponent. In other words, the 
method converges to an optimal policy for playing the game. If the step-size parameter is not reduced 
all the way to zero over time, then this player also plays well against opponents that slowly change 
their way of playing. 

This example illustrates the differences between evolutionary methods and methods that learn value 
functions. To evaluate a policy, an evolutionary method must hold it fixed and play many games 
against the opponent, or simulate many games using a model of the opponent. The frequency of wins 
gives an unbiased estimate of the probability of winning with that policy, and can be used to direct 
the next policy selection. But each policy change is made only after many games, and only the final 
outcome of each game is used: what happens during the games is ignored. For example, if the player 
wins, then all of its behavior in the game is given credit, independently of how specific moves might 
have been critical to the win. Credit is even given to moves that never occurred! Value function 
methods, in contrast, allow individual states to be evaluated. In the end, both evolutionary and value 
function methods search the space of policies, but learning a value function takes advantage of 
information available during the course of play. 

This simple example illustrates some of the key features of reinforcement learning methods. First, 
there is the emphasis on learning while interacting with an environment, in this case with an opponent 
player. Second, there is a clear goal, and correct behavior requires planning or foresight that takes 
into account delayed effects of one's choices. For example, the simple reinforcement learning player 
would learn to set up multimove traps for a shortsighted opponent. It is a striking feature of the 
reinforcement learning solution that it can achieve the effects of planning and lookahead without 
using a model of the opponent and without conducting an explicit search over possible sequences of 
future states and actions. 

While this example illustrates some of the key features of reinforcement learning, it is so simple that 
it might give the impression that reinforcement learning is more limited than it really is. Although tic-
tac-toe is a two-person game, reinforcement learning also applies in the case in which there is no 
external adversary, that is, in the case of a "game against nature." Reinforcement learning also is not 
restricted to problems in which behavior breaks down into separate episodes, like the separate games 
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of tic-tac-toe, with reward only at the end of each episode. It is just as applicable when behavior 
continues indefinitely and when rewards of various magnitudes can be received at any time. 

Tic-tac-toe has a relatively small, finite state set, whereas reinforcement learning can be used when 
the state set is very large, or even infinite. For example, Gerry Tesauro (1992, 1995) combined the 
algorithm described above with an artificial neural network to learn to play backgammon, which has 
approximately  states. With this many states it is impossible ever to experience more than a small 
fraction of them. Tesauro's program learned to play far better than any previous program, and now 
plays at the level of the world's best human players (see Chapter 11). The neural network provides the 
program with the ability to generalize from its experience, so that in new states it selects moves based 
on information saved from similar states faced in the past, as determined by its network. How well a 
reinforcement learning system can work in problems with such large state sets is intimately tied to 
how appropriately it can generalize from past experience. It is in this role that we have the greatest 
need for supervised learning methods with reinforcement learning. Neural networks are not the only, 
or necessarily the best, way to do this. 

In this tic-tac-toe example, learning started with no prior knowledge beyond the rules of the game, 
but reinforcement learning by no means entails a tabula rasa view of learning and intelligence. On the 
contrary, prior information can be incorporated into reinforcement learning in a variety of ways that 
can be critical for efficient learning. We also had access to the true state in the tic-tac-toe example, 
whereas reinforcement learning can also be applied when part of the state is hidden, or when different 
states appear to the learner to be the same. That case, however, is substantially more difficult, and we 
do not cover it significantly in this book. 

Finally, the tic-tac-toe player was able to look ahead and know the states that would result from each 
of its possible moves. To do this, it had to have a model of the game that allowed it to "think about" 
how its environment would change in response to moves that it might never make. Many problems 
are like this, but in others even a short-term model of the effects of actions is lacking. Reinforcement 
learning can be applied in either case. No model is required, but models can easily be used if they are 
available or can be learned. 

Exercise 1.1: Self-Play   Suppose, instead of playing against a random opponent, the reinforcement 
learning algorithm described above played against itself. What do you think would happen in this 
case? Would it learn a different way of playing? 

Exercise 1.2: Symmetries   Many tic-tac-toe positions appear different but are really the same 
because of symmetries. How might we amend the reinforcement learning algorithm described above 
to take advantage of this? In what ways would this improve it? Now think again. Suppose the 
opponent did not take advantage of symmetries. In that case, should we? Is it true, then, that 
symmetrically equivalent positions should necessarily have the same value? 

Exercise 1.3: Greedy Play   Suppose the reinforcement learning player was greedy, that is, it always 
played the move that brought it to the position that it rated the best. Would it learn to play better, or 
worse, than a nongreedy player? What problems might occur? 
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Exercise 1.4: Learning from Exploration   Suppose learning updates occurred after all moves, 
including exploratory moves. If the step-size parameter is appropriately reduced over time, then the 
state values would converge to a set of probabilities. What are the two sets of probabilities computed 
when we do, and when we do not, learn from exploratory moves? Assuming that we do continue to 
make exploratory moves, which set of probabilities might be better to learn? Which would result in 
more wins? 

Exercise 1.5: Other Improvements   Can you think of other ways to improve the reinforcement 
learning player? Can you think of any better way to solve the tic-tac-toe problem as posed? 
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1.5 Summary 

Reinforcement learning is a computational approach to understanding and automating goal-directed 
learning and decision-making. It is distinguished from other computational approaches by its 
emphasis on learning by the individual from direct interaction with its environment, without relying 
on exemplary supervision or complete models of the environment. In our opinion, reinforcement 
learning is the first field to seriously address the computational issues that arise when learning from 
interaction with an environment in order to achieve long-term goals. 

Reinforcement learning uses a formal framework defining the interaction between a learning agent 
and its environment in terms of states, actions, and rewards. This framework is intended to be a 
simple way of representing essential features of the artificial intelligence problem. These features 
include a sense of cause and effect, a sense of uncertainty and nondeterminism, and the existence of 
explicit goals. 

The concepts of value and value functions are the key features of the reinforcement learning methods 
that we consider in this book. We take the position that value functions are essential for efficient 
search in the space of policies. Their use of value functions distinguishes reinforcement learning 
methods from evolutionary methods that search directly in policy space guided by scalar evaluations 
of entire policies. 

     
Next: 1.6 History of Reinforcement Up: 1. Introduction Previous: 1.4 An Extended Example:   
Contents 
Mark Lee 2005-01-04 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node11.html22/06/2005 9.05.16



1.6 History of Reinforcement Learning

     
Next: 1.7 Bibliographical Remarks Up: 1. Introduction Previous: 1.5 Summary   Contents  
 

1.6 History of Reinforcement Learning 

The history of reinforcement learning has two main threads, both long and rich, that were pursued 
independently before intertwining in modern reinforcement learning. One thread concerns learning 
by trial and error and started in the psychology of animal learning. This thread runs through some of 
the earliest work in artificial intelligence and led to the revival of reinforcement learning in the early 
1980s. The other thread concerns the problem of optimal control and its solution using value 
functions and dynamic programming. For the most part, this thread did not involve learning. 
Although the two threads have been largely independent, the exceptions revolve around a third, less 
distinct thread concerning temporal-difference methods such as used in the tic-tac-toe example in this 
chapter. All three threads came together in the late 1980s to produce the modern field of 
reinforcement learning as we present it in this book. 

The thread focusing on trial-and-error learning is the one with which we are most familiar and about 
which we have the most to say in this brief history. Before doing that, however, we briefly discuss the 
optimal control thread. 

The term "optimal control" came into use in the late 1950s to describe the problem of designing a 
controller to minimize a measure of a dynamical system's behavior over time. One of the approaches 
to this problem was developed in the mid-1950s by Richard Bellman and others through extending a 
nineteenth century theory of Hamilton and Jacobi. This approach uses the concepts of a dynamical 
system's state and of a value function, or "optimal return function," to define a functional equation, 
now often called the Bellman equation. The class of methods for solving optimal control problems by 
solving this equation came to be known as dynamic programming (Bellman, 1957a). Bellman 
(1957b) also introduced the discrete stochastic version of the optimal control problem known as 
Markovian decision processes (MDPs), and Ron Howard (1960) devised the policy iteration method 
for MDPs. All of these are essential elements underlying the theory and algorithms of modern 
reinforcement learning. 

Dynamic programming is widely considered the only feasible way of solving general stochastic 
optimal control problems. It suffers from what Bellman called "the curse of dimensionality," meaning 
that its computational requirements grow exponentially with the number of state variables, but it is 
still far more efficient and more widely applicable than any other general method. Dynamic 
programming has been extensively developed since the late 1950s, including extensions to partially 
observable MDPs (surveyed by Lovejoy, 1991), many applications (surveyed by White, 1985, 1988, 
1993), approximation methods (surveyed by Rust, 1996), and asynchronous methods (Bertsekas, 
1982, 1983). Many excellent modern treatments of dynamic programming are available (e.g., 
Bertsekas, 1995; Puterman, 1994; Ross, 1983; and Whittle, 1982, 1983). Bryson (1996) provides an 
authoritative history of optimal control. 

In this book, we consider all of the work in optimal control also to be, in a sense, work in 
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reinforcement learning. We define reinforcement learning as any effective way of solving 
reinforcement learning problems, and it is now clear that these problems are closely related to 
optimal control problems, particularly those formulated as MDPs. Accordingly, we must consider the 
solution methods of optimal control, such as dynamic programming, also to be reinforcement 
learning methods. Of course, almost all of these methods require complete knowledge of the system 
to be controlled, and for this reason it feels a little unnatural to say that they are part of reinforcement 
learning. On the other hand, many dynamic programming methods are incremental and iterative. 
Like learning methods, they gradually reach the correct answer through successive approximations. 
As we show in the rest of this book, these similarities are far more than superficial. The theories and 
solution methods for the cases of complete and incomplete knowledge are so closely related that we 
feel they must be considered together as part of the same subject matter. 

Let us return now to the other major thread leading to the modern field of reinforcement learning, that 
centered on the idea of trial-and-error learning. This thread began in psychology, where 
"reinforcement" theories of learning are common. Perhaps the first to succinctly express the essence 
of trial-and-error learning was Edward Thorndike. We take this essence to be the idea that actions 
followed by good or bad outcomes have their tendency to be reselected altered accordingly. In 
Thorndike's words: 

Of several responses made to the same situation, those which are accompanied or 
closely followed by satisfaction to the animal will, other things being equal, be more 
firmly connected with the situation, so that, when it recurs, they will be more likely to 
recur; those which are accompanied or closely followed by discomfort to the animal 
will, other things being equal, have their connections with that situation weakened, so 
that, when it recurs, they will be less likely to occur. The greater the satisfaction or 
discomfort, the greater the strengthening or weakening of the bond. (Thorndike, 1911, 
p. 244) 

Thorndike called this the "Law of Effect" because it describes the effect of reinforcing events on the 
tendency to select actions. Although sometimes controversial (e.g., see Kimble, 1961, 1967; Mazur, 
1994), the Law of Effect is widely regarded as an obvious basic principle underlying much behavior 
(e.g., Hilgard and Bower, 1975; Dennett, 1978; Campbell, 1960; Cziko, 1995). 

The Law of Effect includes the two most important aspects of what we mean by trial-and-error 
learning. First, it is selectional, meaning that it involves trying alternatives and selecting among them 
by comparing their consequences. Second, it is associative, meaning that the alternatives found by 
selection are associated with particular situations. Natural selection in evolution is a prime example 
of a selectional process, but it is not associative. Supervised learning is associative, but not 
selectional. It is the combination of these two that is essential to the Law of Effect and to trial-and-
error learning. Another way of saying this is that the Law of Effect is an elementary way of 
combining search and memory: search in the form of trying and selecting among many actions in 
each situation, and memory in the form of remembering what actions worked best, associating them 
with the situations in which they were best. Combining search and memory in this way is essential to 
reinforcement learning. 
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In early artificial intelligence, before it was distinct from other branches of engineering, several 
researchers began to explore trial-and-error learning as an engineering principle. The earliest 
computational investigations of trial-and-error learning were perhaps by Minsky and by Farley and 
Clark, both in 1954. In his Ph.D. dissertation, Minsky discussed computational models of 
reinforcement learning and described his construction of an analog machine composed of 
components he called SNARCs (Stochastic Neural-Analog Reinforcement Calculators). Farley and 
Clark described another neural-network learning machine designed to learn by trial and error. In the 
1960s the terms "reinforcement" and "reinforcement learning" were used in the engineering literature 
for the first time (e.g., Waltz and Fu, 1965; Mendel, 1966; Fu, 1970; Mendel and McClaren, 1970). 
Particularly influential was Minsky's paper "Steps Toward Artificial Intelligence" (Minsky, 1961), 
which discussed several issues relevant to reinforcement learning, including what he called the credit 
assignment problem: How do you distribute credit for success among the many decisions that may 
have been involved in producing it? All of the methods we discuss in this book are, in a sense, 
directed toward solving this problem. 

The interests of Farley and Clark (1954; Clark and Farley, 1955) shifted from trial-and-error learning 
to generalization and pattern recognition, that is, from reinforcement learning to supervised learning. 
This began a pattern of confusion about the relationship between these types of learning. Many 
researchers seemed to believe that they were studying reinforcement learning when they were 
actually studying supervised learning. For example, neural network pioneers such as Rosenblatt 
(1962) and Widrow and Hoff (1960) were clearly motivated by reinforcement learning--they used the 
language of rewards and punishments--but the systems they studied were supervised learning systems 
suitable for pattern recognition and perceptual learning. Even today, researchers and textbooks often 
minimize or blur the distinction between these types of learning. Some modern neural-network 
textbooks use the term "trial-and-error" to describe networks that learn from training examples 
because they use error information to update connection weights. This is an understandable 
confusion, but it substantially misses the essential selectional character of trial-and-error learning. 

Partly as a result of these confusions, research into genuine trial-and-error learning became rare in the 
the 1960s and 1970s. In the next few paragraphs we discuss some of the exceptions and partial 
exceptions to this trend. 

One of these was the work by a New Zealand researcher named John Andreae. Andreae (1963) 
developed a system called STeLLA that learned by trial and error in interaction with its environment. 
This system included an internal model of the world and, later, an "internal monologue" to deal with 
problems of hidden state (Andreae, 1969a). Andreae's later work (1977) placed more emphasis on 
learning from a teacher, but still included trial and error. Unfortunately, his pioneering research was 
not well known, and did not greatly impact subsequent reinforcement learning research. 

More influential was the work of Donald Michie. In 1961 and 1963 he described a simple trial-and-
error learning system for learning how to play tic-tac-toe (or naughts and crosses) called MENACE 
(for Matchbox Educable Naughts and Crosses Engine). It consisted of a matchbox for each possible 
game position, each matchbox containing a number of colored beads, a different color for each 
possible move from that position. By drawing a bead at random from the matchbox corresponding to 
the current game position, one could determine MENACE's move. When a game was over, beads 
were added to or removed from the boxes used during play to reinforce or punish MENACE's 
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decisions. Michie and Chambers (1968) described another tic-tac-toe reinforcement learner called 
GLEE (Game Learning Expectimaxing Engine) and a reinforcement learning controller called 
BOXES. They applied BOXES to the task of learning to balance a pole hinged to a movable cart on 
the basis of a failure signal occurring only when the pole fell or the cart reached the end of a track. 
This task was adapted from the earlier work of Widrow and Smith (1964), who used supervised 
learning methods, assuming instruction from a teacher already able to balance the pole. Michie and 
Chambers's version of pole-balancing is one of the best early examples of a reinforcement learning 
task under conditions of incomplete knowledge. It influenced much later work in reinforcement 
learning, beginning with some of our own studies (Barto, Sutton, and Anderson, 1983; Sutton, 1984). 
Michie has consistently emphasized the role of trial and error and learning as essential aspects of 
artificial intelligence (Michie, 1974). 

Widrow, Gupta, and Maitra (1973) modified the LMS algorithm of Widrow and Hoff (1960) to 
produce a reinforcement learning rule that could learn from success and failure signals instead of 
from training examples. They called this form of learning "selective bootstrap adaptation" and 
described it as "learning with a critic" instead of "learning with a teacher." They analyzed this rule 
and showed how it could learn to play blackjack. This was an isolated foray into reinforcement 
learning by Widrow, whose contributions to supervised learning were much more influential. 

Research on learning automata had a more direct influence on the trial-and-error thread leading to 
modern reinforcement learning research. These are methods for solving a nonassociative, purely 
selectional learning problem known as the -armed bandit by analogy to a slot machine, or "one-
armed bandit," except with  levers (see Chapter 2). Learning automata are simple, low-memory 
machines for solving this problem. Learning automata originated in Russia with the work of Tsetlin 
(1973) and has been extensively developed since then within engineering (see Narendra and 
Thathachar, 1974, 1989). Barto and Anandan (1985) extended these methods to the associative case. 

John Holland (1975) outlined a general theory of adaptive systems based on selectional principles. 
His early work concerned trial and error primarily in its nonassociative form, as in evolutionary 
methods and the -armed bandit. In 1986 he introduced classifier systems, true reinforcement 
learning systems including association and value functions. A key component of Holland's classifier 
systems was always a genetic algorithm, an evolutionary method whose role was to evolve useful 
representations. Classifier systems have been extensively developed by many researchers to form a 
major branch of reinforcement learning research (e.g., see Goldberg, 1989; Wilson, 1994), but 
genetic algorithms--which by themselves are not reinforcement learning systems--have received 
much more attention. 

The individual most responsible for reviving the trial-and-error thread to reinforcement learning 
within artificial intelligence was Harry Klopf (1972, 1975, 1982). Klopf recognized that essential 
aspects of adaptive behavior were being lost as learning researchers came to focus almost exclusively 
on supervised learning. What was missing, according to Klopf, were the hedonic aspects of behavior, 
the drive to achieve some result from the environment, to control the environment toward desired 
ends and away from undesired ends. This is the essential idea of trial-and-error learning. Klopf's ideas 
were especially influential on the authors because our assessment of them (Barto and Sutton, 1981a) 
led to our appreciation of the distinction between supervised and reinforcement learning, and to our 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node12.html (4 di 6)22/06/2005 9.05.18



1.6 History of Reinforcement Learning

eventual focus on reinforcement learning. Much of the early work that we and colleagues 
accomplished was directed toward showing that reinforcement learning and supervised learning were 
indeed different (Barto, Sutton, and Brouwer, 1981; Barto and Sutton, 1981b; Barto and Anandan, 
1985). Other studies showed how reinforcement learning could address important problems in neural 
network learning, in particular, how it could produce learning algorithms for multilayer networks 
(Barto, Anderson, and Sutton, 1982; Barto and Anderson, 1985; Barto and Anandan, 1985; Barto, 
1985, 1986; Barto and Jordan, 1987). 

We turn now to the third thread to the history of reinforcement learning, that concerning temporal-
difference learning. Temporal-difference learning methods are distinctive in being driven by the 
difference between temporally successive estimates of the same quantity--for example, of the 
probability of winning in the tic-tac-toe example. This thread is smaller and less distinct than the 
other two, but it has played a particularly important role in the field, in part because temporal-
difference methods seem to be new and unique to reinforcement learning. 

The origins of temporal-difference learning are in part in animal learning psychology, in particular, in 
the notion of secondary reinforcers. A secondary reinforcer is a stimulus that has been paired with a 
primary reinforcer such as food or pain and, as a result, has come to take on similar reinforcing 
properties. Minsky (1954) may have been the first to realize that this psychological principle could be 
important for artificial learning systems. Arthur Samuel (1959) was the first to propose and 
implement a learning method that included temporal-difference ideas, as part of his celebrated 
checkers-playing program. Samuel made no reference to Minsky's work or to possible connections to 
animal learning. His inspiration apparently came from Claude Shannon's (1950) suggestion that a 
computer could be programmed to use an evaluation function to play chess, and that it might be able 
to to improve its play by modifying this function on-line. (It is possible that these ideas of Shannon's 
also influenced Bellman, but we know of no evidence for this.) Minsky (1961) extensively discussed 
Samuel's work in his "Steps" paper, suggesting the connection to secondary reinforcement theories, 
both natural and artificial. 

As we have discussed, in the decade following the work of Minsky and Samuel, little computational 
work was done on trial-and-error learning, and apparently no computational work at all was done on 
temporal-difference learning. In 1972, Klopf brought trial-and-error learning together with an 
important component of temporal-difference learning. Klopf was interested in principles that would 
scale to learning in large systems, and thus was intrigued by notions of local reinforcement, whereby 
subcomponents of an overall learning system could reinforce one another. He developed the idea of 
"generalized reinforcement," whereby every component (nominally, every neuron) views all of its 
inputs in reinforcement terms: excitatory inputs as rewards and inhibitory inputs as punishments. This 
is not the same idea as what we now know as temporal-difference learning, and in retrospect it is 
farther from it than was Samuel's work. On the other hand, Klopf linked the idea with trial-and-error 
learning and related it to the massive empirical database of animal learning psychology. 

Sutton (1978a, 1978b, 1978c) developed Klopf's ideas further, particularly the links to animal 
learning theories, describing learning rules driven by changes in temporally successive predictions. 
He and Barto refined these ideas and developed a psychological model of classical conditioning 
based on temporal-difference learning (Sutton and Barto, 1981a; Barto and Sutton, 1982). There 
followed several other influential psychological models of classical conditioning based on temporal-
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difference learning (e.g., Klopf, 1988; Moore et al., 1986; Sutton and Barto, 1987, 1990). Some 
neuroscience models developed at this time are well interpreted in terms of temporal-difference 
learning (Hawkins and Kandel, 1984; Byrne, Gingrich, and Baxter, 1990; Gelperin, Hopfield, and 
Tank, 1985; Tesauro, 1986; Friston et al., 1994), although in most cases there was no historical 
connection. A recent summary of links between temporal-difference learning and neuroscience ideas 
is provided by Schultz, Dayan, and Montague (1997). 

Our early work on temporal-difference learning was strongly influenced by animal learning theories 
and by Klopf's work. Relationships to Minsky's "Steps" paper and to Samuel's checkers players 
appear to have been recognized only afterward. By 1981, however, we were fully aware of all the 
prior work mentioned above as part of the temporal-difference and trial-and-error threads. At this 
time we developed a method for using temporal-difference learning in trial-and-error learning, known 
as the actor-critic architecture, and applied this method to Michie and Chambers's pole-balancing 
problem (Barto, Sutton, and Anderson, 1983). This method was extensively studied in Sutton's (1984) 
Ph.D. dissertation and extended to use backpropagation neural networks in Anderson's (1986) Ph.D. 
dissertation. Around this time, Holland (1986) incorporated temporal-difference ideas explicitly into 
his classifier systems. A key step was taken by Sutton in 1988 by separating temporal-difference 
learning from control, treating it as a general prediction method. That paper also introduced the TD(

) algorithm and proved some of its convergence properties. 

As we were finalizing our work on the actor-critic architecture in 1981, we discovered a paper by Ian 
Witten (1977) that contains the earliest known publication of a temporal-difference learning rule. He 
proposed the method that we now call tabular TD(0) for use as part of an adaptive controller for 
solving MDPs. Witten's work was a descendant of Andreae's early experiments with STeLLA and 
other trial-and-error learning systems. Thus, Witten's 1977 paper spanned both major threads of 
reinforcement learning research--trial-and-error learning and optimal control--while making a distinct 
early contribution to temporal-difference learning. 

Finally, the temporal-difference and optimal control threads were fully brought together in 1989 with 
Chris Watkins's development of Q-learning. This work extended and integrated prior work in all three 
threads of reinforcement learning research. Paul Werbos (1987) contributed to this integration by 
arguing for the convergence of trial-and-error learning and dynamic programming since 1977. By the 
time of Watkins's work there had been tremendous growth in reinforcement learning research, 
primarily in the machine learning subfield of artificial intelligence, but also in neural networks and 
artificial intelligence more broadly. In 1992, the remarkable success of Gerry Tesauro's backgammon 
playing program, TD-Gammon, brought additional attention to the field. Other important 
contributions made in the recent history of reinforcement learning are too numerous to mention in 
this brief account; we cite these at the end of the individual chapters in which they arise. 
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1.7 Bibliographical Remarks 

For additional general coverage of reinforcement learning, we refer the reader to the books by 
Bertsekas and Tsitsiklis (1996) and Kaelbling (1993a). Two special issues of the journal Machine 
Learning focus on reinforcement learning: Sutton (1992) and Kaelbling (1996). Useful surveys are 
provided by Barto (1995b); Kaelbling, Littman, and Moore (1996); and Keerthi and Ravindran 
(1997). 

The example of Phil's breakfast in this chapter was inspired by Agre (1988). We direct the reader to 
Chapter 6 for references to the kind of temporal-difference method we used in the tic-tac-toe 
example. 

Modern attempts to relate the kinds of algorithms used in reinforcement learning to the nervous 
system are made by Hampson (1989), Friston et al. (1994), Barto (1995a), Houk, Adams, and Barto 
(1995), Montague, Dayan, and Sejnowski (1996), and Schultz, Dayan, and Montague (1997). 

 

Mark Lee 2005-01-04 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node13.html22/06/2005 9.05.18



2. Evaluative Feedback

     
Next: 2.1 An -Armed Bandit Up: I. The Problem Previous: 1.7 Bibliographical Remarks   
Contents  
 

2. Evaluative Feedback 

The most important feature distinguishing reinforcement learning from other types of learning is that 
it uses training information that evaluates the actions taken rather than instructs by giving correct 
actions. This is what creates the need for active exploration, for an explicit trial-and-error search for 
good behavior. Purely evaluative feedback indicates how good the action taken is, but not whether it 
is the best or the worst action possible. Evaluative feedback is the basis of methods for function 
optimization, including evolutionary methods. Purely instructive feedback, on the other hand, 
indicates the correct action to take, independently of the action actually taken. This kind of feedback 
is the basis of supervised learning, which includes large parts of pattern classification, artificial neural 
networks, and system identification. In their pure forms, these two kinds of feedback are quite 
distinct: evaluative feedback depends entirely on the action taken, whereas instructive feedback is 
independent of the action taken. There are also interesting intermediate cases in which evaluation and 
instruction blend together. 

In this chapter we study the evaluative aspect of reinforcement learning in a simplified setting, one 
that does not involve learning to act in more than one situation. This nonassociative setting is the one 
in which most prior work involving evaluative feedback has been done, and it avoids much of the 
complexity of the full reinforcement learning problem. Studying this case will enable us to see most 
clearly how evaluative feedback differs from, and yet can be combined with, instructive feedback. 

The particular nonassociative, evaluative feedback problem that we explore is a simple version of the 
-armed bandit problem. We use this problem to introduce a number of basic learning methods 

which we extend in later chapters to apply to the full reinforcement learning problem. At the end of 
this chapter, we take a step closer to the full reinforcement learning problem by discussing what 
happens when the bandit problem becomes associative, that is, when actions are taken in more than 
one situation. 

 

Subsections 

●     2.1 An -Armed Bandit Problem 
●     2.2 Action-Value Methods 
●     2.3 Softmax Action Selection 
●     2.4 Evaluation Versus Instruction 
●     2.5 Incremental Implementation 
●     2.6 Tracking a Nonstationary Problem 
●     2.7 Optimistic Initial Values 
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2.1 An -Armed Bandit Problem 

Consider the following learning problem. You are faced repeatedly with a choice among  different 
options, or actions. After each choice you receive a numerical reward chosen from a stationary 
probability distribution that depends on the action you selected. Your objective is to maximize the 
expected total reward over some time period, for example, over 1000 action selections. Each action 
selection is called a play. 

This is the original form of the -armed bandit problem, so named by analogy to a slot machine, or 
"one-armed bandit," except that it has  levers instead of one. Each action selection is like a play of 
one of the slot machine's levers, and the rewards are the payoffs for hitting the jackpot. Through 
repeated plays you are to maximize your winnings by concentrating your plays on the best levers. 
Another analogy is that of a doctor choosing between experimental treatments for a series of 
seriously ill patients. Each play is a treatment selection, and each reward is the survival or well-being 
of the patient. Today the term " -armed bandit problem" is often used for a generalization of the 
problem described above, but in this book we use it to refer just to this simple case. 

In our -armed bandit problem, each action has an expected or mean reward given that that action is 
selected; let us call this the value of that action. If you knew the value of each action, then it would be 
trivial to solve the -armed bandit problem: you would always select the action with highest value. 
We assume that you do not know the action values with certainty, although you may have estimates. 

If you maintain estimates of the action values, then at any time there is at least one action whose 
estimated value is greatest. We call this a greedy action. If you select a greedy action, we say that you 
are exploiting your current knowledge of the values of the actions. If instead you select one of the 
nongreedy actions, then we say you are exploring because this enables you to improve your estimate 
of the nongreedy action's value. Exploitation is the right thing to do to maximize the expected reward 
on the one play, but exploration may produce the greater total reward in the long run. For example, 
suppose the greedy action's value is known with certainty, while several other actions are estimated to 
be nearly as good but with substantial uncertainty. The uncertainty is such that at least one of these 
other actions probably is actually better than the greedy action, but you don't know which one. If you 
have many plays yet to make, then it may be better to explore the nongreedy actions and discover 
which of them are better than the greedy action. Reward is lower in the short run, during exploration, 
but higher in the long run because after you have discovered the better actions, you can exploit them. 
Because it is not possible both to explore and to exploit with any single action selection, one often 
refers to the "conflict" between exploration and exploitation. 

In any specific case, whether it is better to explore or exploit depends in a complex way on the 
precise values of the estimates, uncertainties, and the number of remaining plays. There are many 
sophisticated methods for balancing exploration and exploitation for particular mathematical 
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formulations of the -armed bandit and related problems. However, most of these methods make 
strong assumptions about stationarity and prior knowledge that are either violated or impossible to 
verify in applications and in the full reinforcement learning problem that we consider in subsequent 
chapters. The guarantees of optimality or bounded loss for these methods are of little comfort when 
the assumptions of their theory do not apply. 

In this book we do not worry about balancing exploration and exploitation in a sophisticated way; we 
worry only about balancing them at all. In this chapter we present several simple balancing methods 
for the -armed bandit problem and show that they work much better than methods that always 
exploit. In addition, we point out that supervised learning methods (or rather the methods closest to 
supervised learning methods when adapted to this problem) perform poorly on this problem because 
they do not balance exploration and exploitation at all. The need to balance exploration and 
exploitation is a distinctive challenge that arises in reinforcement learning; the simplicity of the -
armed bandit problem enables us to show this in a particularly clear form. 

     
Next: 2.2 Action-Value Methods Up: 2. Evaluative Feedback Previous: 2. Evaluative Feedback   
Contents 
Mark Lee 2005-01-04 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node15.html (2 di 2)22/06/2005 9.05.21



2.2 Action-Value Methods

     
Next: 2.3 Softmax Action Selection Up: 2. Evaluative Feedback Previous: 2.1 An -Armed Bandit   
Contents  
 

 
2.2 Action-Value Methods 

We begin by looking more closely at some simple methods for estimating the values of actions and for 
using the estimates to make action selection decisions. In this chapter, we denote the true (actual) value 

of action  as , and the estimated value at the th play as . Recall that the true value of an 
action is the mean reward received when that action is selected. One natural way to estimate this is by 
averaging the rewards actually received when the action was selected. In other words, if at the th play 
action  has been chosen  times prior to , yielding rewards , then its value is estimated 
to be  
 

  
(2.1)

 

If , then we define  instead as some default value, such as . As , by 

the law of large numbers  converges to . We call this the sample-average method for 
estimating action values because each estimate is a simple average of the sample of relevant rewards. Of 
course this is just one way to estimate action values, and not necessarily the best one. Nevertheless, for 
now let us stay with this simple estimation method and turn to the question of how the estimates might 
be used to select actions. 

The simplest action selection rule is to select the action (or one of the actions) with highest estimated 
action value, that is, to select on play  one of the greedy actions, , for which 

. This method always exploits current knowledge to maximize immediate 
reward; it spends no time at all sampling apparently inferior actions to see if they might really be better. 
A simple alternative is to behave greedily most of the time, but every once in a while, say with small 

probability , instead select an action at random, uniformly, independently of the action-value 

estimates. We call methods using this near-greedy action selection rule -greedy methods. An 
advantage of these methods is that, in the limit as the number of plays increases, every action will be 
sampled an infinite number of times, guaranteeing that  for all , and thus ensuring that all the 

 converge to . This of course implies that the probability of selecting the optimal action 
converges to greater than , that is, to near certainty. These are just asymptotic guarantees, however, 
and say little about the practical effectiveness of the methods. 
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To roughly assess the relative effectiveness of the greedy and -greedy methods, we compared them 
numerically on a suite of test problems. This is a set of 2000 randomly generated -armed bandit tasks 
with . For each action, , the rewards were selected from a normal (Gaussian) probability 

distribution with mean  and variance . The 2000 -armed bandit tasks were generated by 

reselecting the  2000 times, each according to a normal distribution with mean  and variance . 
Averaging over tasks, we can plot the performance and behavior of various methods as they improve 
with experience over 1000 plays, as in Figure  2.1. We call this suite of test tasks the 10-armed testbed. 

 

  

Figure 2.1:Average performance of -greedy action-value methods on the 10-armed testbed. These 
data are averages over 2000 tasks. All methods used sample averages as their action-value estimates. 
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Figure  2.1 compares a greedy method with two -greedy methods (  and ), as 
described above, on the 10-armed testbed. Both methods formed their action-value estimates using the 
sample-average technique. The upper graph shows the increase in expected reward with experience. The 
greedy method improved slightly faster than the other methods at the very beginning, but then leveled 
off at a lower level. It achieved a reward per step of only about 1, compared with the best possible of 
about 1.55 on this testbed. The greedy method performs significantly worse in the long run because it 
often gets stuck performing suboptimal actions. The lower graph shows that the greedy method found 
the optimal action in only approximately one-third of the tasks. In the other two-thirds, its initial samples 

of the optimal action were disappointing, and it never returned to it. The -greedy methods eventually 
perform better because they continue to explore, and to improve their chances of recognizing the optimal 
action. The  method explores more, and usually finds the optimal action earlier, but never 
selects it more than 91% of the time. The  method improves more slowly, but eventually 

performs better than the  method on both performance measures. It is also possible to reduce  
over time to try to get the best of both high and low values. 

The advantage of -greedy over greedy methods depends on the task. For example, suppose the reward 
variance had been larger, say 10 instead of 1. With noisier rewards it takes more exploration to find the 

optimal action, and -greedy methods should fare even better relative to the greedy method. On the 
other hand, if the reward variances were zero, then the greedy method would know the true value of each 
action after trying it once. In this case the greedy method might actually perform best because it would 
soon find the optimal action and then never explore. But even in the deterministic case, there is a large 
advantage to exploring if we weaken some of the other assumptions. For example, suppose the bandit 
task were nonstationary, that is, that the true values of the actions changed over time. In this case 
exploration is needed even in the deterministic case to make sure one of the nongreedy actions has not 
changed to become better than the greedy one. As we will see in the next few chapters, effective 
nonstationarity is the case most commonly encountered in reinforcement learning. Even if the underlying 
task is stationary and deterministic, the learner faces a set of banditlike decision tasks each of which 
changes over time due to the learning process itself. Reinforcement learning requires a balance between 
exploration and exploitation. 

Exercise 2.1   In the comparison shown in Figure  2.1, which method will perform best in the long run in 
terms of cumulative reward and cumulative probability of selecting the best action? How much better 
will it be? 
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2.3 Softmax Action Selection 

Although -greedy action selection is an effective and popular means of balancing exploration and 
exploitation in reinforcement learning, one drawback is that when it explores it chooses equally 
among all actions. This means that it is as likely to choose the worst-appearing action as it is to 
choose the next-to-best action. In tasks where the worst actions are very bad, this may be 
unsatisfactory. The obvious solution is to vary the action probabilities as a graded function of 
estimated value. The greedy action is still given the highest selection probability, but all the others 
are ranked and weighted according to their value estimates. These are called softmax action selection 
rules. The most common softmax method uses a Gibbs, or Boltzmann, distribution. It chooses action 

 on the th play with probability  
 

  (2.2)

 
where  is a positive parameter called the temperature. High temperatures cause the actions to be all 
(nearly) equiprobable. Low temperatures cause a greater difference in selection probability for 
actions that differ in their value estimates. In the limit as , softmax action selection becomes 
the same as greedy action selection. Of course, the softmax effect can be produced in a large number 
of ways other than by a Gibbs distribution. For example, one could simply add a random number 

from a long-tailed distribution to each  and then pick the action whose sum was largest. 

Whether softmax action selection or -greedy action selection is better is unclear and may depend 
on the task and on human factors. Both methods have only one parameter that must be set. Most 

people find it easier to set the  parameter with confidence; setting  requires knowledge of the 
likely action values and of powers of . We know of no careful comparative studies of these two 
simple action-selection rules. 

Exercise 2.2 (programming)   How does the softmax action selection method using the Gibbs 
distribution fare on the 10-armed testbed? Implement the method and run it at several temperatures to 

produce graphs similar to those in Figure  2.1. To verify your code, first implement the -greedy 
methods and reproduce some specific aspect of the results in Figure  2.1. 
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Exercise 2.3   Show that in the case of two actions, the softmax operation using the Gibbs 
distribution becomes the logistic, or sigmoid, function commonly used in artificial neural networks. 
What effect does the temperature parameter have on the function? 
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2.4 Evaluation Versus Instruction 

The -armed bandit problem we considered above is a case in which the feedback is purely evaluative. 
The reward received after each action gives some information about how good the action was, but it says 
nothing at all about whether the action was correct or incorrect, that is, whether it was a best action or 
not. Here, correctness is a relative property of actions that can be determined only by trying them all and 
comparing their rewards. In this sense the problem is inherently one requiring explicit search among the 
alternative actions. You have to perform some form of the generate-and-test method whereby you try 
actions, observe the outcomes, and selectively retain those that are the most effective. This is learning by 
selection, in contrast to learning by instruction, and all reinforcement learning methods have to use it in 
one form or another. 

This contrasts sharply with supervised learning, where the feedback from the environment directly 
indicates what the correct action should have been. In this case there is no need to search: whatever 
action you try, you will be told what the right one would have been. There is no need to try a variety of 
actions; the instructive "feedback" is typically independent of the action selected (so is not really 
feedback at all). It might still be necessary to search in the parameter space of the supervised learning 
system (e.g., the weight space of a neural network), but searching in the space of actions is not required. 

Of course, supervised learning is usually applied to problems that are much more complex in some ways 
than the -armed bandit. In supervised learning there is not one situation in which action is taken, but a 
large set of different situations, each of which must be responded to correctly. The main problem facing 
a supervised learning system is to construct a mapping from situations to actions that mimics the correct 
actions specified by the environment and that generalizes correctly to new situations. A supervised 
learning system cannot be said to learn to control its environment because it follows, rather than 
influences, the instructive information it receives. Instead of trying to make its environment behave in a 
certain way, it tries to make itself behave as instructed by its environment. 

Focusing on the special case of a single situation that is encountered repeatedly helps make plain the 
distinction between evaluation and instruction. Suppose there are 100 possible actions and you select 
action number 32. Evaluative feedback would give you a score, say 7.2, for that action, whereas 
instructive training information would say what other action, say action number 67, would actually have 
been correct. The latter is clearly much more informative training information. Even if instructional 
information is noisy, it is still more informative than evaluative feedback. It is always true that a single 
instruction can be used to advantage to direct changes in the action selection rule, whereas evaluative 
feedback must be compared with that of other actions before any inferences can be made about action 
selection.2.1 

The difference between evaluative feedback and instructive information remains significant even if there 
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are only two actions and two possible rewards. For these binary bandit tasks, let us call the two rewards 
success and failure. If you received success, then you might reasonably infer that whatever action you 
selected was correct, and if you received failure, then you might infer that whatever action you did not 
select was correct. You could then keep a tally of how often each action was (inferred to be) correct and 
select the action that was correct most often. Let us call this the supervised algorithm because it 
corresponds most closely to what a supervised learning method might do in the case of a single input 
pattern. If the rewards are deterministic, then the inferences of the supervised algorithm are all correct 
and it performs excellently. If the rewards are stochastic, then the picture is more complicated. 

In the stochastic case, a particular binary bandit task is defined by two numbers, the probabilities of 
success for each possible action. The space of all possible tasks is thus a unit square, as shown in Figure  
2.2. The upper-left and lower-right quadrants correspond to relatively easy tasks for which the 
supervised algorithm would work well. For these, the probability of success for the better action is 
greater than  and the probability of success for the poorer action is less than . For these tasks, the 
action inferred to be correct (as described above) will actually be the correct action more than half the 
time. 

 

  

Figure 2.2:The easy and difficult regions in the space of all binary bandit tasks. 
 

However, binary bandit tasks in the other two quadrants of Figure  2.2 are more difficult and cannot be 
solved effectively by the supervised algorithm. For example, consider a task with success probabilities 
0.1 and 0.2, corresponding to point A in the lower-left difficult quadrant of Figure  2.2. Because both 
actions produce failure at least 80% of the time, any method that takes failure as an indication that the 
other action was correct will oscillate between the two actions, never settling on the better one. Now 
consider a task with success probabilities 0.8 and 0.9, corresponding to point B in the upper-right 
difficult quadrant of Figure  2.2. In this case both actions produce success almost all the time. Any 
method that takes success as an indication of correctness can easily become stuck selecting the wrong 
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action. 

Figure  2.3 shows the average behavior of the supervised algorithm and several other algorithms on the 
binary bandit tasks corresponding to points A and B. For comparison, also shown is the behavior of an 

-greedy action-value method ( ) as described in Section 2.2. In both tasks, the supervised 
algorithm learned to select the better action only slightly more than half the time. 

 

  

Figure 2.3:Performance of selected algorithms on the binary bandit tasks corresponding to points A 
and B in Figure 2.2. These data are averages over 2000 runs. 
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The graphs in Figure  2.3 also show the average behavior of two other algorithms, known as  and 

. These are classical methods from the field of learning automata that follow a logic similar to 
that of the supervised algorithm. Both methods are stochastic, updating the probabilities of selecting 

each action, denoted  and . The  method infers the correct action just as the supervised 
algorithm does, and then adjusts its probabilities as follows. If the action inferred to be correct on play  

was , then  is incremented a fraction, , of the way from its current value toward 1:  
 

  
(2.3)

 
The probability of the other action is adjusted inversely, so that the two probabilities sum to 1. For the 
results shown in Figure  2.3,  was . The idea of  is similar to that of the supervised algorithm, 

only it is stochastic. Rather than committing totally to the action inferred to be best,  gradually 
increases its probability.2.2 

The name  stands for "linear, reward-penalty," meaning that the update (2.3) is linear in the 
probabilities and that the update is performed on both success (reward) plays and failure (penalty) plays. 
The name  stands for "linear, reward-inaction." This algorithm is identical to  except that it 
updates its probabilities only upon success plays; failure plays are ignored entirely. The results in 
Figure  2.3 show that  performs little, if any, better than the supervised algorithm on the binary 

bandit tasks corresponding to points A and B in Figure  2.2.  eventually performs very well on the 
A task, but not on the B task, and learns slowly in both cases. 

Binary bandit tasks are an instructive special case blending aspects of supervised and reinforcement 
learning problems. Because the rewards are binary, it is possible to infer something about the correct 
action given just a single reward. In some instances of such problems, these inferences are quite 
reasonable and lead to effective algorithms. In other instances, however, such inferences are less 
appropriate and lead to poor behavior. In bandit tasks with nonbinary rewards, such as in the 10-armed 
testbed, it is not at all clear how the ideas behind these inferences could be applied to produce effective 
algorithms. All of these are very simple problems, but already we see the need for capabilities beyond 
those of supervised learning methods. 

Exercise 2.4   Consider a class of simplified supervised learning tasks in which there is only one 
situation (input pattern) and two actions. One action, say , is correct and the other, , is incorrect. The 
instruction signal is noisy: it instructs the wrong action with probability ; that is, with probability  it 
says that  is correct. You can think of these tasks as binary bandit tasks if you treat agreeing with the 
(possibly wrong) instruction signal as success, and disagreeing with it as failure. Discuss the resulting 
class of binary bandit tasks. Is anything special about these tasks? How does the supervised algorithm 
perform on these tasks? 
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2.5 Incremental Implementation 

The action-value methods we have discussed so far all estimate action values as sample averages of observed rewards. The obvious 
implementation is to maintain, for each action , a record of all the rewards that have followed the selection of that action. Then, 
when the estimate of the value of action a is needed at time , it can be computed according to (2.1), which we repeat here:  
 

 

 
where  are all the rewards received following all selections of action  prior to play . A problem with this straightforward 
implementation is that its memory and computational requirements grow over time without bound. That is, each additional reward 
following a selection of action  requires more memory to store it and results in more computation being required to determine 

. 

As you might suspect, this is not really necessary. It is easy to devise incremental update formulas for computing averages with small, 

constant computation required to process each new reward. For some action, let  denote the average of its first  rewards (not to be 

confused with , the average for action  at the th play). Given this average and a st reward, , then the average of 
all  rewards can be computed by  
 

  
  

    

    

    

    (2.4)

 
which holds even for , obtaining  for arbitrary . This implementation requires memory only for  and , and only 
the small computation (2.4) for each new reward. 

The update rule (2.4) is of a form that occurs frequently throughout this book. The general form is  
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(2.5)

 

The expression  is an error in the estimate. It is reduced by taking a step toward the "Target." The target 
is presumed to indicate a desirable direction in which to move, though it may be noisy. In the case above, for example, the target is 

the  reward. 

Note that the step-size parameter ( ) used in the incremental method described above changes from time step to time step. 

In processing the th reward for action , that method uses a step-size parameter of . In this book we denote the step-size parameter 

by the symbol  or, more generally, by . For example, the above incremental implementation of the sample-average method is 

described by the equation . Accordingly, we sometimes use the informal shorthand  to refer to this case, leaving 
the action dependence implicit. 

Exercise 2.5   Give pseudocode for a complete algorithm for the -armed bandit problem. Use greedy action selection and 

incremental computation of action values with  step-size parameter. Assume a function  that takes an action and 
returns a reward. Use arrays and variables; do not subscript anything by the time index . Indicate how the action values are initialized 
and updated after each reward. 
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2.6 Tracking a Nonstationary Problem 

The averaging methods discussed so far are appropriate in a stationary environment, but not if the 
bandit is changing over time. As noted earlier, we often encounter reinforcement learning problems 
that are effectively nonstationary. In such cases it makes sense to weight recent rewards more heavily 
than long-past ones. One of the most popular ways of doing this is to use a constant step-size 

parameter. For example, the incremental update rule (2.4) for updating an average  of the  past 
rewards is modified to be  
 

  
(2.6)

 
where the step-size parameter, , , is constant. This results in  being a weighted 

average of past rewards and the initial estimate :  
 

  
  

    

    

    

   

    (2.7)
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We call this a weighted average because the sum of the weights is 

, as you can check yourself. Note that the weight, 

, given to the reward  depends on how many rewards ago, , it was observed. 
The quantity  is less than , and thus the weight given to  decreases as the number of 
intervening rewards increases. In fact, the weight decays exponentially according to the exponent on 

. Accordingly, this is sometimes called an exponential, recency-weighted average. 

Sometimes it is convenient to vary the step-size parameter from step to step. Let  denote the 
step-size parameter used to process the reward received after the th selection of action . As we have 

noted, the choice  results in the sample-average method, which is guaranteed to converge 
to the true action values by the law of large numbers. But of course convergence is not guaranteed for 

all choices of the sequence . A well-known result in stochastic approximation theory gives 
us the conditions required to assure convergence with probability 1:  
 

  
(2.8)

 
The first condition is required to guarantee that the steps are large enough to eventually overcome 
any initial conditions or random fluctuations. The second condition guarantees that eventually the 
steps become small enough to assure convergence. 

Note that both convergence conditions are met for the sample-average case, , but not for 

the case of constant step-size parameter, . In the latter case, the second condition is not 
met, indicating that the estimates never completely converge but continue to vary in response to the 
most recently received rewards. As we mentioned above, this is actually desirable in a nonstationary 
environment, and problems that are effectively nonstationary are the norm in reinforcement learning. 
In addition, sequences of step-size parameters that meet the conditions (2.8) often converge very 
slowly or need considerable tuning in order to obtain a satisfactory convergence rate. Although 
sequences of step-size parameters that meet these convergence conditions are often used in 
theoretical work, they are seldom used in applications and empirical research. 

Exercise 2.6   If the step-size parameters, , are not constant, then the estimate  is a 
weighted average of previously received rewards with a weighting different from that given by (2.7). 
What is the weighting on each prior reward for the general case? 
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Exercise 2.7 (programming)   Design and conduct an experiment to demonstrate the difficulties that 
sample-average methods have for nonstationary problems. Use a modified version of the 10-armed 

testbed in which all the  start out equal and then take independent random walks. Prepare plots 
like Figure  2.1 for an action-value method using sample averages, incrementally computed by 

, and another action-value method using a a constant step-size parameter, . Use 
 and, if necessary, runs longer than 1000 plays. 
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2.7 Optimistic Initial Values 

All the methods we have discussed so far are dependent to some extent on the initial action-value 

estimates, . In the language of statistics, these methods are biased by their initial estimates. For 
the sample-average methods, the bias disappears once all actions have been selected at least once, but for 
methods with constant , the bias is permanent, though decreasing over time as given by (2.7). In 
practice, this kind of bias is usually not a problem, and can sometimes be very helpful. The downside is 
that the initial estimates become, in effect, a set of parameters that must be picked by the user, if only to 
set them all to zero. The upside is that they provide an easy way to supply some prior knowledge about 
what level of rewards can be expected. 

Initial action values can also be used as a simple way of encouraging exploration. Suppose that instead 
of setting the initial action values to zero, as we did in the 10-armed testbed, we set them all to +5. 

Recall that the  in this problem are selected from a normal distribution with mean 0 and variance 
1. An initial estimate of +5 is thus wildly optimistic. But this optimism encourages action-value methods 
to explore. Whichever actions are initially selected, the reward is less than the starting estimates; the 
learner switches to other actions, being "disappointed" with the rewards it is receiving. The result is that 
all actions are tried several times before the value estimates converge. The system does a fair amount of 
exploration even if greedy actions are selected all the time. 

 

  

Figure 2.4:The effect of optimistic initial action-value estimates on the 10-armed testbed. 
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Figure  2.4 shows the performance on the 10-armed bandit testbed of a greedy method using 

, for all . For comparison, also shown is an -greedy method with . Both 
methods used a constant step-size parameter, . Initially, the optimistic method performs worse 
because it explores more, but eventually it performs better because its exploration decreases with time. 
We call this technique for encouraging exploration optimistic initial values. We regard it as a simple 
trick that can be quite effective on stationary problems, but it is far from being a generally useful 
approach to encouraging exploration. For example, it is not well suited to nonstationary problems 
because its drive for exploration is inherently temporary. If the task changes, creating a renewed need for 
exploration, this method cannot help. Indeed, any method that focuses on the initial state in any special 
way is unlikely to help with the general nonstationary case. The beginning of time occurs only once, and 
thus we should not focus on it too much. This criticism applies as well to the sample-average methods, 
which also treat the beginning of time as a special event, averaging all subsequent rewards with equal 
weights. Nevertheless, all of these methods are very simple, and one of them or some simple 
combination of them is often adequate in practice. In the rest of this book we make frequent use of 
several of these simple exploration techniques. 

Exercise 2.8   The results shown in Figure  2.4 should be quite reliable because they are averages over 
2000 individual, randomly chosen 10-armed bandit tasks. Why, then, are there oscillations and spikes in 
the early part of the curve for the optimistic method? What might make this method perform particularly 
better or worse, on average, on particular early plays? 
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2.8 Reinforcement Comparison 

A central intuition underlying reinforcement learning is that actions followed by large rewards should be 
made more likely to recur, whereas actions followed by small rewards should be made less likely to 
recur. But how is the learner to know what constitutes a large or a small reward? If an action is taken and 
the environment returns a reward of 5, is that large or small? To make such a judgment one must 
compare the reward with some standard or reference level, called the reference reward. A natural choice 
for the reference reward is an average of previously received rewards. In other words, a reward is 
interpreted as large if it is higher than average, and small if it is lower than average. Learning methods 
based on this idea are called reinforcement comparison methods. These methods are sometimes more 
effective than action-value methods. They are also the precursors to actor-critic methods, a class of 
methods for solving the full reinforcement learning problem that we present later. 

Reinforcement comparison methods typically do not maintain estimates of action values, but only of an 
overall reward level. In order to pick among the actions, they maintain a separate measure of their 

preference for each action. Let us denote the preference for action  on play  by . The preferences 
might be used to determine action-selection probabilities according to a softmax relationship, such as  
 

  
(2.9)

 

where  denotes the probability of selecting action  on the th play. The reinforcement comparison 
idea is used in updating the action preferences. After each play, the preference for the action selected on 
that play, , is incremented by the difference between the reward, , and the reference reward, :  
 

  
(2.10)

 
where  is a positive step-size parameter. This equation implements the idea that high rewards should 
increase the probability of reselecting the action taken, and low rewards should decrease its probability. 
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The reference reward is an incremental average of all recently received rewards, whichever actions were 
taken. After the update (2.10), the reference reward is updated:  
 

  
(2.11)

 
where , , is a step-size parameter as usual. The initial value of the reference reward, , can 
be set either optimistically, to encourage exploration, or according to prior knowledge. The initial values 

of the action preferences can all be set to zero. Constant  is a good choice here because the 
distribution of rewards is changing over time as action selection improves. We see here the first case in 
which the learning problem is effectively nonstationary even though the underlying problem is 
stationary. 

 

  

Figure 2.5:Reinforcement comparison methods versus action-value methods on the 10-armed testbed. 
 

Reinforcement comparison methods can be very effective, sometimes performing even better than action-
value methods. Figure  2.5 shows the performance of the above algorithm ( ) on the 10-armed 

testbed. The performances of -greedy ( ) action-value methods with  and  are 
also shown for comparison. 

Exercise 2.9   The softmax action-selection rule given for reinforcement comparison methods (2.9) lacks 
the temperature parameter, , used in the earlier softmax equation (2.2). Why do you think this was 
done? Has any important flexibility been lost here by omitting ? 
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Exercise 2.10   The reinforcement comparison methods described here have two step-size parameters, 

 and . Could we, in general, reduce this to one parameter by choosing ? What would be lost 
by doing this? 

Exercise 2.11 (programming)   Suppose the initial reference reward, , is far too low. Whatever action 
is selected first will then probably increase in its probability of selection. Thus it is likely to be selected 
again, and increased in probability again. In this way an early action that is no better than any other 
could crowd out all other actions for a long time. To counteract this effect, it is common to add a factor 

of  to the increment in (2.10). Design and implement an experiment to determine whether 
or not this really improves the performance of the algorithm. 
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2.9 Pursuit Methods 

Another class of effective learning methods for the -armed bandit problem are pursuit methods. Pursuit 
methods maintain both action-value estimates and action preferences, with the preferences continually 
"pursuing" the action that is greedy according to the current action-value estimates. In the simplest pursuit 

method, the action preferences are the probabilities, , with which each action, , is selected on play . 

After each play, the probabilities are updated so as to make the greedy action more likely to be selected. After 

the th play, let  denote the greedy action (or a random sample from the greedy 

actions if there are more than one) for the ( )st play. Then the probability of selecting  is 

incremented a fraction, , of the way toward 1:  
 

  
(2.12)

 
while the probabilities of selecting the other actions are decremented toward zero:  
 

  
(2.13)

 

The action values, , are updated in one of the ways discussed in the preceding sections, for example, 
to be sample averages of the observed rewards, using (2.1). 
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Figure 2.6:Performance of the pursuit method vis-á-vis action-value and reinforcement comparison methods 
on the 10-armed testbed. 

 

Figure  2.6 shows the performance of the pursuit algorithm described above when the action values are 

estimated using sample averages (incrementally computed using ). In these results, the initial action 

probabilities were , for all , and the parameter  was 0.01. For comparison, we also show the 

performance of an -greedy method ( ) with action values also estimated using sample averages. The 
performance of the reinforcement comparison algorithm from the previous section is also shown. Although the 
pursuit algorithm performs the best of these three on this task at these parameter settings, the ordering could 
well be different in other cases. All three of these methods appear to have their uses and advantages. 

Exercise 2.12   An -greedy method always selects a random action on a fraction of the time steps. How 
about the pursuit algorithm? Will it eventually select the optimal action with probability approaching 1? 

Exercise 2.13   For many of the problems we will encounter later in this book it is not feasible to update action 
probabilities directly. To use pursuit methods in these cases it is necessary to modify them to use action 
preferences that are not probabilities but that determine action probabilities according to a softmax relationship 
such as the Gibbs distribution (2.9). How can the pursuit algorithm described above be modified to be used in 
this way? Specify a complete algorithm, including the equations for action values, preferences, and 
probabilities at each play. 

Exercise 2.14 (programming)   How well does the algorithm you proposed in Exercise 2.13 perform? Design 
and run an experiment assessing the performance of your method. Discuss the role of parameter settings in 
your experiment. 

Exercise 2.15   The pursuit algorithm described above is suited only for stationary environments because the 

action probabilities converge, albeit slowly, to certainty. How could you combine the pursuit idea with the -
greedy idea to obtain a method with performance close to that of the pursuit algorithm, but that always 
continues to explore to some small degree? 
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2.10 Associative Search 

So far in this chapter we have considered only nonassociative tasks, in which there is no need to 
associate different actions with different situations. In these tasks the learner either tries to find a 
single best action when the task is stationary, or tries to track the best action as it changes over time 
when the task is nonstationary. However, in a general reinforcement learning task there is more than 
one situation, and the goal is to learn a policy: a mapping from situations to the actions that are best 
in those situations. To set the stage for the full problem, we briefly discuss the simplest way in which 
nonassociative tasks extend to the associative setting. 

As an example, suppose there are several different -armed bandit tasks, and that on each play you 
confront one of these chosen at random. Thus, the bandit task changes randomly from play to play. 
This would appear to you as a single, nonstationary -armed bandit task whose true action values 
change randomly from play to play. You could try using one of the methods described in this chapter 
that can handle nonstationarity, but unless the true action values change slowly, these methods will 
not work very well. Now suppose, however, that when a bandit task is selected for you, you are given 
some distinctive clue about its identity (but not its action values). Maybe you are facing an actual slot 
machine that changes the color of its display as it changes its action values. Now you can learn a 
policy associating each task, signaled by the color you see, with the best action to take when facing 
that task--for instance, if red, play arm 1; if green, play arm 2. With the right policy you can usually 
do much better than you could in the absence of any information distinguishing one bandit task from 
another. 

This is an example of an associative search task, so called because it involves both trial-and-error 
learning in the form of search for the best actions and association of these actions with the situations 
in which they are best. Associative search tasks are intermediate between the -armed bandit 
problem and the full reinforcement learning problem. They are like the full reinforcement learning 
problem in that they involve learning a policy, but like our version of the -armed bandit problem in 
that each action affects only the immediate reward. If actions are allowed to affect the next situation 
as well as the reward, then we have the full reinforcement learning problem. We present this problem 
in the next chapter and consider its ramifications throughout the rest of the book. 

Exercise 2.16   Suppose you face a binary bandit task whose true action values change randomly 
from play to play. Specifically, suppose that for any play the true values of actions  and  are 
respectively 0.1 and 0.2 with probability 0.5 (case A), and 0.9 and 0.8 with probability 0.5 (case B). 
If you are not able to tell which case you face at any play, what is the best expectation of success you 
can achieve and how should you behave to achieve it? Now suppose that on each play you are told if 
you are facing case A or case B (although you still don't know the true action values). This is an 
associative search task. What is the best expectation of success you can achieve in this task, and how 
should you behave to achieve it? 
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2.11 Conclusions 

We have presented in this chapter some simple ways of balancing exploration and exploitation. The 

-greedy methods choose randomly a small fraction of the time, the softmax methods grade their 
action probabilities according to the current action-value estimates, and the pursuit methods keep 
taking steps toward the current greedy action. Are these simple methods really the best we can do in 
terms of practically useful algorithms? So far, the answer appears to be "yes." Despite their 
simplicity, in our opinion the methods presented in this chapter can fairly be considered the state of 
the art. There are more sophisticated methods, but their complexity and assumptions make them 
impractical for the full reinforcement learning problem that is our real focus. Starting in Chapter 5 we 
present learning methods for solving the full reinforcement learning problem that use in part the 
simple methods explored in this chapter. 

Although the simple methods explored in this chapter may be the best we can do at present, they are 
far from a fully satisfactory solution to the problem of balancing exploration and exploitation. We 
conclude this chapter with a brief look at some of the current ideas that, while not yet practically 
useful, may point the way toward better solutions. 

One promising idea is to use estimates of the uncertainty of the action-value estimates to direct and 
encourage exploration. For example, suppose there are two actions estimated to have values slightly 
less than that of the greedy action, but that differ greatly in their degree of uncertainty. One estimate 
is nearly certain; perhaps that action has been tried many times and many rewards have been 
observed. The uncertainty for this action's estimated value is so low that its true value is very unlikely 
to be higher than the value of the greedy action. The other action is known less well, and the estimate 
of its value is very uncertain. The true value of this action could easily be better than that of the 
greedy action. Obviously, it makes more sense to explore the second action than the first. 

This line of thought leads to interval estimation methods. These methods estimate for each action a 
confidence interval of the action's value. That is, rather than learning that the action's value is 
approximately 10, they learn that it is between 9 and 11 with, say, 95% confidence. The action 
selected is then the action whose confidence interval has the highest upper limit. This encourages 
exploration of actions that are uncertain and have a chance of ultimately being the best action. In 
some cases one can obtain guarantees that the optimal action has been found with confidence equal to 
the confidence factor (e.g., the 95%). Unfortunately, interval estimation methods are problematic in 
practice because of the complexity of the statistical methods used to estimate the confidence 
intervals. Moreover, the underlying statistical assumptions required by these methods are often not 
satisfied. Nevertheless, the idea of using confidence intervals, or some other measure of uncertainty, 
to encourage exploration of particular actions is sound and appealing. 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node25.html (1 di 2)22/06/2005 9.05.52



2.11 Conclusions

There is also a well-known algorithm for computing the Bayes optimal way to balance exploration 
and exploitation. This method is computationally intractable when done exactly, but there may be 
efficient ways to approximate it. In this method we assume that we know the distribution of problem 
instances, that is, the probability of each possible set of true action values. Given any action selection, 
we can then compute the probability of each possible immediate reward and the resultant posterior 
probability distribution over action values. This evolving distribution becomes the information state 
of the problem. Given a horizon, say 1000 plays, one can consider all possible actions, all possible 
resulting rewards, all possible next actions, all next rewards, and so on for all 1000 plays. Given the 
assumptions, the rewards and probabilities of each possible chain of events can be determined, and 
one need only pick the best. But the tree of possibilities grows extremely rapidly; even if there are 
only two actions and two rewards, the tree will have  leaves. This approach effectively turns the 
bandit problem into an instance of the full reinforcement learning problem. In the end, we may be 
able to use reinforcement learning methods to approximate this optimal solution. But that is a topic 
for current research and beyond the scope of this introductory book. 

The classical solution to balancing exploration and exploitation in -armed bandit problems is to 
compute special functions called Gittins indices. These provide an optimal solution to a certain kind 
of bandit problem more general than that considered here but that assumes the prior distribution of 
possible problems is known. Unfortunately, neither the theory nor the computational tractability of 
this method appear to generalize to the full reinforcement learning problem that we consider in the 
rest of the book. 
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2.12 Bibliographical and Historical Remarks 

2.1 

Bandit problems have been studied in statistics, engineering, and psychology. In statistics, bandit 
problems fall under the heading "sequential design of experiments," introduced by Thompson (1933, 
1934) and Robbins (1952), and studied by Bellman (1956). Berry and Fristedt (1985) provide an 
extensive treatment of bandit problems from the perspective of statistics. Narendra and Thathachar 
(1989) treat bandit problems from the engineering perspective, providing a good discussion of the 
various theoretical traditions that have focused on them. In psychology, bandit problems have played 
roles in statistical learning theory (e.g., Bush and Mosteller, 1955; Estes, 1950). 

The term greedy is often used in the heuristic search literature (e.g., Pearl, 1984). The conflict 
between exploration and exploitation is known in control engineering as the conflict between 
identification (or estimation) and control (e.g., Witten, 1976). Feldbaum (1965) called it the dual 
control problem, referring to the need to solve the two problems of identification and control 
simultaneously when trying to control a system under uncertainty. In discussing aspects of genetic 
algorithms, Holland (1975) emphasized the importance of this conflict, referring to it as the conflict 
between the need to exploit and the need for new information. 

2.2 

Action-value methods for our -armed bandit problem were first proposed by Thathachar and Sastry 
(1985). These are often called estimator algorithms in the learning automata literature. The term 
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action value is due to Watkins (1989). The first to use -greedy methods may also have been 
Watkins (1989, p. 187), but the idea is so simple that some earlier use seems likely. 

2.3 

The term softmax for the action selection rule (2.2) is due to Bridle (1990). This rule appears to have 
been first proposed by Luce (1959). The parameter  is called temperature in simulated annealing 
algorithms (Kirkpatrick, Gelatt, and Vecchi, 1983). 

2.4 

The main argument and results in this section were first presented by Sutton (1984). Further analysis 
of the relationship between evaluation and instruction has been presented by Barto (1985, 1991, 
1992), and Barto and Anandan (1985). The unit-square representation of a binary bandit task used in 
Figure  2.2 has been called a contingency space in experimental psychology (e.g., Staddon, 1983). 

Narendra and Thathachar (1989) provide a comprehensive treatment of modern learning automata 
theory and its applications. They also discuss similar algorithms from the statistical learning theory of 
psychology. Other methods based on converting reinforcement learning experience into target actions 
were developed by Widrow, Gupta, and Maitra (1973) and by Gällmo and Asplund (1995). 

2.5-6 

This material falls under the general heading of stochastic iterative algorithms, which is well covered 
by Bertsekas and Tsitsiklis (1996). 

2.8 

Reinforcement comparison methods were extensively developed by Sutton (1984) and further refined 
by Williams (1986, 1992), Kaelbling (1993a), and Dayan (1991). These authors analyzed many 
variations of the idea, including other eligibility terms that may significantly improve performance. 
Perhaps the earliest use of reinforcement comparison was by Barto, Sutton, and Brouwer (1981). 

2.9 

The pursuit algorithm is due to Thathachar and Sastry (1985). 

2.10 

The term associative search and the corresponding problem were introduced by Barto, Sutton, and 
Brouwer (1981). The term associative reinforcement learning has also been used for associative 
search (Barto and Anandan, 1985), but we prefer to reserve that term as a synonym for the full 
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reinforcement learning problem (as in Sutton, 1984). We note that Thorndike's Law of Effect (quoted 
in Chapter 1) describes associative search by referring to the formation of associative links between 
situations (states) and actions. According to the terminology of operant, or instrumental, conditioning 
(e.g., Skinner, 1938), a discriminative stimulus is a stimulus that signals the presence of a particular 
reinforcement contingency. In our terms, different discriminative stimuli correspond to different 
states. 

2.11 

Interval estimation methods are due to Lai (1987) and Kaelbling (1993a). Bellman (1956) was the 
first to show how dynamic programming could be used to compute the optimal balance between 
exploration and exploitation within a Bayesian formulation of the problem. The survey by Kumar 
(1985) provides a good discussion of Bayesian and non-Bayesian approaches to these problems. The 
term information state comes from the literature on partially observable MDPs; see, e.g., Lovejoy 
(1991). The Gittins index approach is due to Gittins and Jones (1974). Duff (1995) showed how it is 
possible to learn Gittins indices for bandit problems through reinforcement learning. 
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3. The Reinforcement Learning Problem 

In this chapter we introduce the problem that we try to solve in the rest of the book. For us, this 
problem defines the field of reinforcement learning: any method that is suited to solving this problem 
we consider to be a reinforcement learning method. 

Our objective in this chapter is to describe the reinforcement learning problem in a broad sense. We 
try to convey the wide range of possible applications that can be framed as reinforcement learning 
tasks. We also describe mathematically idealized forms of the reinforcement learning problem for 
which precise theoretical statements can be made. We introduce key elements of the problem's 
mathematical structure, such as value functions and Bellman equations. As in all of artificial 
intelligence, there is a tension between breadth of applicability and mathematical tractability. In this 
chapter we introduce this tension and discuss some of the trade-offs and challenges that it implies. 
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3.1 The Agent-Environment Interface 

The reinforcement learning problem is meant to be a straightforward framing of the problem of 
learning from interaction to achieve a goal. The learner and decision-maker is called the agent. The 
thing it interacts with, comprising everything outside the agent, is called the environment. These 
interact continually, the agent selecting actions and the environment responding to those actions and 
presenting new situations to the agent.3.1 The environment also gives rise to rewards, special 
numerical values that the agent tries to maximize over time. A complete specification of an 
environment defines a task, one instance of the reinforcement learning problem. 

More specifically, the agent and environment interact at each of a sequence of discrete time steps, 
.3.2 At each time step , the agent receives some representation of the 

environment's state, , where  is the set of possible states, and on that basis selects an action, 

, where  is the set of actions available in state . One time step later, in part as a 

consequence of its action, the agent receives a numerical reward, , and finds itself in a new 
state, .3.3 Figure  3.1 diagrams the agent-environment interaction. 

 

  

Figure 3.1:The agent-environment interaction in reinforcement learning. 
 

At each time step, the agent implements a mapping from states to probabilities of selecting each 

possible action. This mapping is called the agent's policy and is denoted , where  is the 
probability that  if . Reinforcement learning methods specify how the agent changes its 
policy as a result of its experience. The agent's goal, roughly speaking, is to maximize the total 
amount of reward it receives over the long run. 
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This framework is abstract and flexible and can be applied to many different problems in many 
different ways. For example, the time steps need not refer to fixed intervals of real time; they can 
refer to arbitrary successive stages of decision-making and acting. The actions can be low-level 
controls, such as the voltages applied to the motors of a robot arm, or high-level decisions, such as 
whether or not to have lunch or to go to graduate school. Similarly, the states can take a wide variety 
of forms. They can be completely determined by low-level sensations, such as direct sensor readings, 
or they can be more high-level and abstract, such as symbolic descriptions of objects in a room. Some 
of what makes up a state could be based on memory of past sensations or even be entirely mental or 
subjective. For example, an agent could be in "the state" of not being sure where an object is, or of 
having just been "surprised" in some clearly defined sense. Similarly, some actions might be totally 
mental or computational. For example, some actions might control what an agent chooses to think 
about, or where it focuses its attention. In general, actions can be any decisions we want to learn how 
to make, and the states can be anything we can know that might be useful in making them. 

In particular, the boundary between agent and environment is not often the same as the physical 
boundary of a robot's or animal's body. Usually, the boundary is drawn closer to the agent than that. 
For example, the motors and mechanical linkages of a robot and its sensing hardware should usually 
be considered parts of the environment rather than parts of the agent. Similarly, if we apply the 
framework to a person or animal, the muscles, skeleton, and sensory organs should be considered part 
of the environment. Rewards, too, presumably are computed inside the physical bodies of natural and 
artificial learning systems, but are considered external to the agent. 

The general rule we follow is that anything that cannot be changed arbitrarily by the agent is 
considered to be outside of it and thus part of its environment. We do not assume that everything in 
the environment is unknown to the agent. For example, the agent often knows quite a bit about how 
its rewards are computed as a function of its actions and the states in which they are taken. But we 
always consider the reward computation to be external to the agent because it defines the task facing 
the agent and thus must be beyond its ability to change arbitrarily. In fact, in some cases the agent 
may know everything about how its environment works and still face a difficult reinforcement 
learning task, just as we may know exactly how a puzzle like Rubik's cube works, but still be unable 
to solve it. The agent-environment boundary represents the limit of the agent's absolute control, not 
of its knowledge. 

The agent-environment boundary can be located at different places for different purposes. In a 
complicated robot, many different agents may be operating at once, each with its own boundary. For 
example, one agent may make high-level decisions which form part of the states faced by a lower-
level agent that implements the high-level decisions. In practice, the agent-environment boundary is 
determined once one has selected particular states, actions, and rewards, and thus has identified a 
specific decision-making task of interest. 

The reinforcement learning framework is a considerable abstraction of the problem of goal-directed 
learning from interaction. It proposes that whatever the details of the sensory, memory, and control 
apparatus, and whatever objective one is trying to achieve, any problem of learning goal-directed 
behavior can be reduced to three signals passing back and forth between an agent and its 
environment: one signal to represent the choices made by the agent (the actions), one signal to 
represent the basis on which the choices are made (the states), and one signal to define the agent's 
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goal (the rewards). This framework may not be sufficient to represent all decision-learning problems 
usefully, but it has proved to be widely useful and applicable. 

Of course, the particular states and actions vary greatly from application to application, and how they 
are represented can strongly affect performance. In reinforcement learning, as in other kinds of 
learning, such representational choices are at present more art than science. In this book we offer 
some advice and examples regarding good ways of representing states and actions, but our primary 
focus is on general principles for learning how to behave once the representations have been selected. 

Example 3.1: Bioreactor   Suppose reinforcement learning is being applied to determine moment-by-
moment temperatures and stirring rates for a bioreactor (a large vat of nutrients and bacteria used to 
produce useful chemicals). The actions in such an application might be target temperatures and target 
stirring rates that are passed to lower-level control systems that, in turn, directly activate heating 
elements and motors to attain the targets. The states are likely to be thermocouple and other sensory 
readings, perhaps filtered and delayed, plus symbolic inputs representing the ingredients in the vat 
and the target chemical. The rewards might be moment-by-moment measures of the rate at which the 
useful chemical is produced by the bioreactor. Notice that here each state is a list, or vector, of sensor 
readings and symbolic inputs, and each action is a vector consisting of a target temperature and a 
stirring rate. It is typical of reinforcement learning tasks to have states and actions with such 
structured representations. Rewards, on the other hand, are always single numbers. 

Example 3.2: Pick-and-Place Robot   Consider using reinforcement learning to control the motion 
of a robot arm in a repetitive pick-and-place task. If we want to learn movements that are fast and 
smooth, the learning agent will have to control the motors directly and have low-latency information 
about the current positions and velocities of the mechanical linkages. The actions in this case might 
be the voltages applied to each motor at each joint, and the states might be the latest readings of joint 
angles and velocities. The reward might be  for each object successfully picked up and placed. To 
encourage smooth movements, on each time step a small, negative reward can be given as a function 
of the moment-to-moment "jerkiness" of the motion. 

Example 3.3: Recycling Robot   A mobile robot has the job of collecting empty soda cans in an 
office environment. It has sensors for detecting cans, and an arm and gripper that can pick them up 
and place them in an onboard bin; it runs on a rechargeable battery. The robot's control system has 
components for interpreting sensory information, for navigating, and for controlling the arm and 
gripper. High-level decisions about how to search for cans are made by a reinforcement learning 
agent based on the current charge level of the battery. This agent has to decide whether the robot 
should (1) actively search for a can for a certain period of time, (2) remain stationary and wait for 
someone to bring it a can, or (3) head back to its home base to recharge its battery. This decision has 
to be made either periodically or whenever certain events occur, such as finding an empty can. The 
agent therefore has three actions, and its state is determined by the state of the battery. The rewards 
might be zero most of the time, but then become positive when the robot secures an empty can, or 
large and negative if the battery runs all the way down. In this example, the reinforcement learning 
agent is not the entire robot. The states it monitors describe conditions within the robot itself, not 
conditions of the robot's external environment. The agent's environment therefore includes the rest of 
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the robot, which might contain other complex decision-making systems, as well as the robot's 
external environment. 

Exercise 3.1   Devise three example tasks of your own that fit into the reinforcement learning 
framework, identifying for each its states, actions, and rewards. Make the three examples as different 
from each other as possible. The framework is abstract and flexible and can be applied in many 
different ways. Stretch its limits in some way in at least one of your examples. 

Exercise 3.2   Is the reinforcement learning framework adequate to usefully represent all goal-
directed learning tasks? Can you think of any clear exceptions? 

Exercise 3.3   Consider the problem of driving. You could define the actions in terms of the 
accelerator, steering wheel, and brake, that is, where your body meets the machine. Or you could 
define them farther out--say, where the rubber meets the road, considering your actions to be tire 
torques. Or you could define them farther in--say, where your brain meets your body, the actions 
being muscle twitches to control your limbs. Or you could go to a really high level and say that your 
actions are your choices of where to drive. What is the right level, the right place to draw the line 
between agent and environment? On what basis is one location of the line to be preferred over 
another? Is there any fundamental reason for preferring one location over another, or is it a free 
choice? 
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3.2 Goals and Rewards 

In reinforcement learning, the purpose or goal of the agent is formalized in terms of a special reward 
signal passing from the environment to the agent. At each time step, the reward is a simple number, 

. Informally, the agent's goal is to maximize the total amount of reward it receives. This 
means maximizing not immediate reward, but cumulative reward in the long run. 

The use of a reward signal to formalize the idea of a goal is one of the most distinctive features of 
reinforcement learning. Although this way of formulating goals might at first appear limiting, in 
practice it has proved to be flexible and widely applicable. The best way to see this is to consider 
examples of how it has been, or could be, used. For example, to make a robot learn to walk, 
researchers have provided reward on each time step proportional to the robot's forward motion. In 
making a robot learn how to escape from a maze, the reward is often zero until it escapes, when it 
becomes . Another common approach in maze learning is to give a reward of  for every time 
step that passes prior to escape; this encourages the agent to escape as quickly as possible. To make a 
robot learn to find and collect empty soda cans for recycling, one might give it a reward of zero most 
of the time, and then a reward of  for each can collected (and confirmed as empty). One might also 
want to give the robot negative rewards when it bumps into things or when somebody yells at it. For 
an agent to learn to play checkers or chess, the natural rewards are  for winning,  for losing, 
and 0 for drawing and for all nonterminal positions. 

You can see what is happening in all of these examples. The agent always learns to maximize its 
reward. If we want it to do something for us, we must provide rewards to it in such a way that in 
maximizing them the agent will also achieve our goals. It is thus critical that the rewards we set up 
truly indicate what we want accomplished. In particular, the reward signal is not the place to impart 
to the agent prior knowledge about how to achieve what we want it to do.3.4For example, a chess-
playing agent should be rewarded only for actually winning, not for achieving subgoals such taking 
its opponent's pieces or gaining control of the center of the board. If achieving these sorts of subgoals 
were rewarded, then the agent might find a way to achieve them without achieving the real goal. For 
example, it might find a way to take the opponent's pieces even at the cost of losing the game. The 
reward signal is your way of communicating to the robot what you want it to achieve, not how you 
want it achieved. 

Newcomers to reinforcement learning are sometimes surprised that the rewards--which define of the 
goal of learning--are computed in the environment rather than in the agent. Certainly most ultimate 
goals for animals are recognized by computations occurring inside their bodies, for example, by 
sensors for recognizing food, hunger, pain, and pleasure. Nevertheless, as we discussed in the 
previous section, one can redraw the agent-environment interface in such a way that these parts of the 
body are considered to be outside of the agent (and thus part of the agent's environment). For 
example, if the goal concerns a robot's internal energy reservoirs, then these are considered to be part 
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of the environment; if the goal concerns the positions of the robot's limbs, then these too are 
considered to be part of the environment--that is, the agent's boundary is drawn at the interface 
between the limbs and their control systems. These things are considered internal to the robot but 
external to the learning agent. For our purposes, it is convenient to place the boundary of the learning 
agent not at the limit of its physical body, but at the limit of its control. 

The reason we do this is that the agent's ultimate goal should be something over which it has 
imperfect control: it should not be able, for example, to simply decree that the reward has been 
received in the same way that it might arbitrarily change its actions. Therefore, we place the reward 
source outside of the agent. This does not preclude the agent from defining for itself a kind of internal 
reward, or a sequence of internal rewards. Indeed, this is exactly what many reinforcement learning 
methods do. 
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3.3 Returns 

So far we have been imprecise regarding the objective of learning. We have said that the agent's goal 
is to maximize the reward it receives in the long run. How might this be formally defined? If the 
sequence of rewards received after time step  is denoted , then what precise 
aspect of this sequence do we wish to maximize? In general, we seek to maximize the expected 
return, where the return, , is defined as some specific function of the reward sequence. In the 
simplest case the return is the sum of the rewards:  
 

  
(3.1)

 
where  is a final time step. This approach makes sense in applications in which there is a natural 
notion of final time step, that is, when the agent-environment interaction breaks naturally into 
subsequences, which we call episodes,3.5 such as plays of a game, trips through a maze, or any sort of 
repeated interactions. Each episode ends in a special state called the terminal state, followed by a 
reset to a standard starting state or to a sample from a standard distribution of starting states. Tasks 
with episodes of this kind are called episodic tasks. In episodic tasks we sometimes need to 
distinguish the set of all nonterminal states, denoted , from the set of all states plus the terminal 
state, denoted . 

On the other hand, in many cases the agent-environment interaction does not break naturally into 
identifiable episodes, but goes on continually without limit. For example, this would be the natural 
way to formulate a continual process-control task, or an application to a robot with a long life span. 
We call these continuing tasks. The return formulation (3.1) is problematic for continuing tasks 
because the final time step would be , and the return, which is what we are trying to 
maximize, could itself easily be infinite. (For example, suppose the agent receives a reward of  at 
each time step.) Thus, in this book we usually use a definition of return that is slightly more complex 
conceptually but much simpler mathematically. 

The additional concept that we need is that of discounting. According to this approach, the agent tries 
to select actions so that the sum of the discounted rewards it receives over the future is maximized. In 
particular, it chooses  to maximize the expected discounted return:  
 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node30.html (1 di 3)22/06/2005 9.06.03



3.3 Returns

  
  (3.2)

 
where  is a parameter, , called the discount rate. 

The discount rate determines the present value of future rewards: a reward received  time steps in 

the future is worth only  times what it would be worth if it were received immediately. If 

, the infinite sum has a finite value as long as the reward sequence  is bounded. If , 
the agent is "myopic" in being concerned only with maximizing immediate rewards: its objective in 
this case is to learn how to choose  so as to maximize only . If each of the agent's actions 
happened to influence only the immediate reward, not future rewards as well, then a myopic agent 
could maximize (3.2) by separately maximizing each immediate reward. But in general, acting to 
maximize immediate reward can reduce access to future rewards so that the return may actually be 
reduced. As  approaches 1, the objective takes future rewards into account more strongly: the agent 
becomes more farsighted. 

 

  

Figure 3.2:The pole-balancing task. 
 

Example 3.4: Pole-Balancing   Figure  3.2 shows a task that served as an early illustration of 
reinforcement learning. The objective here is to apply forces to a cart moving along a track so as to 
keep a pole hinged to the cart from falling over. A failure is said to occur if the pole falls past a given 
angle from vertical or if the cart runs off the track. The pole is reset to vertical after each failure. This 
task could be treated as episodic, where the natural episodes are the repeated attempts to balance the 
pole. The reward in this case could be  for every time step on which failure did not occur, so that 
the return at each time would be the number of steps until failure. Alternatively, we could treat pole-
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balancing as a continuing task, using discounting. In this case the reward would be  on each failure 

and zero at all other times. The return at each time would then be related to , where  is the 
number of time steps before failure. In either case, the return is maximized by keeping the pole 
balanced for as long as possible. 

Exercise 3.4   Suppose you treated pole-balancing as an episodic task but also used discounting, with 
all rewards zero except for  upon failure. What then would the return be at each time? How does 
this return differ from that in the discounted, continuing formulation of this task? 

Exercise 3.5   Imagine that you are designing a robot to run a maze. You decide to give it a reward of 
 for escaping from the maze and a reward of zero at all other times. The task seems to break down 

naturally into episodes--the successive runs through the maze--so you decide to treat it as an episodic 
task, where the goal is to maximize expected total reward (3.1). After running the learning agent for a 
while, you find that it is showing no improvement in escaping from the maze. What is going wrong? 
Have you effectively communicated to the agent what you want it to achieve? 

     
Next: 3.4 Unified Notation for Up: 3. The Reinforcement Learning Previous: 3.2 Goals and 
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3.4 Unified Notation for Episodic and 
Continuing Tasks 

In the preceding section we described two kinds of reinforcement learning tasks, one in which the 
agent-environment interaction naturally breaks down into a sequence of separate episodes (episodic 
tasks), and one in which it does not (continuing tasks). The former case is mathematically easier 
because each action affects only the finite number of rewards subsequently received during the 
episode. In this book we consider sometimes one kind of problem and sometimes the other, but often 
both. It is therefore useful to establish one notation that enables us to talk precisely about both cases 
simultaneously. 

To be precise about episodic tasks requires some additional notation. Rather than one long sequence 
of time steps, we need to consider a series of episodes, each of which consists of a finite sequence of 
time steps. We number the time steps of each episode starting anew from zero. Therefore, we have to 
refer not just to , the state representation at time , but to , the state representation at time  of 
episode  (and similarly for , , , , etc.). However, it turns out that, when we discuss 
episodic tasks we will almost never have to distinguish between different episodes. We will almost 
always be considering a particular single episode, or stating something that is true for all episodes. 
Accordingly, in practice we will almost always abuse notation slightly by dropping the explicit 
reference to episode number. That is, we will write  to refer to , and so on. 

We need one other convention to obtain a single notation that covers both episodic and continuing 
tasks. We have defined the return as a sum over a finite number of terms in one case (3.1) and as a 
sum over an infinite number of terms in the other (3.2). These can be unified by considering episode 
termination to be the entering of a special absorbing state that transitions only to itself and that 
generates only rewards of zero. For example, consider the state transition diagram 

 
 
 

 

 
Here the solid square represents the special absorbing state corresponding to the end of an episode. 
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Starting from , we get the reward sequence . Summing these, we get the 
same return whether we sum over the first  rewards (here ) or over the full infinite sequence. 
This remains true even if we introduce discounting. Thus, we can define the return, in general, 
according to (3.2), using the convention of omitting episode numbers when they are not needed, and 

including the possibility that  if the sum remains defined (e.g., because all episodes terminate). 
Alternatively, we can also write the return as  
 

  (3.3)

 
including the possibility that  or  (but not both3.6). We use these conventions 
throughout the rest of the book to simplify notation and to express the close parallels between 
episodic and continuing tasks. 
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3.5 The Markov Property 

In the reinforcement learning framework, the agent makes its decisions as a function of a signal from the 
environment called the environment's state. In this section we discuss what is required of the state signal, and what 
kind of information we should and should not expect it to provide. In particular, we formally define a property of 
environments and their state signals that is of particular interest, called the Markov property. 

In this book, by "the state" we mean whatever information is available to the agent. We assume that the state is 
given by some preprocessing system that is nominally part of the environment. We do not address the issues of 
constructing, changing, or learning the state signal in this book. We take this approach not because we consider 
state representation to be unimportant, but in order to focus fully on the decision-making issues. In other words, our 
main concern is not with designing the state signal, but with deciding what action to take as a function of whatever 
state signal is available. 

Certainly the state signal should include immediate sensations such as sensory measurements, but it can contain 
much more than that. State representations can be highly processed versions of original sensations, or they can be 
complex structures built up over time from the sequence of sensations. For example, we can move our eyes over a 
scene, with only a tiny spot corresponding to the fovea visible in detail at any one time, yet build up a rich and 
detailed representation of a scene. Or, more obviously, we can look at an object, then look away, and know that it is 
still there. We can hear the word "yes" and consider ourselves to be in totally different states depending on the 
question that came before and which is no longer audible. At a more mundane level, a control system can measure 
position at two different times to produce a state representation including information about velocity. In all of these 
cases the state is constructed and maintained on the basis of immediate sensations together with the previous state 
or some other memory of past sensations. In this book, we do not explore how that is done, but certainly it can be 
and has been done. There is no reason to restrict the state representation to immediate sensations; in typical 
applications we should expect the state representation to be able to inform the agent of more than that. 

On the other hand, the state signal should not be expected to inform the agent of everything about the environment, 
or even everything that would be useful to it in making decisions. If the agent is playing blackjack, we should not 
expect it to know what the next card in the deck is. If the agent is answering the phone, we should not expect it to 
know in advance who the caller is. If the agent is a paramedic called to a road accident, we should not expect it to 
know immediately the internal injuries of an unconscious victim. In all of these cases there is hidden state 
information in the environment, and that information would be useful if the agent knew it, but the agent cannot 
know it because it has never received any relevant sensations. In short, we don't fault an agent for not knowing 
something that matters, but only for having known something and then forgotten it! 

What we would like, ideally, is a state signal that summarizes past sensations compactly, yet in such a way that all 
relevant information is retained. This normally requires more than the immediate sensations, but never more than 
the complete history of all past sensations. A state signal that succeeds in retaining all relevant information is said to 
be Markov, or to have the Markov property (we define this formally below). For example, a checkers position--the 
current configuration of all the pieces on the board--would serve as a Markov state because it summarizes 
everything important about the complete sequence of positions that led to it. Much of the information about the 
sequence is lost, but all that really matters for the future of the game is retained. Similarly, the current position and 
velocity of a cannonball is all that matters for its future flight. It doesn't matter how that position and velocity came 
about. This is sometimes also referred to as an "independence of path" property because all that matters is in the 
current state signal; its meaning is independent of the "path," or history, of signals that have led up to it. 
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We now formally define the Markov property for the reinforcement learning problem. To keep the mathematics 
simple, we assume here that there are a finite number of states and reward values. This enables us to work in terms 
of sums and probabilities rather than integrals and probability densities, but the argument can easily be extended to 
include continuous states and rewards. Consider how a general environment might respond at time  to the 
action taken at time . In the most general, causal case this response may depend on everything that has happened 
earlier. In this case the dynamics can be defined only by specifying the complete probability distribution:  
 

  
(3.4)

 
for all , , and all possible values of the past events: . If the state signal has the Markov 
property, on the other hand, then the environment's response at  depends only on the state and action 
representations at , in which case the environment's dynamics can be defined by specifying only  
 

  
(3.5)

 
for all , , , and . In other words, a state signal has the Markov property, and is a Markov state, if and only if 
(3.5) is equal to (3.4) for all , , and histories, . In this case, the environment and task as 
a whole are also said to have the Markov property. 

If an environment has the Markov property, then its one-step dynamics (3.5) enable us to predict the next state and 
expected next reward given the current state and action. One can show that, by iterating this equation, one can 
predict all future states and expected rewards from knowledge only of the current state as well as would be possible 
given the complete history up to the current time. It also follows that Markov states provide the best possible basis 
for choosing actions. That is, the best policy for choosing actions as a function of a Markov state is just as good as 
the best policy for choosing actions as a function of complete histories. 

Even when the state signal is non-Markov, it is still appropriate to think of the state in reinforcement learning as an 
approximation to a Markov state. In particular, we always want the state to be a good basis for predicting future 
rewards and for selecting actions. In cases in which a model of the environment is learned (see Chapter 9), we also 
want the state to be a good basis for predicting subsequent states. Markov states provide an unsurpassed basis for 
doing all of these things. To the extent that the state approaches the ability of Markov states in these ways, one will 
obtain better performance from reinforcement learning systems. For all of these reasons, it is useful to think of the 
state at each time step as an approximation to a Markov state, although one should remember that it may not fully 
satisfy the Markov property. 

The Markov property is important in reinforcement learning because decisions and values are assumed to be a 
function only of the current state. In order for these to be effective and informative, the state representation must be 
informative. All of the theory presented in this book assumes Markov state signals. This means that not all the 
theory strictly applies to cases in which the Markov property does not strictly apply. However, the theory developed 
for the Markov case still helps us to understand the behavior of the algorithms, and the algorithms can be 
successfully applied to many tasks with states that are not strictly Markov. A full understanding of the theory of the 
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Markov case is an essential foundation for extending it to the more complex and realistic non-Markov case. Finally, 
we note that the assumption of Markov state representations is not unique to reinforcement learning but is also 
present in most if not all other approaches to artificial intelligence. 

Example 3.5: Pole-Balancing State   In the pole-balancing task introduced earlier, a state signal would be Markov 
if it specified exactly, or made it possible to reconstruct exactly, the position and velocity of the cart along the track, 
the angle between the cart and the pole, and the rate at which this angle is changing (the angular velocity). In an 
idealized cart-pole system, this information would be sufficient to exactly predict the future behavior of the cart and 
pole, given the actions taken by the controller. In practice, however, it is never possible to know this information 
exactly because any real sensor would introduce some distortion and delay in its measurements. Furthermore, in any 
real cart-pole system there are always other effects, such as the bending of the pole, the temperatures of the wheel 
and pole bearings, and various forms of backlash, that slightly affect the behavior of the system. These factors 
would cause violations of the Markov property if the state signal were only the positions and velocities of the cart 
and the pole. 

However, often the positions and velocities serve quite well as states. Some early studies of learning to solve the 
pole-balancing task used a coarse state signal that divided cart positions into three regions: right, left, and middle 
(and similar rough quantizations of the other three intrinsic state variables). This distinctly non-Markov state was 
sufficient to allow the task to be solved easily by reinforcement learning methods. In fact, this coarse representation 
may have facilitated rapid learning by forcing the learning agent to ignore fine distinctions that would not have been 
useful in solving the task. 

Example 3.6: Draw Poker   In draw poker, each player is dealt a hand of five cards. There is a round of betting, in 
which each player exchanges some of his cards for new ones, and then there is a final round of betting. At each 
round, each player must match or exceed the highest bets of the other players, or else drop out (fold). After the 
second round of betting, the player with the best hand who has not folded is the winner and collects all the bets. 

The state signal in draw poker is different for each player. Each player knows the cards in his own hand, but can 
only guess at those in the other players' hands. A common mistake is to think that a Markov state signal should 
include the contents of all the players' hands and the cards remaining in the deck. In a fair game, however, we 
assume that the players are in principle unable to determine these things from their past observations. If a player did 
know them, then she could predict some future events (such as the cards one could exchange for) better than by 
remembering all past observations. 

In addition to knowledge of one's own cards, the state in draw poker should include the bets and the numbers of 
cards drawn by the other players. For example, if one of the other players drew three new cards, you may suspect he 
retained a pair and adjust your guess of the strength of his hand accordingly. The players' bets also influence your 
assessment of their hands. In fact, much of your past history with these particular players is part of the Markov 
state. Does Ellen like to bluff, or does she play conservatively? Does her face or demeanor provide clues to the 
strength of her hand? How does Joe's play change when it is late at night, or when he has already won a lot of 
money? 

Although everything ever observed about the other players may have an effect on the probabilities that they are 
holding various kinds of hands, in practice this is far too much to remember and analyze, and most of it will have no 
clear effect on one's predictions and decisions. Very good poker players are adept at remembering just the key 
clues, and at sizing up new players quickly, but no one remembers everything that is relevant. As a result, the state 
representations people use to make their poker decisions are undoubtedly non-Markov, and the decisions 
themselves are presumably imperfect. Nevertheless, people still make very good decisions in such tasks. We 
conclude that the inability to have access to a perfect Markov state representation is probably not a severe problem 
for a reinforcement learning agent. 
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Exercise 3.6: Broken Vision System   Imagine that you are a vision system. When you are first turned on for the 
day, an image floods into your camera. You can see lots of things, but not all things. You can't see objects that are 
occluded, and of course you can't see objects that are behind you. After seeing that first scene, do you have access 
to the Markov state of the environment? Suppose your camera was broken that day and you received no images at 
all, all day. Would you have access to the Markov state then? 
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3.6 Markov Decision Processes 

A reinforcement learning task that satisfies the Markov property is called a Markov decision process, 
or MDP. If the state and action spaces are finite, then it is called a finite Markov decision process 
(finite MDP). Finite MDPs are particularly important to the theory of reinforcement learning. We 
treat them extensively throughout this book; they are all you need to understand 90% of modern 
reinforcement learning. 

A particular finite MDP is defined by its state and action sets and by the one-step dynamics of the 
environment. Given any state and action,  and , the probability of each possible next state, , is  
 

  
(3.6)

 
These quantities are called transition probabilities. Similarly, given any current state and action,  
and , together with any next state, , the expected value of the next reward is  
 

  
(3.7)

 
These quantities,  and , completely specify the most important aspects of the dynamics of a 
finite MDP (only information about the distribution of rewards around the expected value is lost). 
Most of the theory we present in the rest of this book implicitly assumes the environment is a finite 
MDP. 

Example 3.7: Recycling Robot MDP   The recycling robot (Example 3.3) can be turned into a 
simple example of an MDP by simplifying it and providing some more details. (Our aim is to produce 
a simple example, not a particularly realistic one.) Recall that the agent makes a decision at times 
determined by external events (or by other parts of the robot's control system). At each such time the 
robot decides whether it should (1) actively search for a can, (2) remain stationary and wait for 
someone to bring it a can, or (3) go back to home base to recharge its battery. Suppose the 
environment works as follows. The best way to find cans is to actively search for them, but this runs 
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down the robot's battery, whereas waiting does not. Whenever the robot is searching, the possibility 
exists that its battery will become depleted. In this case the robot must shut down and wait to be 
rescued (producing a low reward). 

The agent makes its decisions solely as a function of the energy level of the battery. It can distinguish 

two levels, high and low, so that the state set is . Let us call the possible 
decisions--the agent's actions--wait, search, and recharge. When the energy level is high, 
recharging would always be foolish, so we do not include it in the action set for this state. The agent's 
action sets are  
 

 

 

If the energy level is high, then a period of active search can always be completed without risk of 
depleting the battery. A period of searching that begins with a high energy level leaves the energy 
level high with probability  and reduces it to low with probability . On the other hand, a 

period of searching undertaken when the energy level is low leaves it low with probability  and 

depletes the battery with probability . In the latter case, the robot must be rescued, and the 
battery is then recharged back to high. Each can collected by the robot counts as a unit reward, 
whereas a reward of  results whenever the robot has to be rescued. Let  and , with 

, respectively denote the expected number of cans the robot will collect (and hence 
the expected reward) while searching and while waiting. Finally, to keep things simple, suppose that 
no cans can be collected during a run home for recharging, and that no cans can be collected on a step 
in which the battery is depleted. This system is then a finite MDP, and we can write down the 
transition probabilities and the expected rewards, as in Table 3.1.  

Table 3.1:Transition probabilities and expected rewards 
for the finite MDP of the recycling robot example. 

There is a row for each possible combination of current 
state, , next state, , and action possible in the current 

state, .
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high high search

high low search

low high search

low low search

high high wait

high low wait

low high wait

low low wait

low high recharge

low low recharge .

 
A transition graph is a useful way to summarize the dynamics of a finite MDP. Figure  3.3 shows the 
transition graph for the recycling robot example. There are two kinds of nodes: state nodes and action 
nodes. There is a state node for each possible state (a large open circle labeled by the name of the 
state), and an action node for each state-action pair (a small solid circle labeled by the name of the 
action and connected by a line to the state node). Starting in state  and taking action  moves you 

along the line from state node  to action node . Then the environment responds with a 

transition to the next state's node via one of the arrows leaving action node . Each arrow 

corresponds to a triple , where  is the next state, and we label the arrow with the transition 

probability, , and the expected reward for that transition, . Note that the transition 
probabilities labeling the arrows leaving an action node always sum to 1.  
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Figure 3.3:Transition graph for the recycling robot example. 
 

Exercise 3.7   Assuming a finite MDP with a finite number of reward values, write an equation for 
the transition probabilities and the expected rewards in terms of the joint conditional distribution in 
(3.5). 
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3.7 Value Functions 

Almost all reinforcement learning algorithms are based on estimating value functions--functions of states (or of state-action pairs) 
that estimate how good it is for the agent to be in a given state (or how good it is to perform a given action in a given state). The 
notion of "how good" here is defined in terms of future rewards that can be expected, or, to be precise, in terms of expected return. 
Of course the rewards the agent can expect to receive in the future depend on what actions it will take. Accordingly, value functions 
are defined with respect to particular policies. 

Recall that a policy, , is a mapping from each state, , and action, , to the probability  of taking action  

when in state . Informally, the value of a state  under a policy , denoted , is the expected return when starting in  and 

following  thereafter. For MDPs, we can define  formally as  
 

  
(3.8)

 

where  denotes the expected value given that the agent follows policy , and  is any time step. Note that the value of the 
terminal state, if any, is always zero. We call the function  the state-value function for policy . 

Similarly, we define the value of taking action  in state  under a policy , denoted , as the expected return starting from 
, taking the action , and thereafter following policy :  

 

  
(3.9)

 
We call  the action-value function for policy . 

The value functions  and  can be estimated from experience. For example, if an agent follows policy  and maintains an 
average, for each state encountered, of the actual returns that have followed that state, then the average will converge to the state's 

value, , as the number of times that state is encountered approaches infinity. If separate averages are kept for each action 

taken in a state, then these averages will similarly converge to the action values, . We call estimation methods of this kind 
Monte Carlo methods because they involve averaging over many random samples of actual returns. These kinds of methods are 
presented in Chapter 5. Of course, if there are very many states, then it may not be practical to keep separate averages for each state 

individually. Instead, the agent would have to maintain  and  as parameterized functions and adjust the parameters to better 
match the observed returns. This can also produce accurate estimates, although much depends on the nature of the parameterized 
function approximator (Chapter 8). 

A fundamental property of value functions used throughout reinforcement learning and dynamic programming is that they satisfy 
particular recursive relationships. For any policy  and any state , the following consistency condition holds between the value of  
and the value of its possible successor states:  
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    (3.10)

 

where it is implicit that the actions, , are taken from the set , and the next states, , are taken from the set , or from  in 
the case of an episodic problem. Equation (3.10) is the Bellman equation for . It expresses a relationship between the value of a 
state and the values of its successor states. Think of looking ahead from one state to its possible successor states, as suggested by 
Figure  3.4a. Each open circle represents a state and each solid circle represents a state-action pair. Starting from state , the root 
node at the top, the agent could take any of some set of actions--three are shown in Figure  3.4a. From each of these, the 
environment could respond with one of several next states, , along with a reward, . The Bellman equation (3.10) averages over all 
the possibilities, weighting each by its probability of occurring. It states that the value of the start state must equal the (discounted) 
value of the expected next state, plus the reward expected along the way. 

The value function  is the unique solution to its Bellman equation. We show in subsequent chapters how this Bellman equation 
forms the basis of a number of ways to compute, approximate, and learn . We call diagrams like those shown in Figure  3.4 
backup diagrams because they diagram relationships that form the basis of the update or backup operations that are at the heart of 
reinforcement learning methods. These operations transfer value information back to a state (or a state-action pair) from its 
successor states (or state-action pairs). We use backup diagrams throughout the book to provide graphical summaries of the 
algorithms we discuss. (Note that unlike transition graphs, the state nodes of backup diagrams do not necessarily represent distinct 
states; for example, a state might be its own successor. We also omit explicit arrowheads because time always flows downward in a 
backup diagram.) 

 

  

Figure 3.4:Backup diagrams for (a) and (b) . 
 

Example 3.8: Gridworld   Figure  3.5a uses a rectangular grid to illustrate value functions for a simple finite MDP. The cells of the 
grid correspond to the states of the environment. At each cell, four actions are possible: north, south, east, and west, which 
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deterministically cause the agent to move one cell in the respective direction on the grid. Actions that would take the agent off the 
grid leave its location unchanged, but also result in a reward of . Other actions result in a reward of 0, except those that move the 
agent out of the special states A and B. From state A, all four actions yield a reward of  and take the agent to . From state B, 
all actions yield a reward of  and take the agent to . 

 

  

Figure 3.5:Grid example: (a) exceptional reward dynamics; (b) state-value function for the equiprobable random policy. 
 

Suppose the agent selects all four actions with equal probability in all states. Figure  3.5b shows the value function, , for this 

policy, for the discounted reward case with . This value function was computed by solving the system of equations (3.10). 
Notice the negative values near the lower edge; these are the result of the high probability of hitting the edge of the grid there under 
the random policy. State A is the best state to be in under this policy, but its expected return is less than 10, its immediate reward, 
because from A the agent is taken to , from which it is likely to run into the edge of the grid. State B, on the other hand, is valued 
more than 5, its immediate reward, because from B the agent is taken to , which has a positive value. From  the expected 
penalty (negative reward) for possibly running into an edge is more than compensated for by the expected gain for possibly 
stumbling onto A or B. 
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Figure 3.6:A golf example: the state-value function for putting (above) and the optimal action-value function for using the driver 
(below). 

 

Example 3.9: Golf   To formulate playing a hole of golf as a reinforcement learning task, we count a penalty (negative reward) of 
 for each stroke until we hit the ball into the hole. The state is the location of the ball. The value of a state is the negative of the 

number of strokes to the hole from that location. Our actions are how we aim and swing at the ball, of course, and which club we 
select. Let us take the former as given and consider just the choice of club, which we assume is either a putter or a driver. The upper 

part of Figure  3.6 shows a possible state-value function, , for the policy that always uses the putter. The terminal state in-
the-hole has a value of . From anywhere on the green we assume we can make a putt; these states have value . Off the green we 
cannot reach the hole by putting, and the value is greater. If we can reach the green from a state by putting, then that state must have 
value one less than the green's value, that is, . For simplicity, let us assume we can putt very precisely and deterministically, but 
with a limited range. This gives us the sharp contour line labeled  in the figure; all locations between that line and the green 
require exactly two strokes to complete the hole. Similarly, any location within putting range of the  contour line must have a 
value of , and so on to get all the contour lines shown in the figure. Putting doesn't get us out of sand traps, so they have a value 
of . Overall, it takes us six strokes to get from the tee to the hole by putting. 

Exercise 3.8   What is the Bellman equation for action values, that is, for ? It must give the action value  in terms of the 

action values, , of possible successors to the state-action pair . As a hint, the backup diagram corresponding to this 
equation is given in Figure  3.4b. Show the sequence of equations analogous to (3.10), but for action values. 

Exercise 3.9   The Bellman equation (3.10) must hold for each state for the value function  shown in Figure  3.5b. As an 

example, show numerically that this equation holds for the center state, valued at , with respect to its four neighboring states, 
valued at , , , and . (These numbers are accurate only to one decimal place.) 

Exercise 3.10   In the gridworld example, rewards are positive for goals, negative for running into the edge of the world, and zero 
the rest of the time. Are the signs of these rewards important, or only the intervals between them? Prove, using (3.2), that adding a 
constant  to all the rewards adds a constant, , to the values of all states, and thus does not affect the relative values of any states 
under any policies. What is  in terms of  and ? 

Exercise 3.11   Now consider adding a constant  to all the rewards in an episodic task, such as maze running. Would this have any 
effect, or would it leave the task unchanged as in the continuing task above? Why or why not? Give an example. 

Exercise 3.12   The value of a state depends on the the values of the actions possible in that state and on how likely each action is to 
be taken under the current policy. We can think of this in terms of a small backup diagram rooted at the state and considering each 
possible action: 
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Give the equation corresponding to this intuition and diagram for the value at the root node, , in terms of the value at the 

expected leaf node, , given . This expectation depends on the policy, . Then give a second equation in which the 

expected value is written out explicitly in terms of  such that no expected value notation appears in the equation. 

Exercise 3.13   The value of an action, , can be divided into two parts, the expected next reward, which does not depend on 
the policy , and the expected sum of the remaining rewards, which depends on the next state and the policy. Again we can think of 
this in terms of a small backup diagram, this one rooted at an action (state-action pair) and branching to the possible next states: 

 
 

 

 

Give the equation corresponding to this intuition and diagram for the action value, , in terms of the expected next reward, 

, and the expected next state value, , given that  and . Then give a second equation, writing out the 

expected value explicitly in terms of  and , defined respectively by (3.6) and (3.7), such that no expected value notation 
appears in the equation. 
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3.8 Optimal Value Functions 

Solving a reinforcement learning task means, roughly, finding a policy that achieves a lot of reward over the 
long run. For finite MDPs, we can precisely define an optimal policy in the following way. Value functions 
define a partial ordering over policies. A policy  is defined to be better than or equal to a policy  if its 

expected return is greater than or equal to that of  for all states. In other words,  if and only if 

 for all . There is always at least one policy that is better than or equal to all other 
policies. This is an optimal policy. Although there may be more than one, we denote all the optimal policies by 

. They share the same state-value function, called the optimal state-value function, denoted , and defined 
as  
 

  (3.11)

 
for all . 

Optimal policies also share the same optimal action-value function, denoted , and defined as  
 

  
(3.12)

 

for all  and . For the state-action pair , this function gives the expected return for taking 

action  in state  and thereafter following an optimal policy. Thus, we can write  in terms of  as follows:  
 

  
(3.13)

 

Example 3.10: Optimal Value Functions for Golf   The lower part of Figure  3.6 shows the contours of a 

possible optimal action-value function . These are the values of each state if we first play a 
stroke with the driver and afterward select either the driver or the putter, whichever is better. The driver enables 
us to hit the ball farther, but with less accuracy. We can reach the hole in one shot using the driver only if we 
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are already very close; thus the  contour for  covers only a small portion of the green. If we 
have two strokes, however, then we can reach the hole from much farther away, as shown by the  contour. In 
this case we don't have to drive all the way to within the small  contour, but only to anywhere on the green; 
from there we can use the putter. The optimal action-value function gives the values after committing to a 
particular first action, in this case, to the driver, but afterward using whichever actions are best. The  contour 
is still farther out and includes the starting tee. From the tee, the best sequence of actions is two drives and one 
putt, sinking the ball in three strokes. 

Because  is the value function for a policy, it must satisfy the self-consistency condition given by the 
Bellman equation for state values (3.10). Because it is the optimal value function, however, 's consistency 
condition can be written in a special form without reference to any specific policy. This is the Bellman equation 
for , or the Bellman optimality equation. Intuitively, the Bellman optimality equation expresses the fact that 
the value of a state under an optimal policy must equal the expected return for the best action from that state:  
 

  
  

    

    

    

    (3.14)

    (3.15)

 
The last two equations are two forms of the Bellman optimality equation for . The Bellman optimality 

equation for  is  
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The backup diagrams in Figure  3.7 show graphically the spans of future states and actions considered in the 

Bellman optimality equations for  and . These are the same as the backup diagrams for  and  except 
that arcs have been added at the agent's choice points to represent that the maximum over that choice is taken 
rather than the expected value given some policy. Figure  3.7a graphically represents the Bellman optimality 
equation (3.15). 

 

  

Figure 3.7:Backup diagrams for (a) and (b) 
 

For finite MDPs, the Bellman optimality equation (3.15) has a unique solution independent of the policy. The 
Bellman optimality equation is actually a system of equations, one for each state, so if there are  states, then 

there are  equations in  unknowns. If the dynamics of the environment are known (  and ), then in 
principle one can solve this system of equations for  using any one of a variety of methods for solving 

systems of nonlinear equations. One can solve a related set of equations for . 

Once one has , it is relatively easy to determine an optimal policy. For each state , there will be one or more 
actions at which the maximum is obtained in the Bellman optimality equation. Any policy that assigns nonzero 
probability only to these actions is an optimal policy. You can think of this as a one-step search. If you have the 
optimal value function, , then the actions that appear best after a one-step search will be optimal actions. 
Another way of saying this is that any policy that is greedy with respect to the optimal evaluation function  is 
an optimal policy. The term greedy is used in computer science to describe any search or decision procedure 
that selects alternatives based only on local or immediate considerations, without considering the possibility that 
such a selection may prevent future access to even better alternatives. Consequently, it describes policies that 
select actions based only on their short-term consequences. The beauty of  is that if one uses it to evaluate the 
short-term consequences of actions--specifically, the one-step consequences--then a greedy policy is actually 
optimal in the long-term sense in which we are interested because  already takes into account the reward 
consequences of all possible future behavior. By means of , the optimal expected long-term return is turned 
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into a quantity that is locally and immediately available for each state. Hence, a one-step-ahead search yields the 
long-term optimal actions. 

Having  makes choosing optimal actions still easier. With , the agent does not even have to do a one-step-

ahead search: for any state , it can simply find any action that maximizes . The action-value function 
effectively caches the results of all one-step-ahead searches. It provides the optimal expected long-term return 
as a value that is locally and immediately available for each state-action pair. Hence, at the cost of representing 
a function of state-action pairs, instead of just of states, the optimal action-value function allows optimal actions 
to be selected without having to know anything about possible successor states and their values, that is, without 
having to know anything about the environment's dynamics. 

Example 3.11: Bellman Optimality Equations for the Recycling Robot   Using (3.15), we can explicitly give 
the the Bellman optimality equation for the recycling robot example. To make things more compact, we 
abbreviate the states high and low, and the actions search, wait, and recharge respectively by h, l, s, 
w, and re. Since there are only two states, the Bellman optimality equation consists of two equations. The 

equation for  can be written as follows:  
 

 

 

Following the same procedure for  yields the equation  
 

 

 
For any choice of , , , , and , with , , there is exactly one pair of numbers, 

 and , that simultaneously satisfy these two nonlinear equations. 

Example 3.12: Solving the Gridworld   Suppose we solve the Bellman equation for  for the simple grid 
task introduced in Example 3.8 and shown again in Figure  3.8a. Recall that state A is followed by a reward of 

 and transition to state , while state B is followed by a reward of  and transition to state . Figure  
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3.8b shows the optimal value function, and Figure  3.8c shows the corresponding optimal policies. Where there 
are multiple arrows in a cell, any of the corresponding actions is optimal. 

 

  

Figure 3.8:Optimal solutions to the gridworld example. 
 

Explicitly solving the Bellman optimality equation provides one route to finding an optimal policy, and thus to 
solving the reinforcement learning problem. However, this solution is rarely directly useful. It is akin to an 
exhaustive search, looking ahead at all possibilities, computing their probabilities of occurrence and their 
desirabilities in terms of expected rewards. This solution relies on at least three assumptions that are rarely true 
in practice: (1) we accurately know the dynamics of the environment; (2) we have enough computational 
resources to complete the computation of the solution; and (3) the Markov property. For the kinds of tasks in 
which we are interested, one is generally not able to implement this solution exactly because various 
combinations of these assumptions are violated. For example, although the first and third assumptions present 
no problems for the game of backgammon, the second is a major impediment. Since the game has about  
states, it would take thousands of years on today's fastest computers to solve the Bellman equation for , and 

the same is true for finding . In reinforcement learning one typically has to settle for approximate solutions. 

Many different decision-making methods can be viewed as ways of approximately solving the Bellman 
optimality equation. For example, heuristic search methods can be viewed as expanding the right-hand side of 
(3.15) several times, up to some depth, forming a "tree'' of possibilities, and then using a heuristic evaluation 
function to approximate  at the "leaf'' nodes. (Heuristic search methods such as  are almost always based 
on the episodic case.) The methods of dynamic programming can be related even more closely to the Bellman 
optimality equation. Many reinforcement learning methods can be clearly understood as approximately solving 
the Bellman optimality equation, using actual experienced transitions in place of knowledge of the expected 
transitions. We consider a variety of such methods in the following chapters. 

Exercise 3.14   Draw or describe the optimal state-value function for the golf example. 

Exercise 3.15   Draw or describe the contours of the optimal action-value function for putting, 

, for the golf example. 

Exercise 3.16   Give the Bellman equation for  for the recycling robot. 

Exercise 3.17   Figure  3.8 gives the optimal value of the best state of the gridworld as 24.4, to one decimal 
place. Use your knowledge of the optimal policy and (3.2) to express this value symbolically, and then to 
compute it to three decimal places. 
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3.9 Optimality and Approximation 

We have defined optimal value functions and optimal policies. Clearly, an agent that learns an 
optimal policy has done very well, but in practice this rarely happens. For the kinds of tasks in which 
we are interested, optimal policies can be generated only with extreme computational cost. A well-
defined notion of optimality organizes the approach to learning we describe in this book and provides 
a way to understand the theoretical properties of various learning algorithms, but it is an ideal that 
agents can only approximate to varying degrees. As we discussed above, even if we have a complete 
and accurate model of the environment's dynamics, it is usually not possible to simply compute an 
optimal policy by solving the Bellman optimality equation. For example, board games such as chess 
are a tiny fraction of human experience, yet large, custom-designed computers still cannot compute 
the optimal moves. A critical aspect of the problem facing the agent is always the computational 
power available to it, in particular, the amount of computation it can perform in a single time step. 

The memory available is also an important constraint. A large amount of memory is often required to 
build up approximations of value functions, policies, and models. In tasks with small, finite state sets, 
it is possible to form these approximations using arrays or tables with one entry for each state (or 
state-action pair). This we call the tabular case, and the corresponding methods we call tabular 
methods. In many cases of practical interest, however, there are far more states than could possibly be 
entries in a table. In these cases the functions must be approximated, using some sort of more 
compact parameterized function representation. 

Our framing of the reinforcement learning problem forces us to settle for approximations. However, 
it also presents us with some unique opportunities for achieving useful approximations. For example, 
in approximating optimal behavior, there may be many states that the agent faces with such a low 
probability that selecting suboptimal actions for them has little impact on the amount of reward the 
agent receives. Tesauro's backgammon player, for example, plays with exceptional skill even though 
it might make very bad decisions on board configurations that never occur in games against experts. 
In fact, it is possible that TD-Gammon makes bad decisions for a large fraction of the game's state 
set. The on-line nature of reinforcement learning makes it possible to approximate optimal policies in 
ways that put more effort into learning to make good decisions for frequently encountered states, at 
the expense of less effort for infrequently encountered states. This is one key property that 
distinguishes reinforcement learning from other approaches to approximately solving MDPs. 
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3.10 Summary 

Let us summarize the elements of the reinforcement learning problem that we have presented in this 
chapter. Reinforcement learning is about learning from interaction how to behave in order to achieve 
a goal. The reinforcement learning agent and its environment interact over a sequence of discrete 
time steps. The specification of their interface defines a particular task: the actions are the choices 
made by the agent; the states are the basis for making the choices; and the rewards are the basis for 
evaluating the choices. Everything inside the agent is completely known and controllable by the 
agent; everything outside is incompletely controllable but may or may not be completely known. A 
policy is a stochastic rule by which the agent selects actions as a function of states. The agent's 
objective is to maximize the amount of reward it receives over time. 

The return is the function of future rewards that the agent seeks to maximize. It has several different 
definitions depending upon the nature of the task and whether one wishes to discount delayed reward. 
The undiscounted formulation is appropriate for episodic tasks, in which the agent-environment 
interaction breaks naturally into episodes; the discounted formulation is appropriate for continuing 
tasks, in which the interaction does not naturally break into episodes but continues without limit. 

An environment satisfies the Markov property if its state signal compactly summarizes the past 
without degrading the ability to predict the future. This is rarely exactly true, but often nearly so; the 
state signal should be chosen or constructed so that the Markov property holds as nearly as possible. 
In this book we assume that this has already been done and focus on the decision-making problem: 
how to decide what to do as a function of whatever state signal is available. If the Markov property 
does hold, then the environment is called a Markov decision process (MDP). A finite MDP is an 
MDP with finite state and action sets. Most of the current theory of reinforcement learning is 
restricted to finite MDPs, but the methods and ideas apply more generally. 

A policy's value functions assign to each state, or state-action pair, the expected return from that state, 
or state-action pair, given that the agent uses the policy. The optimal value functions assign to each 
state, or state-action pair, the largest expected return achievable by any policy. A policy whose value 
functions are optimal is an optimal policy. Whereas the optimal value functions for states and state-
action pairs are unique for a given MDP, there can be many optimal policies. Any policy that is 
greedy with respect to the optimal value functions must be an optimal policy. The Bellman optimality 
equations are special consistency condition that the optimal value functions must satisfy and that can, 
in principle, be solved for the optimal value functions, from which an optimal policy can be 
determined with relative ease. 

A reinforcement learning problem can be posed in a variety of different ways depending on 
assumptions about the level of knowledge initially available to the agent. In problems of complete 
knowledge, the agent has a complete and accurate model of the environment's dynamics. If the 
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environment is an MDP, then such a model consists of the one-step transition probabilities and 
expected rewards for all states and their allowable actions. In problems of incomplete knowledge, a 
complete and perfect model of the environment is not available. 

Even if the agent has a complete and accurate environment model, the agent is typically unable to 
perform enough computation per time step to fully use it. The memory available is also an important 
constraint. Memory may be required to build up accurate approximations of value functions, policies, 
and models. In most cases of practical interest there are far more states than could possibly be entries 
in a table, and approximations must be made. 

A well-defined notion of optimality organizes the approach to learning we describe in this book and 
provides a way to understand the theoretical properties of various learning algorithms, but it is an 
ideal that reinforcement learning agents can only approximate to varying degrees. In reinforcement 
learning we are very much concerned with cases in which optimal solutions cannot be found but must 
be approximated in some way. 
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●     3.1 
●     3.3-4 
●     3.5 
●     3.6 
●     3.7-8 

3.11 Bibliographical and Historical Remarks 

The reinforcement learning problem is deeply indebted to the idea of Markov decision processes 
(MDPs) from the field of optimal control. These historical influences and other major influences from 
psychology are described in the brief history given in Chapter 1. Reinforcement learning adds to 
MDPs a focus on approximation and incomplete information for realistically large problems. MDPs 
and the reinforcement learning problem are only weakly linked to traditional learning and decision-
making problems in artificial intelligence. However, artificial intelligence is now vigorously 
exploring MDP formulations for planning and decision-making from a variety of perspectives. MDPs 
are more general than previous formulations used in artificial intelligence in that they permit more 
general kinds of goals and uncertainty. 

Our presentation of the reinforcement learning problem was influenced by Watkins (1989). 

3.1 

The bioreactor example is based on the work of Ungar (1990) and Miller and Williams (1992). The 
recycling robot example was inspired by the can-collecting robot built by Jonathan Connell (1989). 

3.3-4 

The terminology of episodic and continuing tasks is different from that usually used in the MDP 
literature. In that literature it is common to distinguish three types of tasks: (1) finite-horizon tasks, in 
which interaction terminates after a particular fixed number of time steps; (2) indefinite-horizon tasks, 
in which interaction can last arbitrarily long but must eventually terminate; and (3) infinite-horizon 
tasks, in which interaction does not terminate. Our episodic and continuing tasks are similar to 
indefinite-horizon and infinite-horizon tasks, respectively, but we prefer to emphasize the difference 
in the nature of the interaction. This difference seems more fundamental than the difference in the 
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objective functions emphasized by the usual terms. Often episodic tasks use an indefinite-horizon 
objective function and continuing tasks an infinite-horizon objective function, but we see this as a 
common coincidence rather than a fundamental difference. 

The pole-balancing example is from Michie and Chambers (1968) and Barto, Sutton, and Anderson 
(1983). 

3.5 

For further discussion of the concept of state, see Minsky (1967). 

3.6 

The theory of MDPs is treated by, e.g., Bertsekas (1995), Ross (1983), White (1969), and Whittle 
(1982, 1983). This theory is also studied under the heading of stochastic optimal control, where 
adaptive optimal control methods are most closely related to reinforcement learning (e.g., Kumar, 
1985; Kumar and Varaiya, 1986). 

The theory of MDPs evolved from efforts to understand the problem of making sequences of 
decisions under uncertainty, where each decision can depend on the previous decisions and their 
outcomes. It is sometimes called the theory of multistage decision processes, or sequential decision 
processes, and has roots in the statistical literature on sequential sampling beginning with the papers 
by Thompson (1933, 1934) and Robbins (1952) that we cited in Chapter 2 in connection with bandit 
problems (which are prototypical MDPs if formulated as multiple-situation problems). 

The earliest instance of which we are aware in which reinforcement learning was discussed using the 
MDP formalism is Andreae's (1969b) description of a unified view of learning machines. Witten and 
Corbin (1973) experimented with a reinforcement learning system later analyzed by Witten (1977) 
using the MDP formalism. Although he did not explicitly mention MDPs, Werbos (1977) suggested 
approximate solution methods for stochastic optimal control problems that are related to modern 
reinforcement learning methods (see also Werbos, 1982, 1987, 1988, 1989, 1992). Although 
Werbos's ideas were not widely recognized at the time, they were prescient in emphasizing the 
importance of approximately solving optimal control problems in a variety of domains, including 
artificial intelligence. The most influential integration of reinforcement learning and MDPs is due to 
Watkins (1989). His treatment of reinforcement learning using the MDP formalism has been widely 
adopted. 

Our characterization of the reward dynamics of an MDP in terms of  is slightly unusual. It is 
more common in the MDP literature to describe the reward dynamics in terms of the expected next 

reward given just the current state and action, that is, by . This 

quantity is related to our  as follows:  
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In conventional MDP theory,  always appears in an expected value sum like this one, and 

therefore it is easier to use . In reinforcement learning, however, we more often have to refer to 

individual actual or sample outcomes. In teaching reinforcement learning, we have found the  
notation to be more straightforward conceptually and easier to understand. 

3.7-8 

Assigning value on the basis of what is good or bad in the long run has ancient roots. In control 
theory, mapping states to numerical values representing the long-term consequences of control 
decisions is a key part of optimal control theory, which was developed in the 1950s by extending 
nineteenth century state-function theories of classical mechanics (see, e.g., Schultz and Melsa, 1967). 
In describing how a computer could be programmed to play chess, Shannon (1950) suggested using 
an evaluation function that took into account the long-term advantages and disadvantages of chess 
positions. 

Watkins's (1989) Q-learning algorithm for estimating  (Chapter 6) made action-value functions an 
important part of reinforcement learning, and consequently these functions are often called Q-
functions. But the idea of an action-value function is much older than this. Shannon (1950) suggested 

that a function  could be used by a chess-playing program to decide whether a move  in 
position  is worth exploring. Michie's (1961, 1963) MENACE system and Michie and Chambers's 
(1968) BOXES system can be understood as estimating action-value functions. In classical physics, 
Hamilton's principal function is an action-value function; Newtonian dynamics are greedy with 
respect to this function (e.g., Goldstein, 1957). Action-value functions also played a central role in 
Denardo's (1967) theoretical treatment of DP in terms of contraction mappings. 

What we call the Bellman equation for  was first introduced by Richard Bellman (1957a), who 
called it the "basic functional equation." The counterpart of the Bellman optimality equation for 
continuous time and state problems is known as the Hamilton-Jacobi-Bellman equation (or often just 
the Hamilton-Jacobi equation), indicating its roots in classical physics (e.g., Schultz and Melsa, 
1967). 

The golf example was suggested by Chris Watkins. 
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II. Elementary Solution Methods 

In this part of the book we describe three fundamental classes of methods for solving the 
reinforcement learning problem: dynamic programming, Monte Carlo methods, and temporal-
difference learning. All of these methods solve the full version of the problem, including delayed 
rewards. 

Each class of methods has its strengths and weaknesses. Dynamic programming methods are well 
developed mathematically, but require a complete and accurate model of the environment. Monte 
Carlo methods don't require a model and are conceptually simple, but are not suited for step-by-step 
incremental computation. Finally, temporal-difference methods require no model and are fully 
incremental, but are more complex to analyze. The methods also differ in several ways with respect 
to their efficiency and speed of convergence. In the third part of the book we explore how these 
methods can be combined so as to obtain the best features of each of them. 
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4. Dynamic Programming 

The term dynamic programming (DP) refers to a collection of algorithms that can be used to compute 
optimal policies given a perfect model of the environment as a Markov decision process (MDP). Classical 
DP algorithms are of limited utility in reinforcement learning both because of their assumption of a perfect 
model and because of their great computational expense, but they are still important theoretically. DP 
provides an essential foundation for the understanding of the methods presented in the rest of this book. In 
fact, all of these methods can be viewed as attempts to achieve much the same effect as DP, only with less 
computation and without assuming a perfect model of the environment. 

Starting with this chapter, we usually assume that the environment is a finite MDP. That is, we assume that 

its state and action sets,  and , for , are finite, and that its dynamics are given by a set of 

transition probabilities, , and expected immediate rewards, 

, for all , , and  (  is  plus a 
terminal state if the problem is episodic). Although DP ideas can be applied to problems with continuous 
state and action spaces, exact solutions are possible only in special cases. A common way of obtaining 
approximate solutions for tasks with continuous states and actions is to quantize the state and action spaces 
and then apply finite-state DP methods. The methods we explore in Chapter 8 are applicable to continuous 
problems and are a significant extension of that approach. 

The key idea of DP, and of reinforcement learning generally, is the use of value functions to organize and 
structure the search for good policies. In this chapter we show how DP can be used to compute the value 
functions defined in Chapter 3. As discussed there, we can easily obtain optimal policies once we have 

found the optimal value functions,  or , which satisfy the Bellman optimality equations:  
 

  
  

    (4.1)

 
or  
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    (4.2)

 

for all , , and . As we shall see, DP algorithms are obtained by turning Bellman 
equations such as these into assignments, that is, into update rules for improving approximations of the 
desired value functions. 
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4.1 Policy Evaluation 

First we consider how to compute the state-value function  for an arbitrary policy . This is called 
policy evaluation in the DP literature. We also refer to it as the prediction problem. Recall from 
Chapter 3 that, for all ,  
 

  
  

    (4.3)

    (4.4)

 

where  is the probability of taking action  in state  under policy , and the expectations are 
subscripted by  to indicate that they are conditional on  being followed. The existence and 

uniqueness of  are guaranteed as long as either  or eventual termination is guaranteed from 
all states under the policy . 

If the environment's dynamics are completely known, then (4.4) is a system of  simultaneous 

linear equations in  unknowns (the , ). In principle, its solution is a straightforward, if 
tedious, computation. For our purposes, iterative solution methods are most suitable. Consider a 

sequence of approximate value functions , each mapping  to . The initial 
approximation, , is chosen arbitrarily (except that the terminal state, if any, must be given value 0), 
and each successive approximation is obtained by using the Bellman equation for  (3.10) as an 
update rule:  
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    (4.5)

 
for all . Clearly,  is a fixed point for this update rule because the Bellman equation 

for  assures us of equality in this case. Indeed, the sequence  can be shown in general to 
converge to  as  under the same conditions that guarantee the existence of . This 
algorithm is called iterative policy evaluation. 

To produce each successive approximation,  from , iterative policy evaluation applies the 
same operation to each state : it replaces the old value of  with a new value obtained from the old 
values of the successor states of , and the expected immediate rewards, along all the one-step 
transitions possible under the policy being evaluated. We call this kind of operation a full backup. 
Each iteration of iterative policy evaluation backs up the value of every state once to produce the new 

approximate value function . There are several different kinds of full backups, depending on 
whether a state (as here) or a state-action pair is being backed up, and depending on the precise way 
the estimated values of the successor states are combined. All the backups done in DP algorithms are 
called full backups because they are based on all possible next states rather than on a sample next 
state. The nature of a backup can be expressed in an equation, as above, or in a backup diagram like 
those introduced in Chapter 3. For example, Figure 3.4a is the backup diagram corresponding to the 
full backup used in iterative policy evaluation. 

To write a sequential computer program to implement iterative policy evaluation, as given by (4.5), 

you would have to use two arrays, one for the old values, , and one for the new values, 

. This way, the new values can be computed one by one from the old values without the old 
values being changed. Of course it is easier to use one array and update the values "in place," that is, 
with each new backed-up value immediately overwriting the old one. Then, depending on the order in 
which the states are backed up, sometimes new values are used instead of old ones on the right-hand 
side of (4.5). This slightly different algorithm also converges to ; in fact, it usually converges 
faster than the two-array version, as you might expect, since it uses new data as soon as they are 
available. We think of the backups as being done in a sweep through the state space. For the in-place 
algorithm, the order in which states are backed up during the sweep has a significant influence on the 
rate of convergence. We usually have the in-place version in mind when we think of DP algorithms. 

Another implementation point concerns the termination of the algorithm. Formally, iterative policy 
evaluation converges only in the limit, but in practice it must be halted short of this. A typical 
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stopping condition for iterative policy evaluation is to test the quantity  
after each sweep and stop when it is sufficiently small. Figure  4.1 gives a complete algorithm for 
iterative policy evaluation with this stopping criterion. 

  

Figure 4.1:Iterative policy evaluation. 

Example 4.1   Consider the  gridworld shown below. 

 
 

 

 

The nonterminal states are . There are four actions possible in each state, 

, which deterministically cause the corresponding state 
transitions, except that actions that would take the agent off the grid in fact leave the state unchanged. 

Thus, for instance, , , and . This is an undiscounted, episodic 
task. The reward is  on all transitions until the terminal state is reached. The terminal state is 
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shaded in the figure (although it is shown in two places, it is formally one state). The expected reward 

function is thus  for all states  and actions . Suppose the agent follows the 
equiprobable random policy (all actions equally likely). The left side of Figure 4.2 shows the 

sequence of value functions  computed by iterative policy evaluation. The final estimate is in 
fact , which in this case gives for each state the negation of the expected number of steps from that 
state until termination. 
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Figure 4.2:Convergence of iterative policy evaluation on a small gridworld. The left column is the 
sequence of approximations of the state-value function for the random policy (all actions equal). The 

right column is the sequence of greedy policies corresponding to the value function estimates 
(arrows are shown for all actions achieving the maximum). The last policy is guaranteed only to be 
an improvement over the random policy, but in this case it, and all policies after the third iteration, 

are optimal. 
 

Exercise 4.1   If  is the equiprobable random policy, what is ? What is 

? 

Exercise 4.2   Suppose a new state 15 is added to the gridworld just below state 13, and its actions, 
left, up, right, and down, take the agent to states 12, 13, 14, and 15, respectively. Assume that 

the transitions from the original states are unchanged. What, then, is  for the equiprobable 
random policy? Now suppose the dynamics of state 13 are also changed, such that action down from 

state 13 takes the agent to the new state 15. What is  for the equiprobable random policy in 
this case? 

Exercise 4.3   What are the equations analogous to (4.3), (4.4), and (4.5) for the action-value function 

 and its successive approximation by a sequence of functions  ? 

Exercise 4.4   In some undiscounted episodic tasks there may be policies for which eventual 
termination is not guaranteed. For example, in the grid problem above it is possible to go back and 

forth between two states forever. In a task that is otherwise perfectly sensible,  may be 
negative infinity for some policies and states, in which case the algorithm for iterative policy 
evaluation given in Figure  4.1 will not terminate. As a purely practical matter, how might we amend 
this algorithm to assure termination even in this case? Assume that eventual termination is guaranteed 
under the optimal policy. 
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4.2 Policy Improvement 

Our reason for computing the value function for a policy is to help find better policies. Suppose we have 
determined the value function  for an arbitrary deterministic policy . For some state  we would like 

to know whether or not we should change the policy to deterministically choose an action . 

We know how good it is to follow the current policy from --that is --but would it be better or 
worse to change to the new policy? One way to answer this question is to consider selecting  in  and 
thereafter following the existing policy, . The value of this way of behaving is  
 

  
  (4.6)

    

 

The key criterion is whether this is greater than or less than . If it is greater--that is, if it is better 
to select  once in  and thereafter follow  than it would be to follow  all the time--then one would 
expect it to be better still to select  every time  is encountered, and that the new policy would in fact be 
a better one overall. 

That this is true is a special case of a general result called the policy improvement theorem. Let  and  
be any pair of deterministic policies such that, for all ,  
 

  
(4.7)

 
Then the policy  must be as good as, or better than, . That is, it must obtain greater or equal expected 
return from all states :  
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  (4.8)

 
Moreover, if there is strict inequality of (4.7) at any state, then there must be strict inequality of (4.8) at 
at least one state. This result applies in particular to the two policies that we considered in the previous 
paragraph, an original deterministic policy, , and a changed policy, , that is identical to  except that 

. Obviously, (4.7) holds at all states other than . Thus, if , then 
the changed policy is indeed better than . 

The idea behind the proof of the policy improvement theorem is easy to understand. Starting from (4.7), 

we keep expanding the  side and reapplying (4.7) until we get :  
 

 

 

So far we have seen how, given a policy and its value function, we can easily evaluate a change in the 
policy at a single state to a particular action. It is a natural extension to consider changes at all states and 

to all possible actions, selecting at each state the action that appears best according to . In other 
words, to consider the new greedy policy, , given by  
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    (4.9)

    

 
where  denotes the value of  at which the expression that follows is maximized (with ties 
broken arbitrarily). The greedy policy takes the action that looks best in the short term--after one step of 
lookahead--according to . By construction, the greedy policy meets the conditions of the policy 
improvement theorem (4.7), so we know that it is as good as, or better than, the original policy. The 
process of making a new policy that improves on an original policy, by making it greedy with respect to 
the value function of the original policy, is called policy improvement. 

Suppose the new greedy policy, , is as good as, but not better than, the old policy . Then , 
and from (4.9) it follows that for all :  
 

 

 
But this is the same as the Bellman optimality equation (4.1), and therefore,  must be , and both  
and  must be optimal policies. Policy improvement thus must give us a strictly better policy except 
when the original policy is already optimal. 

So far in this section we have considered the special case of deterministic policies. In the general case, a 

stochastic policy  specifies probabilities, , for taking each action, , in each state, . We will not 
go through the details, but in fact all the ideas of this section extend easily to stochastic policies. In 
particular, the policy improvement theorem carries through as stated for the stochastic case, under the 
natural definition:  
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In addition, if there are ties in policy improvement steps such as (4.9)--that is, if there are several actions 
at which the maximum is achieved--then in the stochastic case we need not select a single action from 
among them. Instead, each maximizing action can be given a portion of the probability of being selected 
in the new greedy policy. Any apportioning scheme is allowed as long as all submaximal actions are 
given zero probability. 

The last row of Figure  4.2 shows an example of policy improvement for stochastic policies. Here the 
original policy, , is the equiprobable random policy, and the new policy, , is greedy with respect to 

. The value function  is shown in the bottom-left diagram and the set of possible  is shown in 
the bottom-right diagram. The states with multiple arrows in the  diagram are those in which several 
actions achieve the maximum in (4.9); any apportionment of probability among these actions is 

permitted. The value function of any such policy, , can be seen by inspection to be either , , 

or  at all states, , whereas  is at most . Thus, , for all , 
illustrating policy improvement. Although in this case the new policy  happens to be optimal, in 
general only an improvement is guaranteed. 
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4.3 Policy Iteration 

Once a policy, , has been improved using  to yield a better policy, , we can then compute  and improve 
it again to yield an even better . We can thus obtain a sequence of monotonically improving policies and value 
functions:  
 

 

 
where  denotes a policy evaluation and  denotes a policy improvement. Each policy is guaranteed to be a 
strict improvement over the previous one (unless it is already optimal). Because a finite MDP has only a finite 
number of policies, this process must converge to an optimal policy and optimal value function in a finite number 
of iterations. 

This way of finding an optimal policy is called policy iteration. A complete algorithm is given in Figure  4.3. Note 
that each policy evaluation, itself an iterative computation, is started with the value function for the previous 
policy. This typically results in a great increase in the speed of convergence of policy evaluation (presumably 
because the value function changes little from one policy to the next). 
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Figure 4.3:Policy iteration (using iterative policy evaluation) for . In the " " step in 3, it is assumed 
that ties are broken in a consistent order. 

Policy iteration often converges in surprisingly few iterations. This is illustrated by the example in Figure  4.2. The 
bottom-left diagram shows the value function for the equiprobable random policy, and the bottom-right diagram 
shows a greedy policy for this value function. The policy improvement theorem assures us that these policies are 
better than the original random policy. In this case, however, these policies are not just better, but optimal, 
proceeding to the terminal states in the minimum number of steps. In this example, policy iteration would find the 
optimal policy after just one iteration. 

Example 4.2: Jack's Car Rental   Jack manages two locations for a nationwide car rental company. Each day, 
some number of customers arrive at each location to rent cars. If Jack has a car available, he rents it out and is 
credited $10 by the national company. If he is out of cars at that location, then the business is lost. Cars become 
available for renting the day after they are returned. To help ensure that cars are available where they are needed, 
Jack can move them between the two locations overnight, at a cost of $2 per car moved. We assume that the 
number of cars requested and returned at each location are Poisson random variables, meaning that the probability 

that the number is  is , where  is the expected number. Suppose  is 3 and 4 for rental requests at the 
first and second locations and 3 and 2 for returns. To simplify the problem slightly, we assume that there can be no 
more than 20 cars at each location (any additional cars are returned to the nationwide company, and thus disappear 
from the problem) and a maximum of five cars can be moved from one location to the other in one night. We take 
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the discount rate to be  and formulate this as a continuing finite MDP, where the time steps are days, the 
state is the number of cars at each location at the end of the day, and the actions are the net numbers of cars moved 
between the two locations overnight. Figure  4.4 shows the sequence of policies found by policy iteration starting 
from the policy that never moves any cars. 

 

  

Figure 4.4:The sequence of policies found by policy iteration on Jack's car rental problem, and the final state-
value function. The first five diagrams show, for each number of cars at each location at the end of the day, the 
number of cars to be moved from the first location to the second (negative numbers indicate transfers from the 

second location to the first). Each successive policy is a strict improvement over the previous policy, and the last 
policy is optimal. 

 

Exercise 4.5 (programming)   Write a program for policy iteration and re-solve Jack's car rental problem with the 
following changes. One of Jack's employees at the first location rides a bus home each night and lives near the 
second location. She is happy to shuttle one car to the second location for free. Each additional car still costs $2, as 
do all cars moved in the other direction. In addition, Jack has limited parking space at each location. If more than 
10 cars are kept overnight at a location (after any moving of cars), then an additional cost of $4 must be incurred to 
use a second parking lot (independent of how many cars are kept there). These sorts of nonlinearities and arbitrary 
dynamics often occur in real problems and cannot easily be handled by optimization methods other than dynamic 
programming. To check your program, first replicate the results given for the original problem. If your computer is 
too slow for the full problem, cut all the numbers of cars in half. 

Exercise 4.6   How would policy iteration be defined for action values? Give a complete algorithm for computing 
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, analogous to Figure  4.3 for computing . Please pay special attention to this exercise, because the ideas 
involved will be used throughout the rest of the book. 

Exercise 4.7   Suppose you are restricted to considering only policies that are -soft, meaning that the probability 

of selecting each action in each state, , is at least . Describe qualitatively the changes that would be 
required in each of the steps 3, 2, and 1, in that order, of the policy iteration algorithm for  (Figure  4.3). 
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4.4 Value Iteration 

One drawback to policy iteration is that each of its iterations involves policy evaluation, which may itself 
be a protracted iterative computation requiring multiple sweeps through the state set. If policy evaluation is 
done iteratively, then convergence exactly to  occurs only in the limit. Must we wait for exact 
convergence, or can we stop short of that? The example in Figure 4.2 certainly suggests that it may be 
possible to truncate policy evaluation. In that example, policy evaluation iterations beyond the first three 
have no effect on the corresponding greedy policy. 

In fact, the policy evaluation step of policy iteration can be truncated in several ways without losing the 
convergence guarantees of policy iteration. One important special case is when policy evaluation is 
stopped after just one sweep (one backup of each state). This algorithm is called value iteration. It can be 
written as a particularly simple backup operation that combines the policy improvement and truncated 
policy evaluation steps:  
 

  
  (4.10)

    

 

for all . For arbitrary , the sequence  can be shown to converge to  under the same 
conditions that guarantee the existence of . 

Another way of understanding value iteration is by reference to the Bellman optimality equation (4.1). 
Note that value iteration is obtained simply by turning the Bellman optimality equation into an update rule. 
Also note how the value iteration backup is identical to the policy evaluation backup (4.5) except that it 
requires the maximum to be taken over all actions. Another way of seeing this close relationship is to 
compare the backup diagrams for these algorithms: Figure 3.4a shows the backup diagram for policy 
evaluation and Figure 3.7a shows the backup diagram for value iteration. These two are the natural backup 
operations for computing  and . 

Finally, let us consider how value iteration terminates. Like policy evaluation, value iteration formally 
requires an infinite number of iterations to converge exactly to . In practice, we stop once the value 
function changes by only a small amount in a sweep. Figure  4.5 gives a complete value iteration algorithm 
with this kind of termination condition. 
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Value iteration effectively combines, in each of its sweeps, one sweep of policy evaluation and one sweep 
of policy improvement. Faster convergence is often achieved by interposing multiple policy evaluation 
sweeps between each policy improvement sweep. In general, the entire class of truncated policy iteration 
algorithms can be thought of as sequences of sweeps, some of which use policy evaluation backups and 
some of which use value iteration backups. Since the max operation in (4.10) is the only difference 
between these backups, this just means that the max operation is added to some sweeps of policy 
evaluation. All of these algorithms converge to an optimal policy for discounted finite MDPs. 

  

Figure 4.5:Value iteration. 

Example 4.3: Gambler's Problem   A gambler has the opportunity to make bets on the outcomes of a 
sequence of coin flips. If the coin comes up heads, he wins as many dollars as he has staked on that flip; if 
it is tails, he loses his stake. The game ends when the gambler wins by reaching his goal of $100, or loses 
by running out of money. On each flip, the gambler must decide what portion of his capital to stake, in 
integer numbers of dollars. This problem can be formulated as an undiscounted, episodic, finite MDP. The 

state is the gambler's capital,  and the actions are stakes, 

. The reward is zero on all transitions except those on which the 
gambler reaches his goal, when it is . The state-value function then gives the probability of winning 
from each state. A policy is a mapping from levels of capital to stakes. The optimal policy maximizes the 
probability of reaching the goal. Let  denote the probability of the coin coming up heads. If  is known, 
then the entire problem is known and it can be solved, for instance, by value iteration. Figure  4.6 shows 
the change in the value function over successive sweeps of value iteration, and the final policy found, for 
the case of . 
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Figure 4.6:The solution to the gambler's problem for . The upper graph shows the value function 
found by successive sweeps of value iteration. The lower graph shows the final policy. 

 

Exercise 4.8   Why does the optimal policy for the gambler's problem have such a curious form? In 
particular, for capital of 50 it bets it all on one flip, but for capital of 51 it does not. Why is this a good 
policy? 

Exercise 4.9 (programming)   Implement value iteration for the gambler's problem and solve it for 
 and . In programming, you may find it convenient to introduce two dummy states 

corresponding to termination with capital of 0 and 100, giving them values of 0 and 1 respectively. Show 
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your results graphically, as in Figure  4.6. Are your results stable as ? 

Exercise 4.10   What is the analog of the value iteration backup (4.10) for action values, ? 
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4.5 Asynchronous Dynamic Programming 

A major drawback to the DP methods that we have discussed so far is that they involve operations 
over the entire state set of the MDP, that is, they require sweeps of the state set. If the state set is very 
large, then even a single sweep can be prohibitively expensive. For example, the game of 
backgammon has over  states. Even if we could perform the value iteration backup on a million 
states per second, it would take over a thousand years to complete a single sweep. 

Asynchronous DP algorithms are in-place iterative DP algorithms that are not organized in terms of 
systematic sweeps of the state set. These algorithms back up the values of states in any order 
whatsoever, using whatever values of other states happen to be available. The values of some states 
may be backed up several times before the values of others are backed up once. To converge 
correctly, however, an asynchronous algorithm must continue to backup the values of all the states: it 
can't ignore any state after some point in the computation. Asynchronous DP algorithms allow great 
flexibility in selecting states to which backup operations are applied. 

For example, one version of asynchronous value iteration backs up the value, in place, of only one 

state, , on each step, , using the value iteration backup (4.10). If , asymptotic 

convergence to  is guaranteed given only that all states occur in the sequence  an infinite 
number of times. (In the undiscounted episodic case, it is possible that there are some orderings of 
backups that do not result in convergence, but it is relatively easy to avoid these.) Similarly, it is 
possible to intermix policy evaluation and value iteration backups to produce a kind of asynchronous 
truncated policy iteration. Although the details of this and other more unusual DP algorithms are 
beyond the scope of this book, it is clear that a few different backups form building blocks that can be 
used flexibly in a wide variety of sweepless DP algorithms. 

Of course, avoiding sweeps does not necessarily mean that we can get away with less computation. It 
just means that an algorithm does not need to get locked into any hopelessly long sweep before it can 
make progress improving a policy. We can try to take advantage of this flexibility by selecting the 
states to which we apply backups so as to improve the algorithm's rate of progress. We can try to 
order the backups to let value information propagate from state to state in an efficient way. Some 
states may not need their values backed up as often as others. We might even try to skip backing up 
some states entirely if they are not relevant to optimal behavior. Some ideas for doing this are 
discussed in Chapter 9. 

Asynchronous algorithms also make it easier to intermix computation with real-time interaction. To 
solve a given MDP, we can run an iterative DP algorithm at the same time that an agent is actually 
experiencing the MDP. The agent's experience can be used to determine the states to which the DP 
algorithm applies its backups. At the same time, the latest value and policy information from the DP 
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algorithm can guide the agent's decision-making. For example, we can apply backups to states as the 
agent visits them. This makes it possible to focus the DP algorithm's backups onto parts of the state 
set that are most relevant to the agent. This kind of focusing is a repeated theme in reinforcement 
learning. 
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4.6 Generalized Policy Iteration 

Policy iteration consists of two simultaneous, interacting processes, one making the value function 
consistent with the current policy (policy evaluation), and the other making the policy greedy with 
respect to the current value function (policy improvement). In policy iteration, these two processes 
alternate, each completing before the other begins, but this is not really necessary. In value iteration, 
for example, only a single iteration of policy evaluation is performed in between each policy 
improvement. In asynchronous DP methods, the evaluation and improvement processes are 
interleaved at an even finer grain. In some cases a single state is updated in one process before 
returning to the other. As long as both processes continue to update all states, the ultimate result is 
typically the same--convergence to the optimal value function and an optimal policy. 

We use the term generalized policy iteration (GPI) to refer to the general idea of letting policy 
evaluation and policy improvement processes interact, independent of the granularity and other 
details of the two processes. Almost all reinforcement learning methods are well described as GPI. 
That is, all have identifiable policies and value functions, with the policy always being improved with 
respect to the value function and the value function always being driven toward the value function for 
the policy. This overall schema for GPI is illustrated in Figure  4.7. 
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Figure 4.7:Generalized policy iteration: Value and policy functions interact until they are optimal 
and thus consistent with other. 

 

It is easy to see that if both the evaluation process and the improvement process stabilize, that is, no 
longer produce changes, then the value function and policy must be optimal. The value function 
stabilizes only when it is consistent with the current policy, and the policy stabilizes only when it is 
greedy with respect to the current value function. Thus, both processes stabilize only when a policy 
has been found that is greedy with respect to its own evaluation function. This implies that the 
Bellman optimality equation (4.1) holds, and thus that the policy and the value function are optimal. 

The evaluation and improvement processes in GPI can be viewed as both competing and cooperating. 
They compete in the sense that they pull in opposing directions. Making the policy greedy with 
respect to the value function typically makes the value function incorrect for the changed policy, and 
making the value function consistent with the policy typically causes that policy no longer to be 
greedy. In the long run, however, these two processes interact to find a single joint solution: the 
optimal value function and an optimal policy. 

One might also think of the interaction between the evaluation and improvement processes in GPI in 
terms of two constraints or goals--for example, as two lines in two-dimensional space: 
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Although the real geometry is much more complicated than this, the diagram suggests what happens 
in the real case. Each process drives the value function or policy toward one of the lines representing 
a solution to one of the two goals. The goals interact because the two lines are not orthogonal. 
Driving directly toward one goal causes some movement away from the other goal. Inevitably, 
however, the joint process is brought closer to the overall goal of optimality. The arrows in this 
diagram correspond to the behavior of policy iteration in that each takes the system all the way to 
achieving one of the two goals completely. In GPI one could also take smaller, incomplete steps 
toward each goal. In either case, the two processes together achieve the overall goal of optimality 
even though neither is attempting to achieve it directly. 
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4.7 Efficiency of Dynamic Programming 

DP may not be practical for very large problems, but compared with other methods for solving 
MDPs, DP methods are actually quite efficient. If we ignore a few technical details, then the (worst 
case) time DP methods take to find an optimal policy is polynomial in the number of states and 
actions. If  and  denote the number of states and actions, this means that a DP method takes a 
number of computational operations that is less than some polynomial function of  and . A DP 
method is guaranteed to find an optimal policy in polynomial time even though the total number of 
(deterministic) policies is . In this sense, DP is exponentially faster than any direct search in 
policy space could be, because direct search would have to exhaustively examine each policy to 
provide the same guarantee. Linear programming methods can also be used to solve MDPs, and in 
some cases their worst-case convergence guarantees are better than those of DP methods. But linear 
programming methods become impractical at a much smaller number of states than do DP methods 
(by a factor of about 100). For the largest problems, only DP methods are feasible. 

DP is sometimes thought to be of limited applicability because of the curse of dimensionality 
(Bellman, 1957a), the fact that the number of states often grows exponentially with the number of 
state variables. Large state sets do create difficulties, but these are inherent difficulties of the 
problem, not of DP as a solution method. In fact, DP is comparatively better suited to handling large 
state spaces than competing methods such as direct search and linear programming. 

In practice, DP methods can be used with today's computers to solve MDPs with millions of states. 
Both policy iteration and value iteration are widely used, and it is not clear which, if either, is better 
in general. In practice, these methods usually converge much faster than their theoretical worst-case 
run times, particularly if they are started with good initial value functions or policies. 

On problems with large state spaces, asynchronous DP methods are often preferred. To complete 
even one sweep of a synchronous method requires computation and memory for every state. For 
some problems, even this much memory and computation is impractical, yet the problem is still 
potentially solvable because only a relatively few states occur along optimal solution trajectories. 
Asynchronous methods and other variations of GPI can be applied in such cases and may find good 
or optimal policies much faster than synchronous methods can. 
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4.8 Summary 

In this chapter we have become familiar with the basic ideas and algorithms of dynamic 
programming as they relate to solving finite MDPs. Policy evaluation refers to the (typically) 
iterative computation of the value functions for a given policy. Policy improvement refers to the 
computation of an improved policy given the value function for that policy. Putting these two 
computations together, we obtain policy iteration and value iteration, the two most popular DP 
methods. Either of these can be used to reliably compute optimal policies and value functions for 
finite MDPs given complete knowledge of the MDP. 

Classical DP methods operate in sweeps through the state set, performing a full backup operation on 
each state. Each backup updates the value of one state based on the values of all possible successor 
states and their probabilities of occurring. Full backups are closely related to Bellman equations: they 
are little more than these equations turned into assignment statements. When the backups no longer 
result in any changes in value, convergence has occurred to values that satisfy the corresponding 

Bellman equation. Just as there are four primary value functions ( , , , and ), there are four 
corresponding Bellman equations and four corresponding full backups. An intuitive view of the 
operation of backups is given by backup diagrams. 

Insight into DP methods and, in fact, into almost all reinforcement learning methods, can be gained 
by viewing them as generalized policy iteration (GPI). GPI is the general idea of two interacting 
processes revolving around an approximate policy and an approximate value function. One process 
takes the policy as given and performs some form of policy evaluation, changing the value function 
to be more like the true value function for the policy. The other process takes the value function as 
given and performs some form of policy improvement, changing the policy to make it better, 
assuming that the value function is its value function. Although each process changes the basis for the 
other, overall they work together to find a joint solution: a policy and value function that are 
unchanged by either process and, consequently, are optimal. In some cases, GPI can be proved to 
converge, most notably for the classical DP methods that we have presented in this chapter. In other 
cases convergence has not been proved, but still the idea of GPI improves our understanding of the 
methods. 

It is not necessary to perform DP methods in complete sweeps through the state set. Asynchronous 
DP methods are in-place iterative methods that back up states in an arbitrary order, perhaps 
stochastically determined and using out-of-date information. Many of these methods can be viewed 
as fine-grained forms of GPI. 

Finally, we note one last special property of DP methods. All of them update estimates of the values 
of states based on estimates of the values of successor states. That is, they update estimates on the 
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basis of other estimates. We call this general idea bootstrapping. Many reinforcement learning 
methods perform bootstrapping, even those that do not require, as DP requires, a complete and 
accurate model of the environment. In the next chapter we explore reinforcement learning methods 
that do not require a model and do not bootstrap. In the chapter after that we explore methods that do 
not require a model but do bootstrap. These key features and properties are separable, yet can be 
mixed in interesting combinations. 
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4.9 Bibliographical and Historical Remarks 

The term "dynamic programming" is due to Bellman (1957a), who showed how these methods could 
be applied to a wide range of problems. Extensive treatments of DP can be found in many texts, 
including Bertsekas (1995), Bertsekas and Tsitsiklis (1996), Dreyfus and Law (1977), Ross (1983), 
White (1969), and Whittle (1982, 1983). Our interest in DP is restricted to its use in solving MDPs, 
but DP also applies to other types of problems. Kumar and Kanal (1988) provide a more general look 
at DP. 

To the best of our knowledge, the first connection between DP and reinforcement learning was made 
by Minsky (1961) in commenting on Samuel's checkers player. In a footnote, Minsky mentioned that 
it is possible to apply DP to problems in which Samuel's backing-up process can be handled in closed 
analytic form. This remark may have misled artificial intelligence researchers into believing that DP 
was restricted to analytically tractable problems and therefore largely irrelevant to artificial 
intelligence. Andreae (1969b) mentioned DP in the context of reinforcement learning, specifically 
policy iteration, although he did not make specific connections between DP and learning algorithms. 
Werbos (1977) suggested an approach to approximating DP called "heuristic dynamic programming" 
that emphasizes gradient-descent methods for continuous-state problems (Werbos, 1982, 1987, 1988, 
1989, 1992). These methods are closely related to the reinforcement learning algorithms that we 
discuss in this book. Watkins (1989) was explicit in connecting reinforcement learning to DP, 
characterizing a class of reinforcement learning methods as "incremental dynamic programming." 

4.1-4 

These sections describe well-established DP algorithms that are covered in any of the general DP 
references cited above. The policy improvement theorem and the policy iteration algorithm are due to 
Bellman (1957a) and Howard (1960). Our presentation was influenced by the local view of policy 
improvement taken by Watkins (1989). Our discussion of value iteration as a form of truncated 
policy iteration is based on the approach of Puterman and Shin (1978), who presented a class of 
algorithms called modified policy iteration, which includes policy iteration and value iteration as 
special cases. An analysis showing how value iteration can be made to find an optimal policy in finite 
time is given by Bertsekas (1987). 
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Iterative policy evaluation is an example of a classical successive approximation algorithm for 
solving a system of linear equations. The version of the algorithm that uses two arrays, one holding 
the old values while the other is updated, is often called a Jacobi-style algorithm, after Jacobi's 
classical use of this method. It is also sometimes called a synchronous algorithm because it can be 
performed in parallel, with separate processors simultaneously updating the values of individual 
states using input from other processors. The second array is needed to simulate this parallel 
computation sequentially. The in-place version of the algorithm is often called a Gauss-Seidel-style 
algorithm after the classical Gauss-Seidel algorithm for solving systems of linear equations. In 
addition to iterative policy evaluation, other DP algorithms can be implemented in these different 
versions. Bertsekas and Tsitsiklis (1989) provide excellent coverage of these variations and their 
performance differences. 

4.5 

Asynchronous DP algorithms are due to Bertsekas (1982, 1983), who also called them distributed DP 
algorithms. The original motivation for asynchronous DP was its implementation on a multiprocessor 
system with communication delays between processors and no global synchronizing clock. These 
algorithms are extensively discussed by Bertsekas and Tsitsiklis (1989). Jacobi-style and Gauss-
Seidel-style DP algorithms are special cases of the asynchronous version. Williams and Baird (1990) 
presented DP algorithms that are asynchronous at a finer grain than the ones we have discussed: the 
backup operations themselves are broken into steps that can be performed asynchronously. 

4.7 

This section, written with the help of Michael Littman, is based on Littman, Dean, and Kaelbling 
(1995). 
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5. Monte Carlo Methods 

In this chapter we consider our first learning methods for estimating value functions and discovering 
optimal policies. Unlike the previous chapter, here we do not assume complete knowledge of the 
environment. Monte Carlo methods require only experience--sample sequences of states, actions, and 
rewards from on-line or simulated interaction with an environment. Learning from on-line experience 
is striking because it requires no prior knowledge of the environment's dynamics, yet can still attain 
optimal behavior. Learning from simulated experience is also powerful. Although a model is 
required, the model need only generate sample transitions, not the complete probability distributions 
of all possible transitions that is required by dynamic programming (DP) methods. In surprisingly 
many cases it is easy to generate experience sampled according to the desired probability 
distributions, but infeasible to obtain the distributions in explicit form. 

Monte Carlo methods are ways of solving the reinforcement learning problem based on averaging 
sample returns. To ensure that well-defined returns are available, we define Monte Carlo methods 
only for episodic tasks. That is, we assume experience is divided into episodes, and that all episodes 
eventually terminate no matter what actions are selected. It is only upon the completion of an episode 
that value estimates and policies are changed. Monte Carlo methods are thus incremental in an 
episode-by-episode sense, but not in a step-by-step sense. The term "Monte Carlo" is often used more 
broadly for any estimation method whose operation involves a significant random component. Here 
we use it specifically for methods based on averaging complete returns (as opposed to methods that 
learn from partial returns, considered in the next chapter). 

Despite the differences between Monte Carlo and DP methods, the most important ideas carry over 
from DP to the Monte Carlo case. Not only do we compute the same value functions, but they 
interact to attain optimality in essentially the same way. As in the DP chapter, we consider first policy 

evaluation, the computation of  and  for a fixed arbitrary policy , then policy improvement, 
and, finally, generalized policy iteration. Each of these ideas taken from DP is extended to the Monte 
Carlo case in which only sample experience is available. 

 

Subsections 

●     5.1 Monte Carlo Policy Evaluation 
●     5.2 Monte Carlo Estimation of Action Values 
●     5.3 Monte Carlo Control 
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5.1 Monte Carlo Policy Evaluation 

We begin by considering Monte Carlo methods for learning the state-value function for a given 
policy. Recall that the value of a state is the expected return--expected cumulative future discounted 
reward--starting from that state. An obvious way to estimate it from experience, then, is simply to 
average the returns observed after visits to that state. As more returns are observed, the average 
should converge to the expected value. This idea underlies all Monte Carlo methods. 

In particular, suppose we wish to estimate , the value of a state  under policy , given a set of 
episodes obtained by following  and passing through . Each occurrence of state  in an episode is 

called a visit to . The every-visit MC method estimates  as the average of the returns following 
all the visits to  in a set of episodes. Within a given episode, the first time  is visited is called the 
first visit to . The first-visit MC method averages just the returns following first visits to . These two 
Monte Carlo methods are very similar but have slightly different theoretical properties. First-visit MC 
has been most widely studied, dating back to the 1940s, and is the one we focus on in this chapter. 
We reconsider every-visit MC in Chapter 7. First-visit MC is shown in procedural form in Figure  
5.1. 

  

Figure 5.1:First-visit MC method for estimating . 

Both first-visit MC and every-visit MC converge to  as the number of visits (or first visits) to  
goes to infinity. This is easy to see for the case of first-visit MC. In this case each return is an 
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independent, identically distributed estimate of . By the law of large numbers the sequence of 
averages of these estimates converges to their expected value. Each average is itself an unbiased 

estimate, and the standard deviation of its error falls as , where  is the number of returns 
averaged. Every-visit MC is less straightforward, but its estimates also converge asymptotically to 

 (Singh and Sutton, 1996). 

The use of Monte Carlo methods is best illustrated through an example. 

Example 5.1  Blackjack is a popular casino card game. The object is to obtain cards the sum of 
whose numerical values is as great as possible without exceeding 21. All face cards count as 10, and 
the ace can count either as 1 or as 11. We consider the version in which each player competes 
independently against the dealer. The game begins with two cards dealt to both dealer and player. 
One of the dealer's cards is faceup and the other is facedown. If the player has 21 immediately (an ace 
and a 10-card), it is called a natural. He then wins unless the dealer also has a natural, in which case 
the game is a draw. If the player does not have a natural, then he can request additional cards, one by 
one (hits), until he either stops (sticks) or exceeds 21 (goes bust). If he goes bust, he loses; if he 
sticks, then it becomes the dealer's turn. The dealer hits or sticks according to a fixed strategy without 
choice: he sticks on any sum of 17 or greater, and hits otherwise. If the dealer goes bust, then the 
player wins; otherwise, the outcome--win, lose, or draw--is determined by whose final sum is closer 
to 21. 

Playing blackjack is naturally formulated as an episodic finite MDP. Each game of blackjack is an 
episode. Rewards of , , and  are given for winning, losing, and drawing, respectively. All 

rewards within a game are zero, and we do not discount ( ); therefore these terminal rewards 
are also the returns. The player's actions are to hit or to stick. The states depend on the player's cards 
and the dealer's showing card. We assume that cards are dealt from an infinite deck (i.e., with 
replacement) so that there is no advantage to keeping track of the cards already dealt. If the player 
holds an ace that he could count as 11 without going bust, then the ace is said to be usable. In this 
case it is always counted as 11 because counting it as 1 would make the sum 11 or less, in which case 
there is no decision to be made because, obviously, the player should always hit. Thus, the player 
makes decisions on the basis of three variables: his current sum (12-21), the dealer's one showing 
card (ace-10), and whether or not he holds a usable ace. This makes for a total of 200 states. 

Consider the policy that sticks if the player's sum is 20 or 21, and otherwise hits. To find the state-
value function for this policy by a Monte Carlo approach, one simulates many blackjack games using 
the policy and averages the returns following each state. Note that in this task the same state never 
recurs within one episode, so there is no difference between first-visit and every-visit MC methods. 
In this way, we obtained the estimates of the state-value function shown in Figure  5.2. The estimates 
for states with a usable ace are less certain and less regular because these states are less common. In 
any event, after 500,000 games the value function is very well approximated. 
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Figure 5.2:Approximate state-value functions for the blackjack policy that sticks only on 20 or 21, 
computed by Monte Carlo policy evaluation. 

 

Although we have complete knowledge of the environment in this task, it would not be easy to apply 
DP policy evaluation to compute the value function. DP methods require the distribution of next 

events--in particular, they require the quantities  and --and it is not easy to determine these 
for blackjack. For example, suppose the player's sum is 14 and he chooses to stick. What is his 
expected reward as a function of the dealer's showing card? All of these expected rewards and 
transition probabilities must be computed before DP can be applied, and such computations are often 
complex and error-prone. In contrast, generating the sample games required by Monte Carlo methods 
is easy. This is the case surprisingly often; the ability of Monte Carlo methods to work with sample 
episodes alone can be a significant advantage even when one has complete knowledge of the 
environment's dynamics. 

Can we generalize the idea of backup diagrams to Monte Carlo algorithms? The general idea of a 
backup diagram is to show at the top the root node to be updated and to show below all the transitions 
and leaf nodes whose rewards and estimated values contribute to the update. For Monte Carlo 
estimation of , the root is a state node, and below is the entire sequence of transitions along a 
particular episode, ending at the terminal state, as in Figure  5.3. Whereas the DP diagram 
(Figure 3.4a) shows all possible transitions, the Monte Carlo diagram shows only those sampled on 
the one episode. Whereas the DP diagram includes only one-step transitions, the Monte Carlo 
diagram goes all the way to the end of the episode. These differences in the diagrams accurately 
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reflect the fundamental differences between the algorithms. 

 

  

Figure 5.3:The backup diagram for Monte Carlo estimation of . 
 

An important fact about Monte Carlo methods is that the estimates for each state are independent. 
The estimate for one state does not build upon the estimate of any other state, as is the case in DP. In 
other words, Monte Carlo methods do not "bootstrap" as we described it in the previous chapter. 

In particular, note that the computational expense of estimating the value of a single state is 
independent of the number of states. This can make Monte Carlo methods particularly attractive 
when one requires the value of only a subset of the states. One can generate many sample episodes 
starting from these states, averaging returns only from of these states ignoring all others. This is a 
third advantage Monte Carlo methods can have over DP methods (after the ability to learn from 
actual experience and from simulated experience). 

Example 5.2: Soap Bubble   Suppose a wire frame forming a closed loop is dunked in soapy water 
to form a soap surface or bubble conforming at its edges to the wire frame. If the geometry of the 
wire frame is irregular but known, how can you compute the shape of the surface? The shape has the 
property that the total force on each point exerted by neighboring points is zero (or else the shape 
would change). This means that the surface's height at any point is the average of its heights at points 
in a small circle around that point. In addition, the surface must meet at its boundaries with the wire 
frame. The usual approach to problems of this kind is to put a grid over the area covered by the 
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surface and solve for its height at the grid points by an iterative computation. Grid points at the 
boundary are forced to the wire frame, and all others are adjusted toward the average of the heights of 
their four nearest neighbors. This process then iterates, much like DP's iterative policy evaluation, 
and ultimately converges to a close approximation to the desired surface. 

This is similar to the kind of problem for which Monte Carlo methods were originally designed. 
Instead of the iterative computation described above, imagine standing on the surface and taking a 
random walk, stepping randomly from grid point to neighboring grid point, with equal probability, 
until you reach the boundary. It turns out that the expected value of the height at the boundary is a 
close approximation to the height of the desired surface at the starting point (in fact, is is exactly the 
value computed by the iterative method described above). Thus, one can closely approximate the 
height of the surface at a point by simply averaging the boundary heights of many walks started at the 
point. If one is interested in only the value at one point, or any fixed small set of points, then this 
Monte Carlo method can be far more efficient than the iterative method based on local consistency. 

Exercise 5.1   Consider the diagrams on the right in Figure  5.2. Why does the value function jump 
up for the last two rows in the rear? Why does it drop off for the whole last row on the left? Why are 
the frontmost values higher in the upper diagrams than in the lower? 
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5.2 Monte Carlo Estimation of Action Values 

If a model is not available, then it is particularly useful to estimate action values rather than state 
values. With a model, state values alone are sufficient to determine a policy; one simply looks ahead 
one step and chooses whichever action leads to the best combination of reward and next state, as we 
did in the chapter on DP. Without a model, however, state values alone are not sufficient. One must 
explicitly estimate the value of each action in order for the values to be useful in suggesting a policy. 

Thus, one of our primary goals for Monte Carlo methods is to estimate . To achieve this, we first 
consider another policy evaluation problem. 

The policy evaluation problem for action values is to estimate , the expected return when 
starting in state , taking action , and thereafter following policy . The Monte Carlo methods here 
are essentially the same as just presented for state values. The every-visit MC method estimates the 
value of a state-action pair as the average of the returns that have followed visits to the state in which 
the action was selected. The first-visit MC method averages the returns following the first time in 
each episode that the state was visited and the action was selected. These methods converge 
quadratically, as before, to the true expected values as the number of visits to each state-action pair 
approaches infinity. 

The only complication is that many relevant state-action pairs may never be visited. If  is a 
deterministic policy, then in following  one will observe returns only for one of the actions from 
each state. With no returns to average, the Monte Carlo estimates of the other actions will not 
improve with experience. This is a serious problem because the purpose of learning action values is 
to help in choosing among the actions available in each state. To compare alternatives we need to 
estimate the value of all the actions from each state, not just the one we currently favor. 

This is the general problem of maintaining exploration, as discussed in the context of the -armed 
bandit problem in Chapter 2. For policy evaluation to work for action values, we must assure 
continual exploration. One way to do this is by specifying that the first step of each episode starts at a 
state-action pair, and that every such pair has a nonzero probability of being selected as the start. This 
guarantees that all state-action pairs will be visited an infinite number of times in the limit of an 
infinite number of episodes. We call this the assumption of exploring starts. 

The assumption of exploring starts is sometimes useful, but of course it cannot be relied upon in 
general, particularly when learning directly from real interactions with an environment. In that case 
the starting conditions are unlikely to be so helpful. The most common alternative approach to 
assuring that all state-action pairs are encountered is to consider only policies that are stochastic with 
a nonzero probability of selecting all actions. We discuss two important variants of this approach in 
later sections. For now, we retain the assumption of exploring starts and complete the presentation of 
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a full Monte Carlo control method. 

Exercise 5.2   What is the backup diagram for Monte Carlo estimation of ? 
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5.3 Monte Carlo Control 

We are now ready to consider how Monte Carlo estimation can be used in control, that is, to approximate 
optimal policies. The overall idea is to proceed according to the same pattern as in the DP chapter, that is, 
according to the idea of generalized policy iteration (GPI). In GPI one maintains both an approximate 
policy and an approximate value function. The value function is repeatedly altered to more closely 
approximate the value function for the current policy, and the policy is repeatedly improved with respect 
to the current value function: 

 
 

 

 
These two kinds of changes work against each other to some extent, as each creates a moving target for 
the other, but together they cause both policy and value function to approach optimality. 

To begin, let us consider a Monte Carlo version of classical policy iteration. In this method, we perform 
alternating complete steps of policy evaluation and policy improvement, beginning with an arbitrary 
policy  and ending with the optimal policy and optimal action-value function:  
 

 

 
where  denotes a complete policy evaluation and  denotes a complete policy improvement. 
Policy evaluation is done exactly as described in the preceding section. Many episodes are experienced, 
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with the approximate action-value function approaching the true function asymptotically. For the 
moment, let us assume that we do indeed observe an infinite number of episodes and that, in addition, the 
episodes are generated with exploring starts. Under these assumptions, the Monte Carlo methods will 

compute each  exactly, for arbitrary . 

Policy improvement is done by making the policy greedy with respect to the current value function. In 
this case we have an action-value function, and therefore no model is needed to construct the greedy 

policy. For any action-value function , the corresponding greedy policy is the one that, for each , 

deterministically chooses an action with maximal -value:  
 

  
(5.1)

 
Policy improvement then can be done by constructing each  as the greedy policy with respect to 

. The policy improvement theorem (Section 4.2) then applies to  and  because, for all ,  
 

 

 
As we discussed in the previous chapter, the theorem assures us that each  is uniformly better than 

, unless it is equal to , in which case they are both optimal policies. This in turn assures us that the 
overall process converges to the optimal policy and optimal value function. In this way Monte Carlo 
methods can be used to find optimal policies given only sample episodes and no other knowledge of the 
environment's dynamics. 

We made two unlikely assumptions above in order to easily obtain this guarantee of convergence for the 
Monte Carlo method. One was that the episodes have exploring starts, and the other was that policy 
evaluation could be done with an infinite number of episodes. To obtain a practical algorithm we will 
have to remove both assumptions. We postpone consideration of the first assumption until later in this 
chapter. 

For now we focus on the assumption that policy evaluation operates on an infinite number of episodes. 
This assumption is relatively easy to remove. In fact, the same issue arises even in classical DP methods 
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such as iterative policy evaluation, which also converge only asymptotically to the true value function. In 
both DP and Monte Carlo cases there are two ways to solve the problem. One is to hold firm to the idea 

of approximating  in each policy evaluation. Measurements and assumptions are made to obtain 
bounds on the magnitude and probability of error in the estimates, and then sufficient steps are taken 
during each policy evaluation to assure that these bounds are sufficiently small. This approach can 
probably be made completely satisfactory in the sense of guaranteeing correct convergence up to some 
level of approximation. However, it is also likely to require far too many episodes to be useful in practice 
on any but the smallest problems. 

The second approach to avoiding the infinite number of episodes nominally required for policy 
evaluation is to forgo trying to complete policy evaluation before returning to policy improvement. On 

each evaluation step we move the value function toward , but we do not expect to actually get close 
except over many steps. We used this idea when we first introduced the idea of GPI in Section 4.6. One 
extreme form of the idea is value iteration, in which only one iteration of iterative policy evaluation is 
performed between each step of policy improvement. The in-place version of value iteration is even more 
extreme; there we alternate between improvement and evaluation steps for single states. 

For Monte Carlo policy evaluation it is natural to alternate between evaluation and improvement on an 
episode-by-episode basis. After each episode, the observed returns are used for policy evaluation, and 
then the policy is improved at all the states visited in the episode. A complete simple algorithm along 
these lines is given in Figure  5.4. We call this algorithm Monte Carlo ES, for Monte Carlo with 
Exploring Starts. 

  

Figure 5.4:Monte Carlo ES: A Monte Carlo control algorithm assuming exploring starts. 

In Monte Carlo ES, all the returns for each state-action pair are accumulated and averaged, irrespective 
of what policy was in force when they were observed. It is easy to see that Monte Carlo ES cannot 
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converge to any suboptimal policy. If it did, then the value function would eventually converge to the 
value function for that policy, and that in turn would cause the policy to change. Stability is achieved 
only when both the policy and the value function are optimal. Convergence to this optimal fixed point 
seems inevitable as the changes to the action-value function decrease over time, but has not yet been 
formally proved. In our opinion, this is one of the most fundamental open questions in reinforcement 
learning. 

Example 5.3: Solving Blackjack   It is straightforward to apply Monte Carlo ES to blackjack. Since the 
episodes are all simulated games, it is easy to arrange for exploring starts that include all possibilities. In 
this case one simply picks the dealer's cards, the player's sum, and whether or not the player has a usable 
ace, all at random with equal probability. As the initial policy we use the policy evaluated in the previous 
blackjack example, that which sticks only on 20 or 21. The initial action-value function can be zero for 
all state-action pairs. Figure  5.5 shows the optimal policy for blackjack found by Monte Carlo ES. This 
policy is the same as the "basic" strategy of Thorp (1966) with the sole exception of the leftmost notch in 
the policy for a usable ace, which is not present in Thorp's strategy. We are uncertain of the reason for 
this discrepancy, but confident that what is shown here is indeed the optimal policy for the version of 
blackjack we have described. 

 

  

Figure 5.5:The optimal policy and state-value function for blackjack, found by Monte Carlo ES (Figure 
5.4). The state-value function shown was computed from the action-value function found by Monte 

Carlo ES. 
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5.4 On-Policy Monte Carlo Control 

How can we avoid the unlikely assumption of exploring starts? The only general way to ensure that all actions are selected infinitely often is for the agent to continue to select them. There are two approaches to ensuring this, resulting in what we call 
on-policy methods and off-policy methods. On-policy methods attempt to evaluate or improve the policy that is used to make decisions. In this section we present an on-policy Monte Carlo control method in order to illustrate the idea. 

In on-policy control methods the policy is generally soft, meaning that  for all  and all . There are many possible variations on on-policy methods. One possibility is to gradually shift the policy toward a deterministic 

optimal policy. Many of the methods discussed in Chapter 2 provide mechanisms for this. The on-policy method we present in this section uses -greedy policies, meaning that most of the time they choose an action that has maximal estimated action 

value, but with probability  they instead select an action at random. That is, all nongreedy actions are given the minimal probability of selection, , and the remaining bulk of the probability, , is given to the greedy action. The -

greedy policies are examples of -soft policies, defined as policies for which  for all states and actions, for some . Among -soft policies, -greedy policies are in some sense those that are closest to greedy. 

The overall idea of on-policy Monte Carlo control is still that of GPI. As in Monte Carlo ES, we use first-visit MC methods to estimate the action-value function for the current policy. Without the assumption of exploring starts, however, we cannot 
simply improve the policy by making it greedy with respect to the current value function, because that would prevent further exploration of nongreedy actions. Fortunately, GPI does not require that the policy be taken all the way to a greedy policy, 

only that it be moved toward a greedy policy. In our on-policy method we will move it only to an -greedy policy. For any -soft policy, , any -greedy policy with respect to  is guaranteed to be better than or equal to . 

That any -greedy policy with respect to  is an improvement over any -soft policy  is assured by the policy improvement theorem. Let  be the -greedy policy. The conditions of the policy improvement theorem apply because for any 
:  

 

    

    (5.2)

    

  
  

    

 

Thus, by the policy improvement theorem,  (i.e., , for all ). We now prove that equality can hold only when both  and  are optimal among the -soft policies, that is, when they are better than or equal to all other -
soft policies. 

Consider a new environment that is just like the original environment, except with the requirement that policies be -soft "moved inside" the environment. The new environment has the same action and state set as the original and behaves as follows. 
If in state  and taking action , then with probability  the new environment behaves exactly like the old environment. With probability  it repicks the action at random, with equal probabilities, and then behaves like the old environment with the 

new, random action. The best one can do in this new environment with general policies is the same as the best one could do in the original environment with -soft policies. Let  and  denote the optimal value functions for the new environment. 

Then a policy  is optimal among -soft policies if and only if . From the definition of  we know that it is the unique solution to  
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When equality holds and the -soft policy  is no longer improved, then we also know, from (5.2), that  
 

 

 

However, this equation is the same as the previous one, except for the substitution of  for . Since  is the unique solution, it must be that . 

In essence, we have shown in the last few pages that policy iteration works for -soft policies. Using the natural notion of greedy policy for -soft policies, one is assured of improvement on every step, except when the best policy has been found 

among the -soft policies. This analysis is independent of how the action-value functions are determined at each stage, but it does assume that they are computed exactly. This brings us to roughly the same point as in the previous section. Now we 

only achieve the best policy among the -soft policies, but on the other hand, we have eliminated the assumption of exploring starts. The complete algorithm is given in Figure  5.6. 
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Figure 5.6:An -soft on-policy Monte Carlo control algorithm. 
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5.5 Evaluating One Policy While Following 
Another 

So far we have considered methods for estimating the value functions for a policy given an infinite 
supply of episodes generated using that policy. Suppose now that all we have are episodes generated 

from a different policy. That is, suppose we wish to estimate  or , but all we have are episodes 

following , where . Can we learn the value function for a policy given only experience 
"off" the policy? 

Happily, in many cases we can. Of course, in order to use episodes from  to estimate values for , 
we require that every action taken under  is also taken, at least occasionally, under . That is, we 

require that  implies . In the episodes generated using , consider the th 

first visit to state  and the complete sequence of states and actions following that visit. Let  and 

 denote the probabilities of that complete sequence happening given policies  and  and 

starting from . Let  denote the corresponding observed return from state . To average these to 

obtain an unbiased estimate of , we need only weight each return by its relative probability of 

occurring under  and , that is, by . The desired Monte Carlo estimate after observing 
 returns from state  is then 

 
 

  
(5.3)

 

This equation involves the probabilities  and , which are normally considered unknown in 

applications of Monte Carlo methods. Fortunately, here we need only their ratio, , which 

can be determined with no knowledge of the environment's dynamics. Let  be the time of 
termination of the th episode involving state . Then  
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and  
 

 

 

Thus the weight needed in (5.3), , depends only on the two policies and not at all on the 
environment's dynamics. 

Exercise 5.3   What is the Monte Carlo estimate analogous to (5.3) for action values, given returns 
generated using ? 
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5.6 Off-Policy Monte Carlo Control 

We are now ready to present an example of the second class of learning control methods we consider 
in this book: off-policy methods. Recall that the distinguishing feature of on-policy methods is that 
they estimate the value of a policy while using it for control. In off-policy methods these two 
functions are separated. The policy used to generate behavior, called the behavior policy, may in fact 
be unrelated to the policy that is evaluated and improved, called the estimation policy. An advantage 
of this separation is that the estimation policy may be deterministic (e.g., greedy), while the behavior 
policy can continue to sample all possible actions. 

Off-policy Monte Carlo control methods use the technique presented in the preceding section for 
estimating the value function for one policy while following another. They follow the behavior policy 
while learning about and improving the estimation policy. This technique requires that the behavior 
policy have a nonzero probability of selecting all actions that might be selected by the estimation 
policy. To explore all possibilities, we require that the behavior policy be soft. 
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Figure 5.7:An off-policy Monte Carlo control algorithm. 

Figure  5.7 shows an off-policy Monte Carlo method, based on GPI, for computing . The behavior 
policy  is maintained as an arbitrary soft policy. The estimation policy  is the greedy policy with 

respect to , an estimate of . The behavior policy chosen in (a) can be anything, but in order to 
assure convergence of  to the optimal policy, an infinite number of returns suitable for use in (c) 
must be obtained for each pair of state and action. This can be assured by careful choice of the 

behavior policy. For example, any -soft behavior policy will suffice. 

A potential problem is that this method learns only from the tails of episodes, after the last nongreedy 
action. If nongreedy actions are frequent, then learning will be slow, particularly for states appearing 
in the early portions of long episodes. Potentially, this could greatly slow learning. There has been 
insufficient experience with off-policy Monte Carlo methods to assess how serious this problem is. 

Exercise 5.4: Racetrack (programming)   Consider driving a race car around a turn like those 
shown in Figure  5.8. You want to go as fast as possible, but not so fast as to run off the track. In our 
simplified racetrack, the car is at one of a discrete set of grid positions, the cells in the diagram. The 
velocity is also discrete, a number of grid cells moved horizontally and vertically per time step. The 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node56.html (2 di 3)22/06/2005 9.07.44



5.6 Off-Policy Monte Carlo Control

actions are increments to the velocity components. Each may be changed by , , or  in one step, 
for a total of nine actions. Both velocity components are restricted to be nonnegative and less than 5, 
and they cannot both be zero. Each episode begins in one of the randomly selected start states and 
ends when the car crosses the finish line. The rewards are  for each step that stays on the track, and 

 if the agent tries to drive off the track. Actually leaving the track is not allowed, but the position is 
always advanced by at least one cell along either the horizontal or vertical axes. With these 
restrictions and considering only right turns, such as shown in the figure, all episodes are guaranteed 
to terminate, yet the optimal policy is unlikely to be excluded. To make the task more challenging, we 
assume that on half of the time steps the position is displaced forward or to the right by one additional 
cell beyond that specified by the velocity. Apply the on-policy Monte Carlo control method to this 
task to compute the optimal policy from each starting state. Exhibit several trajectories following the 
optimal policy. 

 

  

Figure 5.8:A couple of right turns for the racetrack task. 
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5.7 Incremental Implementation 

Monte Carlo methods can be implemented incrementally, on an episode-by-episode basis, using 
extensions of techniques described in Chapter 2. They use averages of returns just as some of the 
methods for solving -armed bandit tasks described in Chapter 2 use averages of rewards. The 
techniques in Sections 2.5 and 2.6 extend immediately to the Monte Carlo case. They enable Monte 
Carlo methods to process each new return incrementally with no increase in computation or memory 
as the number of episodes increases. 

There are two differences between the Monte Carlo and bandit cases. One is that the Monte Carlo 
case typically involves multiple situations, that is, a different averaging process for each state, 
whereas bandit problems involve just one state (at least in the simple form treated in Chapter 2). The 
other difference is that the reward distributions in bandit problems are typically stationary, whereas in 
Monte Carlo methods the return distributions are typically nonstationary. This is because the returns 
depend on the policy, and the policy is typically changing and improving over time. 

The incremental implementation described in Section 2.5 handles the case of simple or arithmetic 
averages, in which each return is weighted equally. Suppose we instead want to implement a 
weighted average, in which each return  is weighted by , and we want to compute  
 

  (5.4)

 
For example, the method described for estimating one policy while following another in Section 5.5 

uses weights of . Weighted averages also have a simple incremental update 
rule. In addition to keeping track of , we must maintain for each state the cumulative sum  of 
the weights given to the first  returns. The update rule for  is  
 

  
(5.5)
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and  
 

 

 
where . 

Exercise 5.5   Modify the algorithm for first-visit MC policy evaluation (Figure  5.1) to use the 
incremental implementation for stationary averages described in Section 2.5. 

Exercise 5.6   Derive the weighted-average update rule (5.5) from (5.4). Follow the pattern of the 
derivation of the unweighted rule (2.4) from (2.1). 

Exercise 5.7   Modify the algorithm for the off-policy Monte Carlo control algorithm (Figure  5.7) to 
use the method described above for incrementally computing weighted averages. 
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5.8 Summary 

The Monte Carlo methods presented in this chapter learn value functions and optimal policies from 
experience in the form of sample episodes. This gives them at least three kinds of advantages over 
DP methods. First, they can be used to learn optimal behavior directly from interaction with the 
environment, with no model of the environment's dynamics. Second, they can be used with 
simulation or sample models. For surprisingly many applications it is easy to simulate sample 
episodes even though it is difficult to construct the kind of explicit model of transition probabilities 
required by DP methods. Third, it is easy and efficient to focus Monte Carlo methods on a small 
subset of the states. A region of special interest can be accurately evaluated without going to the 
expense of accurately evaluating the rest of the state set (we explore this further in Chapter 9). 

A fourth advantage of Monte Carlo methods, which we discuss later in the book, is that they may be 
less harmed by violations of the Markov property. This is because they not update their value 
estimates on the basis of the value estimates of successor states. In other words, it is because they do 
not bootstrap. 

In designing Monte Carlo control methods we have followed the overall schema of generalized 
policy iteration (GPI) introduced in Chapter 4. GPI involves interacting processes of policy 
evaluation and policy improvement. Monte Carlo methods provide an alternative policy evaluation 
process. Rather than use a model to compute the value of each state, they simply average many 
returns that start in the state. Because a state's value is the expected return, this average can become a 
good approximation to the value. In control methods we are particularly interested in approximating 
action-value functions, because these can be used to improve the policy without requiring a model of 
the environment's transition dynamics. Monte Carlo methods intermix policy evaluation and policy 
improvement steps on an episode-by-episode basis, and can be incrementally implemented on an 
episode-by-episode basis. 

Maintaining sufficient exploration is an issue in Monte Carlo control methods. It is not enough just to 
select the actions currently estimated to be best, because then no returns will be obtained for 
alternative actions, and it may never be learned that they are actually better. One approach is to 
ignore this problem by assuming that episodes begin with state-action pairs randomly selected to 
cover all possibilities. Such exploring starts can sometimes be arranged in applications with 
simulated episodes, but are unlikely in learning from real experience. Instead, one of two general 
approaches can be used. In on-policy methods, the agent commits to always exploring and tries to 
find the best policy that still explores. In off-policy methods, the agent also explores, but learns a 
deterministic optimal policy that may be unrelated to the policy followed. More instances of both 
kinds of methods are presented in the next chapter. 

All Monte Carlo methods for reinforcement learning have been explicitly identified only recently. 
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Their convergence properties are not yet clear, and their effectiveness in practice has been little 
tested. At present, their primary significance is their simplicity and their relationships to other 
methods. 

Monte Carlo methods differ from DP methods in two ways. First, they operate on sample experience, 
and thus can be used for direct learning without a model. Second, they do not bootstrap. That is, they 
do not update their value estimates on the basis of other value estimates. These two differences are 
not tightly linked and can be separated. In the next chapter we consider methods that learn from 
experience, like Monte Carlo methods, but also bootstrap, like DP methods. 
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5.9 Bibliographical and Historical Remarks 

The term "Monte Carlo" dates from the 1940s, when physicists at Los Alamos devised games of 
chance that they could study to help understand complex physical phenomena relating to the atom 
bomb. Coverage of Monte Carlo methods in this sense can be found in several textbooks (e.g., Kalos 
and Whitlock, 1986; Rubinstein, 1981). 

An early use of Monte Carlo methods to estimate action values in a reinforcement learning context 
was by Michie and Chambers (1968). In pole balancing (Example 3.4), they used averages of episode 
durations to assess the worth (expected balancing "life") of each possible action in each state, and 
then used these assessments to control action selections. Their method is similar in spirit to Monte 
Carlo ES. In our terms, they used a form of every-visit MC method. Narendra and Wheeler (1986) 
studied a Monte Carlo method for ergodic finite Markov chains that used the return accumulated 
from one visit to a state to the next as a reward for adjusting a learning automaton's action 
probabilities. 

Barto and Duff (1994) discussed policy evaluation in the context of classical Monte Carlo algorithms 
for solving systems of linear equations. They used the analysis of Curtiss (1954) to point out the 
computational advantages of Monte Carlo policy evaluation for large problems. Singh and Sutton 
(1996) distinguished between every-visit and first-visit MC methods and proved results relating these 
methods to reinforcement learning algorithms. 

The blackjack example is based on an example used by Widrow, Gupta, and Maitra (1973). The soap 
bubble example is a classical Dirichlet problem whose Monte Carlo solution was first proposed by 
Kakutani (1945; see Hersh and Griego, 1969; Doyle and Snell, 1984). The racetrack exercise is 
adapted from Barto, Bradtke, and Singh (1995), and from Gardner (1973). 
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6. Temporal-Difference Learning 

If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly 
be temporal-difference (TD) learning. TD learning is a combination of Monte Carlo ideas and 
dynamic programming (DP) ideas. Like Monte Carlo methods, TD methods can learn directly from 
raw experience without a model of the environment's dynamics. Like DP, TD methods update 
estimates based in part on other learned estimates, without waiting for a final outcome (they 
bootstrap). The relationship between TD, DP, and Monte Carlo methods is a recurring theme in the 
theory of reinforcement learning. This chapter is the beginning of our exploration of it. Before we are 
done, we will see that these ideas and methods blend into each other and can be combined in many 
ways. In particular, in Chapter 7 we introduce the TD( ) algorithm, which seamlessly integrates TD 
and Monte Carlo methods. 

As usual, we start by focusing on the policy evaluation or prediction problem, that of estimating the 
value function  for a given policy . For the control problem (finding an optimal policy), DP, TD, 
and Monte Carlo methods all use some variation of generalized policy iteration (GPI). The 
differences in the methods are primarily differences in their approaches to the prediction problem. 
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6.1 TD Prediction 

Both TD and Monte Carlo methods use experience to solve the prediction problem. Given some 
experience following a policy , both methods update their estimate  of . If a nonterminal state 

 is visited at time , then both methods update their estimate  based on what happens after 
that visit. Roughly speaking, Monte Carlo methods wait until the return following the visit is known, 

then use that return as a target for . A simple every-visit Monte Carlo method suitable for 
nonstationary environments is  
 

  
(6.1)

 
where  is the actual return following time  and  is a constant step-size parameter (c.f., Equation 

(2.5)). Let us call this method constant-  MC. Whereas Monte Carlo methods must wait until the 

end of the episode to determine the increment to  (only then is  known), TD methods need 
wait only until the next time step. At time  they immediately form a target and make a useful 

update using the observed reward  and the estimate . The simplest TD method, known 
as TD(0), is  
 

  
(6.2)

 
In effect, the target for the Monte Carlo update is , whereas the target for the TD update is 

. 

Because the TD method bases its update in part on an existing estimate, we say that it is a 
bootstrapping method, like DP. We know from Chapter 3 that  
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  (6.3)

    

    

    (6.4)

 
Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas DP methods 
use an estimate of (6.4) as a target. The Monte Carlo target is an estimate because the expected value 
in (6.3) is not known; a sample return is used in place of the real expected return. The DP target is an 
estimate not because of the expected values, which are assumed to be completely provided by a 

model of the environment, but because  is not known and the current estimate, , is 
used instead. The TD target is an estimate for both reasons: it samples the expected values in (6.4) 

and it uses the current estimate  instead of the true . Thus, TD methods combine the sampling of 
Monte Carlo with the bootstrapping of DP. As we shall see, with care and imagination this can take 
us a long way toward obtaining the advantages of both Monte Carlo and DP methods. 

Figure  6.1 specifies TD(0) completely in procedural form, and Figure  6.2 shows its backup diagram. 
The value estimate for the state node at the top of the backup diagram is updated on the basis of the 
one sample transition from it to the immediately following state. We refer to TD and Monte Carlo 
updates as sample backups because they involve looking ahead to a sample successor state (or state-
action pair), using the value of the successor and the reward along the way to compute a backed-up 
value, and then changing the value of the original state (or state-action pair) accordingly. Sample 
backups differ from the full backups of DP methods in that they are based on a single sample 
successor rather than on a complete distribution of all possible successors. 
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Figure 6.1:Tabular TD(0) for estimating . 

 

  

Figure 6.2:The backup diagram for TD(0). 
 

Example 6.1: Driving Home   Each day as you drive home from work, you try to predict how long it 
will take to get home. When you leave your office, you note the time, the day of week, and anything 
else that might be relevant. Say on this Friday you are leaving at exactly 6 o'clock, and you estimate 
that it will take 30 minutes to get home. As you reach your car it is 6:05, and you notice it is starting 
to rain. Traffic is often slower in the rain, so you reestimate that it will take 35 minutes from then, or 
a total of 40 minutes. Fifteen minutes later you have completed the highway portion of your journey 
in good time. As you exit onto a secondary road you cut your estimate of total travel time to 35 
minutes. Unfortunately, at this point you get stuck behind a slow truck, and the road is too narrow to 
pass. You end up having to follow the truck until you turn onto the side street where you live at 6:40. 
Three minutes later you are home. The sequence of states, times, and predictions is thus as follows: 

 Elapsed Time Predicted Predicted

State (minutes) Time to Go Total Time

leaving office, friday at 6  0 30 30

reach car, raining  5 35 40

exiting highway 20 15 35
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2ndary road, behind truck 30 10 40

entering home street 40  3 43

arrive home 43  0 43

The rewards in this example are the elapsed times on each leg of the journey.6.1 We are not 

discounting ( ), and thus the return for each state is the actual time to go from that state. The 
value of each state is the expected time to go. The second column of numbers gives the current 
estimated value for each state encountered. 

 

  

Figure 6.3:Changes recommended by Monte Carlo methods in the driving home example. 
 

A simple way to view the operation of Monte Carlo methods is to plot the predicted total time (the 
last column) over the sequence, as in Figure  6.3. The arrows show the changes in predictions 

recommended by the constant-  MC method (6.1), for . These are exactly the errors between 
the estimated value (predicted time to go) in each state and the actual return (actual time to go). For 
example, when you exited the highway you thought it would take only 15 minutes more to get home, 
but in fact it took 23 minutes. Equation (6.1) applies at this point and determines an increment in the 

estimate of time to go after exiting the highway. The error, , at this time is eight 

minutes. Suppose the step-size parameter, , is . Then the predicted time to go after exiting the 
highway would be revised upward by four minutes as a result of this experience. This is probably too 
large a change in this case; the truck was probably just an unlucky break. In any event, the change 
can only be made off-line, that is, after you have reached home. Only at this point do you know any 
of the actual returns. 

Is it necessary to wait until the final outcome is known before learning can begin? Suppose on 
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another day you again estimate when leaving your office that it will take 30 minutes to drive home, 
but then you become stuck in a massive traffic jam. Twenty-five minutes after leaving the office you 
are still bumper-to-bumper on the highway. You now estimate that it will take another 25 minutes to 
get home, for a total of 50 minutes. As you wait in traffic, you already know that your initial estimate 
of 30 minutes was too optimistic. Must you wait until you get home before increasing your estimate 
for the initial state? According to the Monte Carlo approach you must, because you don't yet know 
the true return. 

According to a TD approach, on the other hand, you would learn immediately, shifting your initial 
estimate from 30 minutes toward 50. In fact, each estimate would be shifted toward the estimate that 
immediately follows it. Returning to our first day of driving, Figure  6.4 shows the same predictions 
as Figure  6.3, except with the changes recommended by the TD rule (6.2) (these are the changes 
made by the rule if ). Each error is proportional to the change over time of the prediction, that 
is, to the temporal differences in predictions. 

 

  

Figure 6.4:Changes recommended by TD methods in the driving home example. 
 

Besides giving you something to do while waiting in traffic, there are several computational reasons 
why it is advantageous to learn based on your current predictions rather than waiting until termination 
when you know the actual return. We briefly discuss some of these next. 
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6.2 Advantages of TD Prediction Methods 

TD methods learn their estimates in part on the basis of other estimates. They learn a guess from a 
guess--they bootstrap. Is this a good thing to do? What advantages do TD methods have over Monte 
Carlo and DP methods? Developing and answering such questions will take the rest of this book and 
more. In this section we briefly anticipate some of the answers. 

Obviously, TD methods have an advantage over DP methods in that they do not require a model of 
the environment, of its reward and next-state probability distributions. 

The next most obvious advantage of TD methods over Monte Carlo methods is that they are naturally 
implemented in an on-line, fully incremental fashion. With Monte Carlo methods one must wait until 
the end of an episode, because only then is the return known, whereas with TD methods one need 
wait only one time step. Surprisingly often this turns out to be a critical consideration. Some 
applications have very long episodes, so that delaying all learning until an episode's end is too slow. 
Other applications are continuing tasks and have no episodes at all. Finally, as we noted in the 
previous chapter, some Monte Carlo methods must ignore or discount episodes on which 
experimental actions are taken, which can greatly slow learning. TD methods are much less 
susceptible to these problems because they learn from each transition regardless of what subsequent 
actions are taken. 

But are TD methods sound? Certainly it is convenient to learn one guess from the next, without 
waiting for an actual outcome, but can we still guarantee convergence to the correct answer? Happily, 
the answer is yes. For any fixed policy , the TD algorithm described above has been proved to 
converge to , in the mean for a constant step-size parameter if it is sufficiently small, and with 
probability 1 if the step-size parameter decreases according to the usual stochastic approximation 
conditions (2.8). Most convergence proofs apply only to the table-based case of the algorithm 
presented above (6.2), but some also apply to the case of general linear function approximation. 
These results are discussed in a more general setting in the next two chapters. 

If both TD and Monte Carlo methods converge asymptotically to the correct predictions, then a 
natural next question is "Which gets there first?" In other words, which method learns faster? Which 
makes the more efficient use of limited data? At the current time this is an open question in the sense 
that no one has been able to prove mathematically that one method converges faster than the other. In 
fact, it is not even clear what is the most appropriate formal way to phrase this question! In practice, 

however, TD methods have usually been found to converge faster than constant-  MC methods on 
stochastic tasks, as illustrated in the following example. 

Example 6.2: Random Walk   In this example we empirically compare the prediction abilities of TD
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(0) and constant-  MC applied to the small Markov process shown in Figure  6.5. All episodes start 
in the center state, , and proceed either left or right by one state on each step, with equal 
probability. This behavior is presumably due to the combined effect of a fixed policy and an 
environment's state-transition probabilities, but we do not care which; we are concerned only with 
predicting returns however they are generated. Episodes terminate either on the extreme left or the 
extreme right. When an episode terminates on the right a reward of  occurs; all other rewards are 
zero. For example, a typical walk might consist of the following state-and-reward sequence: 

. Because this task is undiscounted and episodic, the true value of each 
state is the probability of terminating on the right if starting from that state. Thus, the true value of the 

center state is . The true values of all the states,  through , are , and . 
Figure  6.6 shows the values learned by TD(0) approaching the true values as more episodes are 
experienced. Averaging over many episode sequences, Figure  6.7 shows the average error in the 

predictions found by TD(0) and constant-  MC, for a variety of values of , as a function of 
number of episodes. In all cases the approximate value function was initialized to the intermediate 

value , for all . The TD method is consistently better than the MC method on this task 
over this number of episodes. 

 

  

Figure 6.5:A small Markov process for generating random walks. 
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Figure 6.6:Values learned by TD(0) after various numbers of episodes. The final estimate is about 
as close as the estimates ever get to the true values. With a constant step-size parameter ( in 

this example), the values fluctuate indefinitely in response to the outcomes of the most recent 
episodes. 

 
 

  

Figure 6.7:Learning curves for TD(0) and constant- MC methods, for various values of , on the 
prediction problem for the random walk. The performance measure shown is the root mean-squared 
(RMS) error between the value function learned and the true value function, averaged over the five 

states. These data are averages over 100 different sequences of episodes. 
 

Exercise 6.1   This is an exercise to help develop your intuition about why TD methods are often 
more efficient than Monte Carlo methods. Consider the driving home example and how it is 
addressed by TD and Monte Carlo methods. Can you imagine a scenario in which a TD update would 
be better on average than an Monte Carlo update? Give an example scenario--a description of past 
experience and a current state--in which you would expect the TD update to be better. Here's a hint: 
Suppose you have lots of experience driving home from work. Then you move to a new building and 
a new parking lot (but you still enter the highway at the same place). Now you are starting to learn 
predictions for the new building. Can you see why TD updates are likely to be much better, at least 
initially, in this case? Might the same sort of thing happen in the original task? 

Exercise 6.2   From Figure  6.6, it appears that the first episode results in a change in only . 
What does this tell you about what happened on the first episode? Why was only the estimate for this 
one state changed? By exactly how much was it changed? 
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Exercise 6.3   Do you think that by choosing the step-size parameter, , differently, either algorithm 
could have done significantly better than shown in Figure  6.7? Why or why not? 

Exercise 6.4   In Figure  6.7, the RMS error of the TD method seems to go down and then up again, 

particularly at high 's. What could have caused this? Do you think this always occurs, or might it 
be a function of how the approximate value function was initialized? 

Exercise 6.5   Above we stated that the true values for the random walk task are , and , for 
states  through . Describe at least two different ways that these could have been computed. Which 
would you guess we actually used? Why? 
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6.3 Optimality of TD(0) 

Suppose there is available only a finite amount of experience, say 10 episodes or 100 time steps. In 
this case, a common approach with incremental learning methods is to present the experience 
repeatedly until the method converges upon an answer. Given an approximate value function, , the 
increments specified by (6.1) or (6.2) are computed for every time step  at which a nonterminal state 
is visited, but the value function is changed only once, by the sum of all the increments. Then all the 
available experience is processed again with the new value function to produce a new overall 
increment, and so on, until the value function converges. We call this batch updating because updates 
are made only after processing each complete batch of training data. 

Under batch updating, TD(0) converges deterministically to a single answer independent of the step-

size parameter, , as long as  is chosen to be sufficiently small. The constant-  MC method 
also converges deterministically under the same conditions, but to a different answer. Understanding 
these two answers will help us understand the difference between the two methods. Under normal 
updating the methods do not move all the way to their respective batch answers, but in some sense 
they take steps in these directions. Before trying to understand the two answers in general, for all 
possible tasks, we first look at a few examples. 

Example 6.3  Random walk under batch updating. Batch-updating versions of TD(0) and constant-

 MC were applied as follows to the random walk prediction example (Example 6.2). After each 
new episode, all episodes seen so far were treated as a batch. They were repeatedly presented to the 

algorithm, either TD(0) or constant-  MC, with  sufficiently small that the value function 
converged. The resulting value function was then compared with , and the average root mean-
squared error across the five states (and across 100 independent repetitions of the whole experiment) 
was plotted to obtain the learning curves shown in Figure  6.8. Note that the batch TD method was 
consistently better than the batch Monte Carlo method. 
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Figure 6.8:Performance of TD(0) and constant- MC under batch training on the random walk 
task. 

 

Under batch training, constant-  MC converges to values, , that are sample averages of the 
actual returns experienced after visiting each state . These are optimal estimates in the sense that 
they minimize the mean-squared error from the actual returns in the training set. In this sense it is 
surprising that the batch TD method was able to perform better according to the root mean-squared 
error measure shown in Figure  6.8. How is it that batch TD was able to perform better than this 
optimal method? The answer is that the Monte Carlo method is optimal only in a limited way, and 
that TD is optimal in a way that is more relevant to predicting returns. But first let's develop our 
intuitions about different kinds of optimality through another example. 

Example 6.4: You are the Predictor   Place yourself now in the role of the predictor of returns for 
an unknown Markov reward process. Suppose you observe the following eight episodes:  
 

 

 
This means that the first episode started in state , transitioned to  with a reward of 0, and then 
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terminated from  with a reward of 0. The other seven episodes were even shorter, starting from  
and terminating immediately. Given this batch of data, what would you say are the optimal 

predictions, the best values for the estimates  and ? Everyone would probably agree that 

the optimal value for  is , because six out of the eight times in state  the process terminated 
immediately with a return of 1, and the other two times in  the process terminated immediately with 
a return of 0. 

But what is the optimal value for the estimate  given this data? Here there are two reasonable 
answers. One is to observe that 100% of the times the process was in state  it traversed immediately 

to  (with a reward of 0); and since we have already decided that  has value , therefore  must 

have value  as well. One way of viewing this answer is that it is based on first modeling the Markov 
process, in this case as 

 
 

 

 
and then computing the correct estimates given the model, which indeed in this case gives 

. This is also the answer that batch TD(0) gives. 

The other reasonable answer is simply to observe that we have seen  once and the return that 

followed it was 0; we therefore estimate  as . This is the answer that batch Monte Carlo 
methods give. Notice that it is also the answer that gives minimum squared error on the training data. 
In fact, it gives zero error on the data. But still we expect the first answer to be better. If the process is 
Markov, we expect that the first answer will produce lower error on future data, even though the 
Monte Carlo answer is better on the existing data. 

The above example illustrates a general difference between the estimates found by batch TD(0) and 
batch Monte Carlo methods. Batch Monte Carlo methods always find the estimates that minimize 
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mean-squared error on the training set, whereas batch TD(0) always finds the estimates that would be 
exactly correct for the maximum-likelihood model of the Markov process. In general, the maximum-
likelihood estimate of a parameter is the parameter value whose probability of generating the data is 
greatest. In this case, the maximum-likelihood estimate is the model of the Markov process formed in 
the obvious way from the observed episodes: the estimated transition probability from  to  is the 
fraction of observed transitions from  that went to , and the associated expected reward is the 
average of the rewards observed on those transitions. Given this model, we can compute the estimate 
of the value function that would be exactly correct if the model were exactly correct. This is called 
the certainty-equivalence estimate because it is equivalent to assuming that the estimate of the 
underlying process was known with certainty rather than being approximated. In general, batch TD
(0) converges to the certainty-equivalence estimate. 

This helps explain why TD methods converge more quickly than Monte Carlo methods. In batch 
form, TD(0) is faster than Monte Carlo methods because it computes the true certainty-equivalence 
estimate. This explains the advantage of TD(0) shown in the batch results on the random walk task 
(Figure  6.8). The relationship to the certainty-equivalence estimate may also explain in part the 
speed advantage of nonbatch TD(0) (e.g., Figure  6.7). Although the nonbatch methods do not 
achieve either the certainty-equivalence or the minimum squared-error estimates, they can be 

understood as moving roughly in these directions. Nonbatch TD(0) may be faster than constant-  
MC because it is moving toward a better estimate, even though it is not getting all the way there. At 
the current time nothing more definite can be said about the relative efficiency of on-line TD and 
Monte Carlo methods. 

Finally, it is worth noting that although the certainty-equivalence estimate is in some sense an 
optimal solution, it is almost never feasible to compute it directly. If  is the number of states, then 
just forming the maximum-likelihood estimate of the process may require  memory, and 
computing the corresponding value function requires on the order of  computational steps if done 
conventionally. In these terms it is indeed striking that TD methods can approximate the same 
solution using memory no more than  and repeated computations over the training set. On tasks 
with large state spaces, TD methods may be the only feasible way of approximating the certainty-
equivalence solution. 
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6.4 Sarsa: On-Policy TD Control 

We turn now to the use of TD prediction methods for the control problem. As usual, we follow the pattern of 
generalized policy iteration (GPI), only this time using TD methods for the evaluation or prediction part. As with Monte 
Carlo methods, we face the need to trade off exploration and exploitation, and again approaches fall into two main 
classes: on-policy and off-policy. In this section we present an on-policy TD control method. 

The first step is to learn an action-value function rather than a state-value function. In particular, for an on-policy 

method we must estimate  for the current behavior policy  and for all states  and actions . This can be done 
using essentially the same TD method described above for learning . Recall that an episode consists of an alternating 
sequence of states and state-action pairs: 

 
 

 

 
In the previous section we considered transitions from state to state and learned the values of states. Now we consider 
transitions from state-action pair to state-action pair, and learn the value of state-action pairs. Formally these cases are 
identical: they are both Markov chains with a reward process. The theorems assuring the convergence of state values 
under TD(0) also apply to the corresponding algorithm for action values:  
 

  
(6.5)

 

This update is done after every transition from a nonterminal state . If  is terminal, then  is defined 

as zero. This rule uses every element of the quintuple of events, , that make up a transition 
from one state-action pair to the next. This quintuple gives rise to the name Sarsa for the algorithm. 

It is straightforward to design an on-policy control algorithm based on the Sarsa prediction method. As in all on-policy 

methods, we continually estimate  for the behavior policy , and at the same time change  toward greediness with 

respect to . The general form of the Sarsa control algorithm is given in Figure  6.9. 
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Figure 6.9:Sarsa: An on-policy TD control algorithm. 

The convergence properties of the Sarsa algorithm depend on the nature of the policy's dependence on . For example, 

one could use -greedy or -soft policies. According to Satinder Singh (personal communication), Sarsa converges 
with probability  to an optimal policy and action-value function as long as all state-action pairs are visited an infinite 

number of times and the policy converges in the limit to the greedy policy (which can be arranged, for example, with -

greedy policies by setting ), but this result has not yet been published in the literature. 

Example 6.5: Windy Gridworld   Figure  6.10 shows a standard gridworld, with start and goal states, but with one 
difference: there is a crosswind upward through the middle of the grid. The actions are the standard four--up, down, 
right, and left--but in the middle region the resultant next states are shifted upward by a "wind," the strength of 
which varies from column to column. The strength of the wind is given below each column, in number of cells shifted 
upward. For example, if you are one cell to the right of the goal, then the action left takes you to the cell just above 
the goal. Let us treat this as an undiscounted episodic task, with constant rewards of  until the goal state is reached. 

Figure  6.11 shows the result of applying -greedy Sarsa to this task, with , , and the initial values 

 for all . The increasing slope of the graph shows that the goal is reached more and more quickly over 

time. By 8000 time steps, the greedy policy (shown inset) was long since optimal; continued -greedy exploration kept 
the average episode length at about 17 steps, two less than the minimum of 15. Note that Monte Carlo methods cannot 
easily be used on this task because termination is not guaranteed for all policies. If a policy was ever found that caused 
the agent to stay in the same state, then the next episode would never end. Step-by-step learning methods such as Sarsa 
do not have this problem because they quickly learn during the episode that such policies are poor, and switch to 
something else. 
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Figure 6.10:Gridworld in which movement is altered by a location-dependent, upward "wind." 
 
 

  

Figure 6.11:Results of Sarsa applied to the windy gridworld. 
 

Exercise 6.6: Windy Gridworld with King's Moves   Resolve the windy gridworld task assuming eight possible 
actions, including the diagonal moves, rather than the usual four. How much better can you do with the extra actions? 
Can you do even better by including a ninth action that causes no movement at all other than that caused by the wind? 

Exercise 6.7: Stochastic Wind   Resolve the windy gridworld task with King's moves, assuming that the effect of the 
wind, if there is any, is stochastic, sometimes varying by 1 from the mean values given for each column. That is, a third 
of the time you move exactly according to these values, as in the previous exercise, but also a third of the time you 
move one cell above that, and another third of the time you move one cell below that. For example, if you are one cell 
to the right of the goal and you move left, then one-third of the time you move one cell above the goal, one-third of 
the time you move two cells above the goal, and one-third of the time you move to the goal. 

Exercise 6.8   What is the backup diagram for Sarsa? 
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6.5 Q-Learning: Off-Policy TD Control 

One of the most important breakthroughs in reinforcement learning was the development of an off-policy TD control 
algorithm known as Q-learning (Watkins, 1989). Its simplest form, one-step Q-learning, is defined by  
 

  
(6.6)

 
In this case, the learned action-value function, , directly approximates , the optimal action-value function, independent 
of the policy being followed. This dramatically simplifies the analysis of the algorithm and enabled early convergence 
proofs. The policy still has an effect in that it determines which state-action pairs are visited and updated. However, all that 
is required for correct convergence is that all pairs continue to be updated. As we observed in Chapter 5, this is a minimal 
requirement in the sense that any method guaranteed to find optimal behavior in the general case must require it. Under this 

assumption and a variant of the usual stochastic approximation conditions on the sequence of step-size parameters,  has 

been shown to converge with probability 1 to . The Q-learning algorithm is shown in procedural form in Figure  6.12. 

  

Figure 6.12:Q-learning: An off-policy TD control algorithm. 

What is the backup diagram for Q-learning? The rule (6.6) updates a state-action pair, so the top node, the root of the 
backup, must be a small, filled action node. The backup is also from action nodes, maximizing over all those actions 
possible in the next state. Thus the bottom nodes of the backup diagram should be all these action nodes. Finally, remember 
that we indicate taking the maximum of these "next action" nodes with an arc across them (Figure 3.7). Can you guess now 
what the diagram is? If so, please do make a guess before turning to the answer in Figure  6.14. 
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Figure 6.13:The cliff-walking task. The results are from a single run, but smoothed. 
 
 

  

Figure 6.14:The backup diagram for Q-learning. 
 

Example 6.6: Cliff Walking   This gridworld example compares Sarsa and Q-learning, highlighting the difference 
between on-policy (Sarsa) and off-policy (Q-learning) methods. Consider the gridworld shown in the upper part of Figure  
6.13. This is a standard undiscounted, episodic task, with start and goal states, and the usual actions causing movement up, 
down, right, and left. Reward is  on all transitions except those into the the region marked "The Cliff." Stepping into this 
region incurs a reward of  and sends the agent instantly back to the start. The lower part of the figure shows the 

performance of the Sarsa and Q-learning methods with -greedy action selection, . After an initial transient, Q-
learning learns values for the optimal policy, that which travels right along the edge of the cliff. Unfortunately, this results 

in its occasionally falling off the cliff because of the -greedy action selection. Sarsa, on the other hand, takes the action 
selection into account and learns the longer but safer path through the upper part of the grid. Although Q-learning actually 
learns the values of the optimal policy, its on-line performance is worse than that of Sarsa, which learns the roundabout 

policy. Of course, if  were gradually reduced, then both methods would asymptotically converge to the optimal policy. 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node65.html (2 di 3)22/06/2005 9.08.18



6.5 Q-Learning: Off-Policy TD Control

Exercise 6.9   Why is Q-learning considered an off-policy control method? 

Exercise 6.10   Consider the learning algorithm that is just like Q-learning except that instead of the maximum over next 
state-action pairs it uses the expected value, taking into account how likely each action is under the current policy. That is, 
consider the algorithm otherwise like Q-learning except with the update rule  
 

 

 
Is this new method an on-policy or off-policy method? What is the backup diagram for this algorithm? Given the same 
amount of experience, would you expect this method to work better or worse than Sarsa? What other considerations might 
impact the comparison of this method with Sarsa? 
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6.6 Actor-Critic Methods 

Actor-critic methods are TD methods that have a separate memory structure to explicitly represent 
the policy independent of the value function. The policy structure is known as the actor, because it is 
used to select actions, and the estimated value function is known as the critic, because it criticizes the 
actions made by the actor. Learning is always on-policy: the critic must learn about and critique 
whatever policy is currently being followed by the actor. The critique takes the form of a TD error. 
This scalar signal is the sole output of the critic and drives all learning in both actor and critic, as 
suggested by Figure  6.15. 

 

  

Figure 6.15:The actor-critic architecture. 
 

Actor-critic methods are the natural extension of the idea of reinforcement comparison methods 
(Section 2.8) to TD learning and to the full reinforcement learning problem. Typically, the critic is a 
state-value function. After each action selection, the critic evaluates the new state to determine 
whether things have gone better or worse than expected. That evaluation is the TD error: 
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where  is the current value function implemented by the critic. This TD error can be used to 
evaluate the action just selected, the action  taken in state . If the TD error is positive, it suggests 
that the tendency to select  should be strengthened for the future, whereas if the TD error is 
negative, it suggests the tendency should be weakened. Suppose actions are generated by the Gibbs 
softmax method: 

 
 

 

 

where the  are the values at time  of the modifiable policy parameters of the actor, indicating 
the tendency to select (preference for) each action  when in each state . Then the strengthening or 

weakening described above can be implemented by increasing or decreasing , for instance, 
by  
 

 

 
where  is another positive step-size parameter. 

This is just one example of an actor-critic method. Other variations select the actions in different 
ways, or use eligibility traces like those described in the next chapter. Another common dimension of 
variation, as in reinforcement comparison methods, is to include additional factors varying the 
amount of credit assigned to the action taken, . For example, one of the most common such factors 
is inversely related to the probability of selecting , resulting in the update rule:  
 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node66.html (2 di 3)22/06/2005 9.08.20



6.6 Actor-Critic Methods

 

 
These issues were explored early on, primarily for the immediate reward case (Sutton, 1984; 
Williams, 1992) and have not been brought fully up to date. 

Many of the earliest reinforcement learning systems that used TD methods were actor-critic methods 
(Witten, 1977; Barto, Sutton, and Anderson, 1983). Since then, more attention has been devoted to 
methods that learn action-value functions and determine a policy exclusively from the estimated 
values (such as Sarsa and Q-learning). This divergence may be just historical accident. For example, 
one could imagine intermediate architectures in which both an action-value function and an 
independent policy would be learned. In any event, actor-critic methods are likely to remain of 
current interest because of two significant apparent advantages: 

●     They require minimal computation in order to select actions. Consider a case where there are 
an infinite number of possible actions--for example, a continuous-valued action. Any method 
learning just action values must search through this infinite set in order to pick an action. If the 
policy is explicitly stored, then this extensive computation may not be needed for each action 
selection. 

●     They can learn an explicitly stochastic policy; that is, they can learn the optimal probabilities 
of selecting various actions. This ability turns out to be useful in competitive and non-Markov 
cases (e.g., see Singh, Jaakkola, and Jordan, 1994). 

In addition, the separate actor in actor-critic methods makes them more appealing in some respects as 
psychological and biological models. In some cases it may also make it easier to impose domain-
specific constraints on the set of allowed policies. 
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6.7 R-Learning for Undiscounted Continuing 
Tasks 

R-learning is an off-policy control method for the advanced version of the reinforcement learning 
problem in which one neither discounts nor divides experience into distinct episodes with finite 
returns. In this case one seeks to obtain the maximum reward per time step. The value functions for a 
policy, , are defined relative to the average expected reward per time step under the policy, :  
 

 

 
assuming the process is ergodic (nonzero probability of reaching any state from any other under any 
policy) and thus that  does not depend on the starting state. From any state, in the long run the 
average reward is the same, but there is a transient. From some states better-than-average rewards are 
received for a while, and from others worse-than-average rewards are received. It is this transient that 
defines the value of a state:  
 

 

 
and the value of a state-action pair is similarly the transient difference in reward when starting in that 
state and taking that action:  
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We call these relative values because they are relative to the average reward under the current policy. 

There are subtle distinctions that need to be drawn between different kinds of optimality in the 
undiscounted continuing case. Nevertheless, for most practical purposes it may be adequate simply to 
order policies according to their average reward per time step, in other words, according to their . 
For now let us consider all policies that attain the maximal value of  to be optimal. 

Other than its use of relative values, R-learning is a standard TD control method based on off-policy 
GPI, much like Q-learning. It maintains two policies, a behavior policy and an estimation policy, plus 
an action-value function and an estimated average reward. The behavior policy is used to generate 

experience; it might be the -greedy policy with respect to the action-value function. The estimation 
policy is the one involved in GPI. It is typically the greedy policy with respect to the action-value 

function. If  is the estimation policy, then the action-value function, , is an approximation of  
and the average reward, , is an approximation of . The complete algorithm is given in Figure  
6.16. There has been little experience with this method and it should be considered experimental. 

  

Figure 6.16:R-learning: An off-policy TD control algorithm for undiscounted, continuing tasks. The 

scalars and are step-size parameters. 

Example 6.7: An Access-Control Queuing Task   This is a decision task involving access control to 
a set of  servers. Customers of four different priorities arrive at a single queue. If given access to a 
server, the customers pay a reward of 1, 2, 4, or 8, depending on their priority, with higher priority 
customers paying more. In each time step, the customer at the head of the queue is either accepted 
(assigned to one of the servers) or rejected (removed from the queue). In either case, on the next time 
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step the next customer in the queue is considered. The queue never empties, and the proportion of 
(randomly distributed) high priority customers in the queue is . Of course a customer can be served 
only if there is a free server. Each busy server becomes free with probability  on each time step. 
Although we have just described them for definiteness, let us assume the statistics of arrivals and 
departures are unknown. The task is to decide on each step whether to accept or reject the next 
customer, on the basis of his priority and the number of free servers, so as to maximize long-term 
reward without discounting. Figure  6.17 shows the solution found by R-learning for this task with 

, , and . The R-learning parameters were , , and 
. The initial action values and  were zero. 

 

  

Figure 6.17:The policy and value function found by R-learning on the access-control queuing task 
after 2 million steps. The drop on the right of the graph is probably due to insufficient data; many of 

these states were never experienced. The value learned for was about . 
 

Exercise 6.11   Design an on-policy method for undiscounted, continuing tasks. 
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6.8 Games, Afterstates, and Other Special 
Cases 

In this book we try to present a uniform approach to a wide class of tasks, but of course there are 
always exceptional tasks that are better treated in a specialized way. For example, our general 
approach involves learning an action-value function, but in Chapter 1 we presented a TD method for 
learning to play tic-tac-toe that learned something much more like a state-value function. If we look 
closely at that example, it becomes apparent that the function learned there is neither an action-value 
function nor a state-value function in the usual sense. A conventional state-value function evaluates 
states in which the agent has the option of selecting an action, but the state-value function used in tic-
tac-toe evaluates board positions after the agent has made its move. Let us call these afterstates, and 
value functions over these, afterstate value functions. Afterstates are useful when we have knowledge 
of an initial part of the environment's dynamics but not necessarily of the full dynamics. For example, 
in games we typically know the immediate effects of our moves. We know for each possible chess 
move what the resulting position will be, but not how our opponent will reply. Afterstate value 
functions are a natural way to take advantage of this kind of knowledge and thereby produce a more 
efficient learning method. 

The reason it is more efficient to design algorithms in terms of afterstates is apparent from the tic-tac-
toe example. A conventional action-value function would map from positions and moves to an 
estimate of the value. But many position-move pairs produce the same resulting position, as in this 
example: 
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In such cases the position-move pairs are different but produce the same "afterposition," and thus 
must have the same value. A conventional action-value function would have to separately assess both 
pairs, whereas an afterstate value function would immediately assess both equally. Any learning 
about the position-move pair on the left would immediately transfer to the pair on the right. 

Afterstates arise in many tasks, not just games. For example, in queuing tasks there are actions such 
as assigning customers to servers, rejecting customers, or discarding information. In such cases the 
actions are in fact defined in terms of their immediate effects, which are completely known. For 
example, in the access-control queuing example described in the previous section, a more efficient 
learning method could be obtained by breaking the environment's dynamics into the immediate effect 
of the action, which is deterministic and completely known, and the unknown random processes 
having to do with the arrival and departure of customers. The afterstates would be the number of free 
servers after the action but before the random processes had produced the next conventional state. 
Learning an afterstate value function over the afterstates would enable all actions that produced the 
same number of free servers to share experience. This should result in a significant reduction in 
learning time. 

It is impossible to describe all the possible kinds of specialized problems and corresponding 
specialized learning algorithms. However, the principles developed in this book should apply widely. 
For example, afterstate methods are still aptly described in terms of generalized policy iteration, with 
a policy and (afterstate) value function interacting in essentially the same way. In many cases one 
will still face the choice between on-policy and off-policy methods for managing the need for 
persistent exploration. 

Exercise 6.12   Describe how the task of Jack's Car Rental (Example 4.2) could be reformulated in 
terms of afterstates. Why, in terms of this specific task, would such a reformulation be likely to speed 
convergence? 
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6.9 Summary 

In this chapter we introduced a new kind of learning method, temporal-difference (TD) learning, and 
shown how it can be applied to the reinforcement learning problem. As usual, we divided the overall 
problem into a prediction problem and a control problem. TD methods are alternatives to Monte 
Carlo methods for solving the prediction problem. In both cases, the extension to the control problem 
is via the idea of generalized policy iteration (GPI) that we abstracted from dynamic programming. 
This is the idea that approximate policy and value functions should interact in such a way that they 
both move toward their optimal values. 

One of the two processes making up GPI drives the value function to accurately predict returns for 
the current policy; this is the prediction problem. The other process drives the policy to improve 

locally (e.g., to be -greedy) with respect to the current value function. When the first process is 
based on experience, a complication arises concerning maintaining sufficient exploration. As in 
Chapter 5, we have grouped the TD control methods according to whether they deal with this 
complication by using an on-policy or off-policy approach. Sarsa and actor-critic methods are on-
policy methods, and Q-learning and R-learning are off-policy methods. 

The methods presented in this chapter are today the most widely used reinforcement learning 
methods. This is probably due to their great simplicity: they can be applied on-line, with a minimal 
amount of computation, to experience generated from interaction with an environment; they can be 
expressed nearly completely by single equations that can be implemented with small computer 
programs. In the next few chapters we extend these algorithms, making them slightly more 
complicated and significantly more powerful. All the new algorithms will retain the essence of those 
introduced here: they will be able to process experience on-line, with relatively little computation, 
and they will be driven by TD errors. The special cases of TD methods introduced in the present 
chapter should rightly be called one-step, tabular, modelfree TD methods. In the next three chapters 
we extend them to multistep forms (a link to Monte Carlo methods), forms using function 
approximation rather than tables (a link to artificial neural networks), and forms that include a model 
of the environment (a link to planning and dynamic programming). 

Finally, in this chapter we have discussed TD methods entirely within the context of reinforcement 
learning problems, but TD methods are actually more general than this. They are general methods for 
learning to make long-term predictions about dynamical systems. For example, TD methods may be 
relevant to predicting financial data, life spans, election outcomes, weather patterns, animal behavior, 
demands on power stations, or customer purchases. It was only when TD methods were analyzed as 
pure prediction methods, independent of their use in reinforcement learning, that their theoretical 
properties first came to be well understood. Even so, these other potential applications of TD learning 
methods have not yet been extensively explored. 
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6.10 Bibliographical and Historical Remarks 

As we outlined in Chapter 1, the idea of TD learning has its early roots in animal learning psychology 
and artificial intelligence, most notably the work of Samuel (1959) and Klopf (1972). Samuel's work 
is described as a case study in Section 11.2. Also related to TD learning are Holland's (1975, 1976) 
early ideas about consistency among value predictions. These influenced one of the authors (Barto), 
who was a graduate student from 1970 to 1975 at the University of Michigan, where Holland was 
teaching. Holland's ideas led to a number of TD-related systems, including the work of Booker 
(1982) and the bucket brigade of Holland (1986), which is related to Sarsa as discussed below. 

6.1-2 

Most of the specific material from these sections is from Sutton (1988), including the TD(0) 
algorithm, the random walk example, and the term "temporal-difference learning." The 
characterization of the relationship to dynamic programming and Monte Carlo methods was 
influenced by Watkins (1989), Werbos (1987), and others. The use of backup diagrams here and in 
other chapters is new to this book. Example 6.4 is due to Sutton, but has not been published before. 

Tabular TD(0) was proved to converge in the mean by Sutton (1988) and with probability 1 by Dayan 
(1992), based on the work of Watkins and Dayan (1992). These results were extended and 
strengthened by Jaakkola, Jordan, and Singh (1994) and Tsitsiklis (1994) by using extensions of the 
powerful existing theory of stochastic approximation. Other extensions and generalizations are 
covered in the next two chapters. 

6.3 

The optimality of the TD algorithm under batch training was established by Sutton (1988). The term 
certainty equivalence is from the adaptive control literature (e.g., Goodwin and Sin, 1984). 
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Illuminating this result is Barnard's (1993) derivation of the TD algorithm as a combination of one 
step of an incremental method for learning a model of the Markov chain and one step of a method for 
computing predictions from the model. 

6.4 

The Sarsa algorithm was first explored by Rummery and Niranjan (1994), who called it modified Q-
learning. The name "Sarsa" was introduced by Sutton (1996). The convergence of one-step tabular 
Sarsa (the form treated in this chapter) has been proved by Satinder Singh (personal communication). 
The "windy gridworld" example was suggested by Tom Kalt. 

Holland's (1986) bucket brigade idea evolved into an algorithm closely related to Sarsa. The original 
idea of the bucket brigade involved chains of rules triggering each other; it focused on passing credit 
back from the current rule to the rules that triggered it. Over time, the bucket brigade came to be 
more like TD learning in passing credit back to any temporally preceding rule, not just to the ones 
that triggered the current rule. The modern form of the bucket brigade, when simplified in various 
natural ways, is nearly identical to one-step Sarsa, as detailed by Wilson (1994). 

6.5 

Q-learning was introduced by Watkins (1989), whose outline of a convergence proof was later made 
rigorous by Watkins and Dayan (1992). More general convergence results were proved by Jaakkola, 
Jordan, and Singh (1994) and Tsitsiklis (1994). 

6.6 

Actor-critic architectures using TD learning were first studied by Witten (1977) and then by Barto, 
Sutton, and Anderson (1983; Sutton, 1984), who introduced this use of the terms "actor" and "critic." 
Sutton (1984) and Williams (1992) developed the eligibility terms mentioned in this section. Barto 
(1995a) and Houk, Adams, and Barto (1995) presented a model of how an actor-critic architecture 
might be implemented in the brain. 

6.7 

R-learning is due to Schwartz (1993). Mahadevan (1996), Tadepalli and Ok (1994), and Bertsekas 
and Tsitsiklis (1996) have studied reinforcement learning for undiscounted continuing tasks. In the 
literature, the undiscounted continuing case is often called the case of maximizing "average reward 
per time step" or the "average-reward case." The name R-learning was probably meant to be the 
alphabetic successor to Q-learning, but we prefer to think of it as a reference to the learning of 
relative values. The access-control queuing example was suggested by the work of Carlström and 
Nordström (1997). 
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III. A Unified View 

So far we have discussed three classes of methods for solving the reinforcement learning problem: 
dynamic programming, Monte Carlo methods, and temporal-difference learning. Although each is 
different, these are not really alternatives in the sense that one must pick one or another. It is perfectly 
sensible and often desirable to apply methods of several different kinds simultaneously, that is, to 
apply a joint method with parts or aspects of more than one kind. For different tasks or different parts 
of one task one may want to emphasize one kind of method over another, but these choices can be 
made smoothly and at the time the methods are used, rather than the time at which they are designed. 
In Part III we present a unified view of the three kinds of elementary solution methods introduced in 
Part II. 

The unifications we present in this part of the book are not rough analogies. We develop specific 
algorithms that embody the key ideas of one or more of the elementary solution methods. First we 
present the mechanism of eligibility traces, unifying Monte Carlo and temporal-difference methods. 
Then we bring in function approximation, enabling generalization across states and actions. Finally 
we reintroduce models of the environment to obtain the strengths of dynamic programming and 
heuristic search. All of these can be used synergistically as parts of joint methods. 
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7. Eligibility Traces 

Eligibility traces are one of the basic mechanisms of reinforcement learning. For example, in the 

popular TD( ) algorithm, the  refers to the use of an eligibility trace. Almost any temporal-
difference (TD) method, such as Q-learning or Sarsa, can be combined with eligibility traces to 
obtain a more general method that may learn more efficiently. 

There are two ways to view eligibility traces. The more theoretical view, which we emphasize here, is 
that they are a bridge from TD to Monte Carlo methods. When TD methods are augmented with 
eligibility traces, they produce a family of methods spanning a spectrum that has Monte Carlo 
methods at one end and one-step TD methods at the other. In between are intermediate methods that 
are often better than either extreme method. In this sense eligibility traces unify TD and Monte Carlo 
methods in a valuable and revealing way. 

The other way to view eligibility traces is more mechanistic. From this perspective, an eligibility 
trace is a temporary record of the occurrence of an event, such as the visiting of a state or the taking 
of an action. The trace marks the memory parameters associated with the event as eligible for 
undergoing learning changes. When a TD error occurs, only the eligible states or actions are assigned 
credit or blame for the error. Thus, eligibility traces help bridge the gap between events and training 
information. Like TD methods themselves, eligibility traces are a basic mechanism for temporal 
credit assignment. 

For reasons that will become apparent shortly, the more theoretical view of eligibility traces is called 
the forward view, and the more mechanistic view is called the backward view. The forward view is 
most useful for understanding what is computed by methods using eligibility traces, whereas the 
backward view is more appropriate for developing intuition about the algorithms themselves. In this 
chapter we present both views and then establish the senses in which they are equivalent, that is, in 
which they describe the same algorithms from two points of view. As usual, we first consider the 
prediction problem and then the control problem. That is, we first consider how eligibility traces are 
used to help in predicting returns as a function of state for a fixed policy (i.e., in estimating ). 
Only after exploring the two views of eligibility traces within this prediction setting do we extend the 
ideas to action values and control methods. 
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7.1 -Step TD Prediction 

What is the space of methods lying between Monte Carlo and TD methods? Consider estimating  from sample 
episodes generated using . Monte Carlo methods perform a backup for each state based on the entire sequence of 
observed rewards from that state until the end of the episode. The backup of simple TD methods, on the other hand, is 
based on just the one next reward, using the value of the state one step later as a proxy for the remaining rewards. One 
kind of intermediate method, then, would perform a backup based on an intermediate number of rewards: more than one, 
but less than all of them until termination. For example, a two-step backup would be based on the first two rewards and 
the estimated value of the state two steps later. Similarly, we could have three-step backups, four-step backups, and so on. 
Figure  7.1 diagrams the spectrum of -step backups for , with one-step, simple TD backups on the left and up-until-
termination Monte Carlo backups on the right. 

 

  

Figure 7.1:The spectrum ranging from the one-step backups of simple TD methods to the up-until-termination backups 
of Monte Carlo methods. In between are the -step backups, based on steps of real rewards and the estimated value of 

the th next state, all appropriately discounted. 
 

The methods that use -step backups are still TD methods because they still change an earlier estimate based on how it 
differs from a later estimate. Now the later estimate is not one step later, but  steps later. Methods in which the temporal 
difference extends over  steps are called -step TD methods. The TD methods introduced in the previous chapter all use 
one-step backups, and henceforth we call them one-step TD methods. 

More formally, consider the backup applied to state  as a result of the state-reward sequence, 
 (omitting the actions for simplicity). We know that in Monte Carlo backups the 

estimate  of  is updated in the direction of the complete return:  
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where  is the last time step of the episode. Let us call this quantity the target of the backup. Whereas in Monte Carlo 
backups the target is the expected return, in one-step backups the target is the first reward plus the discounted estimated 
value of the next state:  
 

 

 

This makes sense because  takes the place of the remaining terms , as 
we discussed in the previous chapter. Our point now is that this idea makes just as much sense after two steps as it does 
after one. The two-step target is  
 

 

 

where now  takes the place of the terms . In general, the -step target 
is  
 

  
(7.1)

 
This quantity is sometimes called the "corrected -step truncated return" because it is a return truncated after  steps and 
then approximately corrected for the truncation by adding the estimated value of the th next state. That terminology is 

descriptive but a bit long. We instead refer to  simply as the -step return at time . 

Of course, if the episode ends in less than  steps, then the truncation in an -step return occurs at the episode's end, 

resulting in the conventional complete return. In other words, if , then . Thus, the last 
 -step returns of any episode are always complete returns, and an infinite-step return is always a complete return. This 

definition enables us to treat Monte Carlo methods as the special case of infinite-step returns. All of this is consistent with 
the tricks for treating episodic and continuing tasks equivalently that we introduced in Section 3.4. There we chose to 
treat the terminal state as a state that always transitions to itself with zero reward. Under this trick, all -step returns that 
last up to or past termination have the same value as the complete return. 

An -step backup is defined to be a backup toward the -step return. In the tabular, state-value case, the increment to 

 (the estimated value of  at time ), due to an -step backup of , is defined by  
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where  is a positive step-size parameter, as usual. Of course, the increments to the estimated values of the other states 

are , for all . We define the -step backup in terms of an increment, rather than as a direct update 
rule as we did in the previous chapter, in order to distinguish two different ways of making the updates. In on-line 
updating, the updates are done during the episode, as soon as the increment is computed. In this case we have 

 for all . This is the case considered in the previous chapter. In off-line updating, on 
the other hand, the increments are accumulated "on the side" and are not used to change value estimates until the end of 

the episode. In this case,  is constant within an episode, for all . If its value in this episode is , then its new 

value in the next episode will be . 

The expected value of all -step returns is guaranteed to improve in a certain way over the current value function as an 
approximation to the true value function. For any , the expected value of the -step return using  is guaranteed to be a 
better estimate of  than  is, in a worst-state sense. That is, the worst error under the new estimate is guaranteed to be 

less than or equal to  times the worst error under :  
 

  
(7.2)

 
This is called the error reduction property of -step returns. Because of the error reduction property, one can show 
formally that on-line and off-line TD prediction methods using -step backups converge to the correct predictions under 
appropriate technical conditions. The -step TD methods thus form a family of valid methods, with one-step TD methods 
and Monte Carlo methods as extreme members. 

Nevertheless, -step TD methods are rarely used because they are inconvenient to implement. Computing -step returns 
requires waiting  steps to observe the resultant rewards and states. For large , this can become problematic, particularly 
in control applications. The significance of -step TD methods is primarily for theory and for understanding related 
methods that are more conveniently implemented. In the next few sections we use the idea of -step TD methods to 
explain and justify eligibility trace methods. 

Example 7.1: -step TD Methods on the Random Walk   Consider using -step TD methods on the random walk task 
described in Example 6.2 and shown in Figure 6.5. Suppose the first episode progressed directly from the center state, , 
to the right, through  and , and then terminated on the right with a return of 1. Recall that the estimated values of all 

the states started at an intermediate value, . As a result of this experience, a one-step method would change 

only the estimate for the last state, , which would be incremented toward , the observed return. A two-step method, 

on the other hand, would increment the values of the two states preceding termination:  and  would both be 
incremented toward 1. A three-step method, or any -step method for , would increment the values of all three of 
the visited states toward 1, all by the same amount. Which  is better? Figure  7.2 shows the results of a simple empirical 
assessment for a larger random walk process, with 19 states (and with a  outcome on the left, all values initialized to 

). Shown is the root mean-squared error in the predictions at the end of an episode, averaged over states, the first 10 
episodes, and 100 repetitions of the whole experiment (the same sets of walks were used for all methods). Results are 

shown for on-line and off-line -step TD methods with a range of values for  and . Empirically, on-line methods with 
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an intermediate value of  seem to work best on this task. This illustrates how the generalization of TD and Monte Carlo 
methods to -step methods can potentially perform better than either of the two extreme methods. 

 

  

Figure 7.2:Performance of -step TD methods as a function of , for various values of , on a 19-state random walk 
task. The performance measure shown is the root mean-squared (RMS) error between the true values of states and the 
values found by the learning methods, averaged over the 19 states, the first 10 trials, and 100 different sequences of 

walks. 
 

Exercise 7.1   Why do you think a larger random walk task (19 states instead of 5) was used in the examples of this 
chapter? Would a smaller walk have shifted the advantage to a different value of ? How about the change in left-side 
outcome from 0 to ? Would that have made any difference in the best value of ? 

Exercise 7.2   Why do you think on-line methods worked better than off-line methods on the example task? 

Exercise 7.3   In the lower part of Figure  7.2, notice that the plot for  is different from the others, dropping to 
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low performance at a much lower value of  than similar methods. In fact, the same was observed for , , 
and . Can you explain why this might have been so? In fact, we are not sure ourselves. 
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7.2 The Forward View of TD( ) 

Backups can be done not just toward any -step return, but toward any average of -step returns. For example, 
a backup can be done toward a return that is half of a two-step return and half of a four-step return: 

. Any set of returns can be averaged in this way, even an infinite set, as long as the 
weights on the component returns are positive and sum to 1. The overall return possesses an error reduction 
property similar to that of individual -step returns (7.2) and thus can be used to construct backups with 
guaranteed convergence properties. Averaging produces a substantial new range of algorithms. For example, 
one could average one-step and infinite-step backups to obtain another way of interrelating TD and Monte Carlo 
methods. In principle, one could even average experience-based backups with DP backups to get a simple 
combination of experience-based and model-based methods (see Chapter 9). 

A backup that averages simpler component backups in this way is called a complex backup. The backup 
diagram for a complex backup consists of the backup diagrams for each of the component backups with a 
horizontal line above them and the weighting fractions below. For example, the complex backup mentioned 
above, mixing half of a two-step backup and half of a four-step backup, has the diagram: 
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Figure 7.3:The backup digram for TD( ). If , then the overall backup reduces to its first component, 
the one-step TD backup, whereas if , then the overall backup reduces to its last component, the Monte 

Carlo backup. 
 

The TD( ) algorithm can be understood as one particular way of averaging -step backups. This average 

contains all the -step backups, each weighted proportional to , where  (Figure  7.3). A 
normalization factor of  ensures that the weights sum to 1. The resulting backup is toward a return, called 

the -return, defined by  
 

 

 
Figure  7.4 illustrates this weighting sequence. The one-step return is given the largest weight, ; the two-

step return is given the next largest weight, ; the three-step return is given the weight ; and 

so on. The weight fades by  with each additional step. After a terminal state has been reached, all subsequent 
-step returns are equal to . If we want, we can separate these terms from the main sum, yielding  
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(7.3)

 
This equation makes it clearer what happens when . In this case the main sum goes to zero, and the 

remaining term reduces to the conventional return, . Thus, for , backing up according to the -return 

is the same as the Monte Carlo algorithm that we called constant-  MC (6.1) in the previous chapter. On the 

other hand, if , then the -return reduces to , the one-step return. Thus, for , backing up 

according to the -return is the same as the one-step TD method, TD(0). 

 

  

Figure 7.4:Weighting given in the -return to each of the -step returns. 
 

We define the -return algorithm as the algorithm that performs backups using the -return. On each step, , 

it computes an increment, , to the value of the state occurring on that step:  
 

  
(7.4)

 

(The increments for other states are of course , for all .) As with the -step TD methods, 
the updating can be either on-line or off-line. 
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The approach that we have been taking so far is what we call the theoretical, or forward, view of a learning 
algorithm. For each state visited, we look forward in time to all the future rewards and decide how best to 
combine them. We might imagine ourselves riding the stream of states, looking forward from each state to 
determine its update, as suggested by Figure  7.5. After looking forward from and updating one state, we move 
on to the next and never have to work with the preceding state again. Future states, on the other hand, are 
viewed and processed repeatedly, once from each vantage point preceding them. 

 

  

Figure 7.5:The forward or theoretical view. We decide how to update each state by looking forward to future 
rewards and states. 

 

The -return algorithm is the basis for the forward view of eligibility traces as used in the TD( ) method. In 

fact, we show in a later section that, in the off-line case, the -return algorithm is the TD( ) algorithm. The 

-return and TD( ) methods use the  parameter to shift from one-step TD methods to Monte Carlo 
methods. The specific way this shift is done is interesting, but not obviously better or worse than the way it is 

done with simple -step methods by varying . Ultimately, the most compelling motivation for the  way of 

mixing -step backups is that there is a simple algorithm--TD( )--for achieving it. This is a mechanism issue 
rather than a theoretical one. In the next few sections we develop the mechanistic, or backward, view of 

eligibility traces as used in TD( ). 

Example 7.2: -return on the Random Walk Task   Figure  7.6 shows the performance of the off-line -
return algorithm on the 19-state random walk task used with the -step methods in Example 7.1. The 

experiment was just as in the -step case except that here we varied  instead of . Note that we get best 

performance with an intermediate value of . 
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Figure 7.6:Performance of the off-line -return algorithm on a 19-state random walk task. 
 

Exercise 7.4   The parameter  characterizes how fast the exponential weighting in Figure  7.4 falls off, and 

thus how far into the future the -return algorithm looks in determining its backup. But a rate factor such as  
is sometimes an awkward way of characterizing the speed of the decay. For some purposes it is better to specify 

a time constant, or half-life. What is the equation relating  and the half-life, , the time by which the 
weighting sequence will have fallen to half of its initial value? 
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7.3 The Backward View of TD( ) 

In the previous section we presented the forward or theoretical view of the tabular TD( ) algorithm as a 
way of mixing backups that parametrically shifts from a TD method to a Monte Carlo method. In this 

section we instead define TD( ) mechanistically, and in the next section we show that this mechanism 

correctly implements the forward view. The mechanistic, or backward, view of TD( ) is useful because it 
is simple conceptually and computationally. In particular, the forward view itself is not directly 
implementable because it is acausal, using at each step knowledge of what will happen many steps later. 
The backward view provides a causal, incremental mechanism for approximating the forward view and, in 
the off-line case, for achieving it exactly. 

In the backward view of TD( ), there is an additional memory variable associated with each state, its 

eligibility trace. The eligibility trace for state  at time  is denoted . On each step, the 

eligibility traces for all states decay by , and the eligibility trace for the one state visited on the step is 
incremented by :  
 

  
(7.5)

 
for all nonterminal states , where  is the discount rate and  is the parameter introduced in the previous 

section. Henceforth we refer to  as the trace-decay parameter. This kind of eligibility trace is called an 
accumulating trace because it accumulates each time the state is visited, then fades away gradually when 
the state is not visited, as illustrated below: 

 
 

 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node75.html (1 di 4)22/06/2005 9.08.47



7.3 The Backward View of TD()

 
At any time, the traces record which states have recently been visited, where "recently" is defined in terms 

of . The traces are said to indicate the degree to which each state is eligible for undergoing learning 
changes should a reinforcing event occur. The reinforcing events we are concerned with are the moment-by-
moment one-step TD errors. For example, the TD error for state-value prediction is  
 

  
(7.6)

 

In the backward view of TD( ), the global TD error signal triggers proportional updates to all recently 
visited states, as signaled by their nonzero traces:  
 

  
(7.7)

 
As always, these increments could be done on each step to form an on-line algorithm, or saved until the end 
of the episode to produce an off-line algorithm. In either case, equations ((7.5)-(7.7)) provide the 

mechanistic definition of the TD( ) algorithm. A complete algorithm for on-line TD( ) is given in 
Figure  7.7. 
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Figure 7.7:On-line tabular TD( ). 

The backward view of TD( ) is oriented backward in time. At each moment we look at the current TD 
error and assign it backward to each prior state according to the state's eligibility trace at that time. We 
might imagine ourselves riding along the stream of states, computing TD errors, and shouting them back to 
the previously visited states, as suggested by Figure  7.8. Where the TD error and traces come together, we 
get the update given by (7.7). 

 

  

Figure 7.8:The backward or mechanistic view. Each update depends on the current TD error combined 
with traces of past events. 

 

To better understand the backward view, consider what happens at various values of . If , then by 

(7.5) all traces are zero at  except for the trace corresponding to . Thus the TD( ) update (7.7) reduces 
to the simple TD rule (6.2), which we henceforth call TD(0). In terms of Figure  7.8, TD(0) is the case in 

which only the one state preceding the current one is changed by the TD error. For larger values of , but 
still , more of the preceding states are changed, but each more temporally distant state is changed 
less because its eligibility trace is smaller, as suggested in the figure. We say that the earlier states are given 
less credit for the TD error. 

If , then the credit given to earlier states falls only by  per step. This turns out to be just the right 

thing to do to achieve Monte Carlo behavior. For example, remember that the TD error, , includes an 
undiscounted term of . In passing this back  steps it needs to be discounted, like any reward in a 

return, by , which is just what the falling eligibility trace achieves. If  and , then the 
eligibility traces do not decay at all with time. In this case the method behaves like a Monte Carlo method 
for an undiscounted, episodic task. If , the algorithm is also known as TD(1). 

TD(1) is a way of implementing Monte Carlo algorithms that is more general than those presented earlier 
and that significantly increases their range of applicability. Whereas the earlier Monte Carlo methods were 
limited to episodic tasks, TD(1) can be applied to discounted continuing tasks as well. Moreover, TD(1) 
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can be performed incrementally and on-line. One disadvantage of Monte Carlo methods is that they learn 
nothing from an episode until it is over. For example, if a Monte Carlo control method does something that 
produces a very poor reward but does not end the episode, then the agent's tendency to do that will be 
undiminished during the episode. On-line TD(1), on the other hand, learns in an -step TD way from the 
incomplete ongoing episode, where the  steps are all the way up to the current step. If something 
unusually good or bad happens during an episode, control methods based on TD(1) can learn immediately 
and alter their behavior on that same episode. 
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7.4 Equivalence of Forward and Backward Views 

In this section we show that off-line TD( ), as defined mechanistically above, achieves the same weight updates as the 

off-line -return algorithm. In this sense we align the forward (theoretical) and backward (mechanistic) views of TD(

). Let  denote the update at time  of  according to the -return algorithm (7.4), and let  

denote the update at time  of state  according to the mechanistic definition of TD( ) as given by (7.7). Then our goal 
is to show that the sum of all the updates over an episode is the same for the two algorithms:  
 

  
(7.8)

 
where  is an identity indicator function, equal to  if  and equal to 0 otherwise. 

First note that an accumulating eligibility trace can be written explicitly (nonrecursively) as  
 

 

 
Thus, the left-hand side of (7.8) can be written  
 

  
  (7.9)

    (7.10)

    (7.11)
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    (7.12)

 

Now we turn to the right-hand side of (7.8). Consider an individual update of the -return algorithm:  
 

 

 

Examine the first column inside the brackets--all the 's with their weighting factors of  times powers of . It 
turns out that all the weighting factors sum to 1. Thus we can pull out the first column and get an unweighted term of 

. A similar trick pulls out the second column in brackets, starting from the second row, which sums to . 
Repeating this for each column, we get  
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The approximation above is exact in the case of off-line updating, in which case  is the same for all . The last step is 
exact (not an approximation) because all the  terms omitted are due to fictitious steps "after" the terminal state has 
been entered. All these steps have zero rewards and zero values; thus all their 's are zero as well. Thus, we have shown 
that in the off-line case the right-hand side of (7.8) can be written  
 

 

 
which is the same as (7.9). This proves (7.8). 

In the case of on-line updating, the approximation made above will be close as long as  is small and thus  changes 

little during an episode. Even in the on-line case we can expect the updates of TD( ) and of the -return algorithm to 
be similar. 

For the moment let us assume that the increments are small enough during an episode that on-line TD( ) gives 

essentially the same update over the course of an episode as does the -return algorithm. There still remain interesting 
questions about what happens during an episode. Consider the updating of the value of state  in midepisode, at time 

. Under on-line TD( ), the effect at  is just as if we had done a -return update treating the last observed 
state as the terminal state of the episode with a nonzero terminal value equal to its current estimated value. This 
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relationship is maintained from step to step as each new state is observed. 

Example 7.3: Random Walk with TD( )   Because off-line TD( ) is equivalent to the -return algorithm, we 

already have the results for off-line TD( ) on the 19-state random walk task; they are shown in Figure  7.6. The 

comparable results for on-line TD( ) are shown in Figure  7.9. Note that the on-line algorithm works better over a 
broader range of parameters. This is often found to be the case for on-line methods. 

 

  

Figure 7.9:Performance of on-line TD( ) on the 19-state random walk task. 
 

Exercise 7.5   Although TD( ) only approximates the -return algorithm when done online, perhaps there's a 
slightly different TD method that would maintain the equivalence even in the on-line case. One idea is to define the TD 

error instead as  and the -step return as 

. Show that in this case the modified TD( ) algorithm would 
then achieve exactly  
 

 

 

even in the case of on-line updating with large . In what ways might this modified TD( ) be better or worse than the 
conventional one described in the text? Describe an experiment to assess the relative merits of the two algorithms. 
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7.5 Sarsa( ) 

How can eligibility traces be used not just for prediction, as in TD( ), but for control? As usual, the main idea of one popular 

approach is simply to learn action values, , rather than state values, . In this section we show how eligibility 
traces can be combined with Sarsa in a straightforward way to produce an on-policy TD control method. The eligibility trace 

version of Sarsa we call Sarsa( ), and the original version presented in the previous chapter we henceforth call one-step Sarsa. 

The idea in Sarsa( ) is to apply the TD( ) prediction method to state-action pairs rather than to states. Obviously, then, we 

need a trace not just for each state, but for each state-action pair. Let  denote the trace for state-action pair . 

Otherwise the method is just like TD( ), substituting state-action variables for state variables--  for  and  

for :  
 

 

 
where  
 

 

 
and  
 

  
(7.13)
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Figure 7.10:Sarsa( )'s backup diagram. 
 

Figure  7.10 shows the backup diagram for Sarsa( ). Notice the similarity to the diagram of the TD( ) algorithm (Figure  
7.3). The first backup looks ahead one full step, to the next state-action pair, the second looks ahead two steps, and so on. A 

final backup is based on the complete return. The weighting of each backup is just as in TD( ) and the -return algorithm. 

One-step Sarsa and Sarsa( ) are on-policy algorithms, meaning that they approximate , the action values for the 
current policy, , then improve the policy gradually based on the approximate values for the current policy. The policy 
improvement can be done in many different ways, as we have seen throughout this book. For example, the simplest approach is 

to use the -greedy policy with respect to the current action-value estimates. Figure  7.11 shows the complete Sarsa( ) 
algorithm for this case. 

  

Figure 7.11:Tabular Sarsa( ). 
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Figure 7.12:Gridworld example of the speedup of policy learning due to the use of eligibility traces. 
 

Example 7.4: Traces in Gridworld   The use of eligibility traces can substantially increase the efficiency of control algorithms. 
The reason for this is illustrated by the gridworld example in Figure  7.12. The first panel shows the path taken by an agent in a 
single episode, ending at a location of high reward, marked by the *. In this example the values were all initially 0, and all 
rewards were zero except for a positive reward at the * location. The arrows in the other two panels show which action values 

were strengthened as a result of this path by one-step Sarsa and Sarsa( ) methods. The one-step method strengthens only the 
last action of the sequence of actions that led to the high reward, whereas the trace method strengthens many actions of the 

sequence. The degree of strengthening (indicated by the size of the arrows) falls off (according to ) with steps from the 

reward. In this example,  and . 
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7.6 Q( ) 

Two different methods have been proposed that combine eligibility traces and Q-learning; we call them Watkins's Q( ) 

and Peng's Q( ), after the researchers who first proposed them. First we describe Watkins's Q( ). 

Recall that Q-learning is an off-policy method, meaning that the policy learned about need not be the same as the one used 
to select actions. In particular, Q-learning learns about the greedy policy while it typically follows a policy involving 

exploratory actions--occasional selections of actions that are suboptimal according to . Because of this, special care is 
required when introducing eligibility traces. 

Suppose we are backing up the state-action pair  at time . Suppose that on the next two time steps the agent selects 
the greedy action, but on the third, at time , the agent selects an exploratory, nongreedy action. In learning about the 
value of the greedy policy at  we can use subsequent experience only as long as the greedy policy is being followed. 
Thus, we can use the one-step and two-step returns, but not, in this case, the three-step return. The -step returns for all 

 no longer have any necessary relationship to the greedy policy. 

Thus, unlike TD( ) or Sarsa( ), Watkins's Q( ) does not look ahead all the way to the end of the episode in its 

backup. It only looks ahead as far as the next exploratory action. Aside from this difference, however, Watkins's Q( ) is 

much like TD( ) and Sarsa( ). Their lookahead stops at episode's end, whereas Q( )'s lookahead stops at the first 
exploratory action, or at episode's end if there are no exploratory actions before that. Actually, to be more precise, one-step 

Q-learning and Watkins's Q( ) both look one action past the first exploration, using their knowledge of the action values. 

For example, suppose the first action, , is exploratory. Watkins's Q( ) would still do the one-step update of 

 toward . In general, if  is the first exploratory action, then the longest 
backup is toward  
 

 

 

where we assume off-line updating. The backup diagram in Figure  7.13 illustrates the forward view of Watkins's Q( ), 
showing all the component backups. 
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Figure 7.13:The backup diagram for Watkins's Q( ). The series of component backups ends either with the end of the 
episode or with the first nongreedy action, whichever comes first. 

 

The mechanistic or backward view of Watkins's Q( ) is also very simple. Eligibility traces are used just as in Sarsa( ), 
except that they are set to zero whenever an exploratory (nongreedy) action is taken. The trace update is best thought of as 

occurring in two steps. First, the traces for all state-action pairs are either decayed by  or, if an exploratory action was 
taken, set to . Second, the trace corresponding to the current state and action is incremented by . The overall result is  
 

 

 
where, as before,  is an identity indicator function, equal to  if  and  otherwise. The rest of the algorithm is 
defined by  
 

 

 
where  
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Figure  7.14 shows the complete algorithm in pseudocode. 

  

Figure 7.14:Tabular version of Watkins's Q( ) algorithm. 

Unfortunately, cutting off traces every time an exploratory action is taken loses much of the advantage of using eligibility 
traces. If exploratory actions are frequent, as they often are early in learning, then only rarely will backups of more than 

one or two steps be done, and learning may be little faster than one-step Q-learning. Peng's Q( ) is an alternate version of 

Q( ) meant to remedy this. Peng's Q( ) can be thought of as a hybrid of Sarsa( ) and Watkins's Q( ). 
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Figure 7.15:The backup diagram for Peng's Q( ). 
 

Conceptually, Peng's Q( ) uses the mixture of backups shown in Figure  7.15. Unlike Q-learning, there is no distinction 
between exploratory and greedy actions. Each component backup is over many steps of actual experiences, and all but the 
last are capped by a final maximization over actions. The component backups, then, are neither on-policy nor off-policy. 
The earlier transitions of each are on-policy, whereas the last (fictitious) transition uses the greedy policy. As a 

consequence, for a fixed nongreedy policy,  converges to neither  nor  under Peng's Q( ), but to some hybrid of 

the two. However, if the policy is gradually made more greedy, then the method may still converge to . As of this 
writing this has not yet been proved. Nevertheless, the method performs well empirically. Most studies have shown it 

performing significantly better than Watkins's Q( ) and almost as well as Sarsa( ). 

On the other hand, Peng's Q( ) cannot be implemented as simply as Watkins's Q( ). For a complete description of the 

needed implementation, see Peng and Williams (1994, 1996). One could imagine yet a third version of Q( ), let us call it 

naive Q( ), that is just like Watkins's Q( ) except that the traces are not set to zero on exploratory actions. This method 

might have some of the advantages of Peng's Q( ), but without the complex implementation. We know of no experience 
with this method, but perhaps it is not as naive as one might at first suppose. 
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7.7 Eligibility Traces for Actor-Critic Methods 

In this section we describe how to extend the actor-critic methods introduced in Section 6.6 to use eligibility traces. This is 

fairly straightforward. The critic part of an actor-critic method is simply on-policy learning of . The TD( ) algorithm 
can be used for that, with one eligibility trace for each state. The actor part needs to use an eligibility trace for each state-
action pair. Thus, an actor-critic method needs two sets of traces, one for each state and one for each state-action pair. 

Recall that the one-step actor-critic method updates the actor by  
 

 

 

where  is the TD( ) error (7.6), and  is the preference for taking action  at time  if in state . The preferences 
determine the policy via, for example, a softmax method (Section 2.3). We generalize the above equation to use eligibility 
traces as follows:  
 

  
(7.14)

 

where  denotes the trace at time  for state-action pair . For the simplest case mentioned above, the trace can be 

updated as in Sarsa( ). 

In Section 6.6 we also discussed a more sophisticated actor-critic method that uses the update  
 

 

 
To generalize this equation to eligibility traces we can use the same update (7.14) with a slightly different trace. Rather than 

incrementing the trace by 1 each time a state-action pair occurs, it is updated by :  
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(7.15)

 
for all . 
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7.8 Replacing Traces 

In some cases significantly better performance can be obtained by using a slightly modified kind of trace known as a replacing 
trace. Suppose a state is visited and then revisited before the trace due to the first visit has fully decayed to zero. With 
accumulating traces (7.5), the revisit causes a further increment in the trace, driving it greater than , whereas with replacing 
traces, the trace is reset to . Figure  7.16 contrasts these two kinds of traces. Formally, a replacing trace for a discrete state  is 
defined by 

 

  

Figure 7.16:Accumulating and replacing traces. 
 
 
 

  
(7.16)

 

Prediction or control algorithms using replacing traces are often called replace-trace methods. Although replacing traces are 
only slightly different from accumulating traces, they can produce a significant improvement in learning rate. Figure  7.17 

compares the performance of conventional and replace-trace versions of TD( ) on the 19-state random walk prediction task. 
Other examples for a slightly more general case are given in Figure 8.10 in the next chapter. 
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Figure 7.17:Error as a function of on a 19-state random walk task. These data are using the best value of for each value of 

. The error is averaged over all 19 states and the first 20 trials of 100 different runs. 
 

Example 7.5   Figure  7.18 shows an example of the kind of task that is difficult for control methods using accumulating 
eligibility traces. All rewards are zero except on entering the terminal state, which produces a reward of +1. From each state, 
selecting the right action brings the agent one step closer to the terminal reward, whereas the wrong (upper) action leaves it 
in the same state to try again. The full sequence of states is long enough that one would like to use long traces to get the fastest 
learning. However, problems occur if long accumulating traces are used. Suppose, on the first episode, at some state, , the agent 

by chance takes the wrong action a few times before taking the right action. As the agent continues, the trace  is 

likely to be larger than the trace . The right action was more recent, but the wrong action was selected more 
times. When reward is finally received, then, the value for the wrong action is likely to go up more than the value for the right 
action. On the next episode the agent will be even more likely to go the wrong way many times before going right, making it 
even more likely that the wrong action will have the larger trace. Eventually, all of this will be corrected, but learning is 
significantly slowed. With replacing traces, on the other hand, this problem never occurs. No matter how many times the wrong 
action is taken, its eligibility trace is always less than that for the right action after the right action has been taken. 

 

  

Figure 7.18:A simple task that causes problems for control methods using accumulating traces. 
 

There is an interesting relationship between replace-trace methods and Monte Carlo methods in the undiscounted case. Just as 
conventional TD(1) is related to the every-visit MC algorithm, so replace-trace TD(1) is related to the first-visit MC algorithm. 
In particular, the off-line version of replace-trace TD(1) is formally identical to first-visit MC (Singh and Sutton, 1996). How, or 
even whether, these methods and results extend to the discounted case is unknown. 

There are several possible ways to generalize replacing eligibility traces for use in control methods. Obviously, when a state is 
revisited and a new action is selected, the trace for that action should be reset to 1. But what of the traces for the other actions for 
that state? The approach recommended by Singh and Sutton (1996) is to set the traces of all the other actions from the revisited 
state to 0. In this case, the state-action traces are updated by the following instead of (7.13):  
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(7.17)

 
Note that this variant of replacing traces works out even better than the original replacing traces in the example task. Once the 
right action has been selected, the wrong action is left with no trace at all. The results shown in Figure 8.10 were obtained 
using this kind of replacing trace. 

Exercise 7.6   In Example 7.5, suppose from state  the wrong action is taken twice before the right action is taken. If 

accumulating traces are used, then how big must the trace parameter  be in order for the wrong action to end up with a larger 
eligibility trace than the right action? 

Exercise 7.7 (programming)   Program Example 7.5 and compare accumulate-trace and replace-trace versions of Sarsa( ) on 

it, for  and a range of  values. Can you empirically demonstrate the claimed advantage of replacing traces on this 
example? 

Exercise 7.8   Draw a backup diagram for Sarsa( ) with replacing traces. 

     
Next: 7.9 Implementation Issues Up: 7. Eligibility Traces Previous: 7.7 Eligibility Traces for   Contents 
Mark Lee 2005-01-04 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node80.html (3 di 3)22/06/2005 9.09.06



7.9 Implementation Issues

     
Next: 7.10 Variable  Up: 7. Eligibility Traces Previous: 7.8 Replacing Traces   Contents  
 

7.9 Implementation Issues 

It might at first appear that methods using eligibility traces are much more complex than one-step 
methods. A naive implementation would require every state (or state-action pair) to update both its 
value estimate and its eligibility trace on every time step. This would not be a problem for 
implementations on single-instruction, multiple-data parallel computers or in plausible neural 
implementations, but it is a problem for implementations on conventional serial computers. 

Fortunately, for typical values of  and  the eligibility traces of almost all states are almost 

always nearly zero; only those that have recently been visited will have traces significantly greater 
than zero. Only these few states really need to be updated because the updates at the others will have 
essentially no effect. 

In practice, then, implementations on conventional computers keep track of and update only the few 
states with nonzero traces. Using this trick, the computational expense of using traces is typically a 

few times that of a one-step method. The exact multiple of course depends on  and  and on the 

expense of the other computations. Cichosz (1995) has demonstrated a further implementation 

technique that further reduces complexity to a constant independent of  and . Finally, it should 

be noted that the tabular case is in some sense a worst case for the computational complexity of 
traces. When function approximation is used (Chapter 8), the computational advantages of not using 
traces generally decrease. For example, if artificial neural networks and backpropagation are used, 
then traces generally cause only a doubling of the required memory and computation per step. 

Exercise 7.9   Write pseudocode for an implementation of TD( ) that updates only value estimates 
for states whose traces are greater than some small positive constant. 
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7.10 Variable  

The -return can be significantly generalized beyond what we have described so far by allowing  
to vary from step to step, that is, by redefining the trace update as  
 

 

 

where  denotes the value of  at time . This is an advanced topic because the added generality 
has never been used in practical applications, but it is interesting theoretically and may yet prove 

useful. For example, one idea is to vary  as a function of state: . If a state's value 
estimate is believed to be known with high certainty, then it makes sense to use that estimate fully, 
ignoring whatever states and rewards are received after it. This corresponds to cutting off all the 

traces once this state has been reached, that is, to choosing the  for the certain state to be zero or 
very small. Similarly, states whose value estimates are highly uncertain, perhaps because even the 
state estimate is unreliable, can be given s near 1. This causes their estimated values to have little 
effect on any updates. They are "skipped over" until a state that is known better is encountered. Some 
of these ideas were explored formally by Sutton and Singh (1994). 

The eligibility trace equation above is the backward view of variable s. The corresponding forward 

view is a more general definition of the -return:  
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Exercise 7.10   Prove that the forward and backward views of off-line TD( ) remain equivalent 

under their new definitions with variable  given in this section. Follow the example of the proof in 
Section 7.4. 
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7.11 Conclusions 

Eligibility traces in conjunction with TD errors provide an efficient, incremental way of shifting and 
choosing between Monte Carlo and TD methods. Traces can be used without TD errors to achieve a 

similar effect, but only awkwardly. A method such as TD( ) enables this to be done from partial 
experiences and with little memory and little nonmeaningful variation in predictions. 

As we mentioned in Chapter 5, Monte Carlo methods may have advantages in non-Markov tasks 
because they do not bootstrap. Because eligibility traces make TD methods more like Monte Carlo 
methods, they also can have advantages in these cases. If one wants to use TD methods because of 
their other advantages, but the task is at least partially non-Markov, then the use of an eligibility trace 
method is indicated. Eligibility traces are the first line of defense against both long-delayed rewards 
and non-Markov tasks. 

By adjusting , we can place eligibility trace methods anywhere along a continuum from Monte 
Carlo to one-step TD methods. Where shall we place them? We do not yet have a good theoretical 
answer to this question, but a clear empirical answer appears to be emerging. On tasks with many 
steps per episode, or many steps within the half-life of discounting, it appears significantly better to 
use eligibility traces than not to (e.g., see Figure 8.10). On the other hand, if the traces are so long as 
to produce a pure Monte Carlo method, or nearly so, then performance degrades sharply. An 
intermediate mixture appears to be the best choice. Eligibility traces should be used to bring us 
toward Monte Carlo methods, but not all the way there. In the future it may be possible to vary the 

trade-off between TD and Monte Carlo methods more finely by using variable , but at present it is 
not clear how this can be done reliably and usefully. 

Methods using eligibility traces require more computation than one-step methods, but in return they 
offer significantly faster learning, particularly when rewards are delayed by many steps. Thus it often 
makes sense to use eligibility traces when data are scarce and cannot be repeatedly processed, as is 
often the case in on-line applications. On the other hand, in off-line applications in which data can be 
generated cheaply, perhaps from an inexpensive simulation, then it often does not pay to use 
eligibility traces. In these cases the objective is not to get more out of a limited amount of data, but 
simply to process as much data as possible as quickly as possible. In these cases the speedup per 
datum due to traces is typically not worth their computational cost, and one-step methods are favored. 
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7.12 Bibliographical and Historical Remarks 

7.1-2 

The forward view of eligibility traces in terms of -step returns and the -return is due to Watkins 
(1989), who also first discussed the error reduction property of -step returns. Our presentation is 
based on the slightly modified treatment by Jaakkola, Jordan, and Singh (1994). The results in the 
random walk examples were made for this text based on work of Sutton (1988) and Singh and Sutton 
(1996). The use of backup diagrams to describe these and other algorithms in this chapter is new, as 
are the terms "forward view" and "backward view." 

TD( ) was proved to converge in the mean by Dayan (1992), and with probability 1 by many 
researchers, including Peng (1993), Dayan and Sejnowski (1994), and Tsitsiklis (1994). Jaakkola, 

Jordan, and Singh (1994), in addition, first proved convergence of TD( ) under on-line updating. 
Gurvits, Lin, and Hanson (1994) proved convergence of a more general class of eligibility trace 
methods. 

7.3 

The idea that stimuli produce aftereffects in the nervous system that are important for learning is very 
old. Animal learning psychologists at least as far back as Pavlov (1927) and Hull (1943, 1952) 
included such ideas in their theories. However, stimulus traces in these theories are more like 
transient state representations than what we are calling eligibility traces: they could be associated 
with actions, whereas an eligibility trace is used only for credit assignment. The idea of a stimulus 
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trace serving exclusively for credit assignment is apparently due to Klopf (1972), who hypothesized 
that under certain conditions a neuron's synapses would become "eligible" for subsequent 
modification should reinforcement later arrive at the neuron. Our use of eligibility traces was based 
on Klopf's work (Sutton, 1978a, 1978b, 1978c; Barto and Sutton, 1981a, 1981b; Sutton and Barto, 

1981a; Barto, Sutton, and Anderson, 1983; Sutton, 1984). The TD( ) algorithm is due to Sutton 
(1988). 

7.4 

The equivalence of forward and backward views, and the relationships to Monte Carlo methods, were 
proved by Sutton (1988) for undiscounted episodic tasks, then extended by Watkins (1989) to the 
general case. The idea in exercise 7.5 is new. 

7.5 

Sarsa( ) was first explored as a control method by Rummery and Niranjan (1994) and Rummery 
(1995). 

7.6 

Watkins's Q( ) is due to Watkins (1989). Peng's Q( ) is due to Peng and Williams (Peng, 1993; 
Peng and Williams, 1994, 1996). Rummery (1995) made extensive comparative studies of these 
algorithms. 

Convergence has not been proved for any control method for . 

7.7 

Actor-critic methods were among the first methods to use eligibility traces (Barto, Sutton, and 
Anderson, 1983; Sutton, 1984). The specific algorithm discussed in this chapter has never been tried 
before. 

7.8 

Replacing traces are due to Singh and Sutton (1996). The results in Figure  7.17 are from their paper. 
The task in Figure 7.18 was used to show the weakness of accumulating traces by Sutton (1984). The 
relationship of both kinds of traces to specific Monte Carlo methods was developed by Singh and 
Sutton (1996). 

7.9-10 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node84.html (2 di 3)22/06/2005 9.09.11



7.12 Bibliographical and Historical Remarks

The ideas in these two sections were generally known for many years, but beyond what is in the 
sources cited in the sections themselves, this text may be the first place they have been described. 

Perhaps the first published discussion of variable  was by Watkins (1989), who pointed out that the 

cutting off of the backup sequence (Figure  7.13) in his Q( ) when a nongreedy action was selected 

could be implemented by temporarily setting  to 0. 
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8. Generalization and Function Approximation 

We have so far assumed that our estimates of value functions are represented as a table with one 
entry for each state or for each state-action pair. This is a particularly clear and instructive case, but 
of course it is limited to tasks with small numbers of states and actions. The problem is not just the 
memory needed for large tables, but the time and data needed to fill them accurately. In other words, 
the key issue is that of generalization. How can experience with a limited subset of the state space be 
usefully generalized to produce a good approximation over a much larger subset? 

This is a severe problem. In many tasks to which we would like to apply reinforcement learning, most 
states encountered will never have been experienced exactly before. This will almost always be the 
case when the state or action spaces include continuous variables or complex sensations, such as a 
visual image. The only way to learn anything at all on these tasks is to generalize from previously 
experienced states to ones that have never been seen. 

Fortunately, generalization from examples has already been extensively studied, and we do not need 
to invent totally new methods for use in reinforcement learning. To a large extent we need only 
combine reinforcement learning methods with existing generalization methods. The kind of 
generalization we require is often called function approximation because it takes examples from a 
desired function (e.g., a value function) and attempts to generalize from them to construct an 
approximation of the entire function. Function approximation is an instance of supervised learning, 
the primary topic studied in machine learning, artificial neural networks, pattern recognition, and 
statistical curve fitting. In principle, any of the methods studied in these fields can be used in 
reinforcement learning as described in this chapter. 

 

Subsections 
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8.1 Value Prediction with Function 
Approximation 

As usual, we begin with the prediction problem of estimating the state-value function  from 
experience generated using policy . The novelty in this chapter is that the approximate value 
function at time , , is represented not as a table but as a parameterized functional form with 

parameter vector . This means that the value function  depends totally on , varying from time 

step to time step only as  varies. For example,  might be the function computed by an artificial 

neural network, with  the vector of connection weights. By adjusting the weights, any of a wide 
range of different functions  can be implemented by the network. Or  might be the function 

computed by a decision tree, where  is all the parameters defining the split points and leaf values of 

the tree. Typically, the number of parameters (the number of components of ) is much less than the 
number of states, and changing one parameter changes the estimated value of many states. 
Consequently, when a single state is backed up, the change generalizes from that state to affect the 
values of many other states. 

All of the prediction methods covered in this book have been described as backups, that is, as updates 
to an estimated value function that shift its value at particular states toward a "backed-up value" for 
that state. Let us refer to an individual backup by the notation , where  is the state backed up 
and  is the backed-up value, or target, that 's estimated value is shifted toward. For example, the DP 

backup for value prediction is , the Monte Carlo backup is 

, the TD(0) backup is , and the general TD( ) backup is 

. In the DP case, an arbitrary state  is backed up, whereas in the the other cases the state, 
, encountered in (possibly simulated) experience is backed up. 

It is natural to interpret each backup as specifying an example of the desired input-output behavior of 
the estimated value function. In a sense, the backup  means that the estimated value for state  
should be more like . Up to now, the actual update implementing the backup has been trivial: the 
table entry for 's estimated value has simply been shifted a fraction of the way toward . Now we 
permit arbitrarily complex and sophisticated function approximation methods to implement the 
backup. The normal inputs to these methods are examples of the desired input-output behavior of the 
function they are trying to approximate. We use these methods for value prediction simply by passing 
to them the  of each backup as a training example. We then interpret the approximate function 
they produce as an estimated value function. 

Viewing each backup as a conventional training example in this way enables us to use any of a wide 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node86.html (1 di 4)22/06/2005 9.09.17



8.1 Value Prediction with Function Approximation

range of existing function approximation methods for value prediction. In principle, we can use any 
method for supervised learning from examples, including artificial neural networks, decision trees, 
and various kinds of multivariate regression. However, not all function approximation methods are 
equally well suited for use in reinforcement learning. The most sophisticated neural network and 
statistical methods all assume a static training set over which multiple passes are made. In 
reinforcement learning, however, it is important that learning be able to occur on-line, while 
interacting with the environment or with a model of the environment. To do this requires methods 
that are able to learn efficiently from incrementally acquired data. In addition, reinforcement learning 
generally requires function approximation methods able to handle nonstationary target functions 
(target functions that change over time). For example, in GPI control methods we often seek to learn 

 while  changes. Even if the policy remains the same, the target values of training examples are 
nonstationary if they are generated by bootstrapping methods (DP and TD). Methods that cannot 
easily handle such nonstationarity are less suitable for reinforcement learning. 

What performance measures are appropriate for evaluating function approximation methods? Most 
supervised learning methods seek to minimize the mean-squared error (MSE) over some distribution, 

, of the inputs. In our value prediction problem, the inputs are states and the target function is the 

true value function , so MSE for an approximation , using parameter , is  
 

  
(8.1)

 
where  is a distribution weighting the errors of different states. This distribution is important 
because it is usually not possible to reduce the error to zero at all states. After all, there are generally 

far more states than there are components to . The flexibility of the function approximator is thus a 
scarce resource. Better approximation at some states can be gained, generally, only at the expense of 
worse approximation at other states. The distribution  specifies how these trade-offs should be 
made. 

The distribution  is also usually the distribution from which the states in the training examples are 
drawn, and thus the distribution of states at which backups are done. If we wish to minimize error 
over a certain distribution of states, then it makes sense to train the function approximator with 
examples from that same distribution. For example, if you want a uniform level of error over the 
entire state set, then it makes sense to train with backups distributed uniformly over the entire state 
set, such as in the exhaustive sweeps of some DP methods. Henceforth, let us assume that the 
distribution of states at which backups are done and the distribution that weights errors, , are the 
same. 

A distribution of particular interest is the one describing the frequency with which states are 
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encountered while the agent is interacting with the environment and selecting actions according to , 
the policy whose value function we are approximating. We call this the on-policy distribution, in part 
because it is the distribution of backups in on-policy control methods. Minimizing error over the on-
policy distribution focuses function approximation resources on the states that actually occur while 
following the policy, ignoring those that never occur. The on-policy distribution is also the one for 
which it is easiest to get training examples using Monte Carlo or TD methods. These methods 
generate backups from sample experience using the policy . Because a backup is generated for each 
state encountered in the experience, the training examples available are naturally distributed 
according to the on-policy distribution. Stronger convergence results are available for the on-policy 
distribution than for other distributions, as we discuss later. 

It is not completely clear that we should care about minimizing the MSE. Our goal in value 
prediction is potentially different because our ultimate purpose is to use the predictions to aid in 
finding a better policy. The best predictions for that purpose are not necessarily the best for 
minimizing MSE. However, it is not yet clear what a more useful alternative goal for value prediction 
might be. For now, we continue to focus on MSE. 

An ideal goal in terms of MSE would be to find a global optimum, a parameter vector  for which 

 for all possible . Reaching this goal is sometimes possible for simple 
function approximators such as linear ones, but is rarely possible for complex function approximators 
such as artificial neural networks and decision trees. Short of this, complex function approximators 

may seek to converge instead to a local optimum, a parameter vector  for which 

 for all  in some neighborhood of . Although this guarantee is only 
slightly reassuring, it is typically the best that can be said for nonlinear function approximators. For 
many cases of interest in reinforcement learning, convergence to an optimum, or even true 
convergence, does not occur. Nevertheless, an MSE that is within a small bound of an optimum may 
still be achieved with some methods. Other methods may in fact diverge, with their MSE approaching 
infinity in the limit. 

In this section we have outlined a framework for combining a wide range of reinforcement learning 
methods for value prediction with a wide range of function approximation methods, using the 
backups of the former to generate training examples for the latter. We have also outlined a range of 
MSE performance measures to which these methods may aspire. The range of possible methods is far 
too large to cover all, and anyway too little is known about most of them to make a reliable 
evaluation or recommendation. Of necessity, we consider only a few possibilities. In the rest of this 
chapter we focus on function approximation methods based on gradient principles, and on linear 
gradient-descent methods in particular. We focus on these methods in part because we consider them 
to be particularly promising and because they reveal key theoretical issues, but also because they are 
simple and our space is limited. If we had another chapter devoted to function approximation, we 
would also cover at least memory-based and decision-tree methods. 
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8.2 Gradient-Descent Methods 

We now develop in detail one class of learning methods for function approximation in value 
prediction, those based on gradient descent. Gradient-descent methods are among the most widely 
used of all function approximation methods and are particularly well suited to reinforcement learning. 

In gradient-descent methods, the parameter vector is a column vector with a fixed number of real 

valued components,  (the  here denotes transpose), and  is 

a smooth differentiable function of  for all . For now, let us assume that on each step , we 

observe a new example . These states might be successive states from an interaction 
with the environment, but for now we do not assume so. Even though we are given the exact, correct 

values,  for each , there is still a difficult problem because our function approximator has 

limited resources and thus limited resolution. In particular, there is generally no  that gets all the 
states, or even all the examples, exactly correct. In addition, we must generalize to all the other states 
that have not appeared in examples. 

We assume that states appear in examples with the same distribution, , over which we are trying to 
minimize the MSE as given by (8.1). A good strategy in this case is to try to minimize error on the 
observed examples. Gradient-descent methods do this by adjusting the parameter vector after each 
example by a small amount in the direction that would most reduce the error on that example:  
 

  
  

    (8.2)

 

where  is a positive step-size parameter, and , for any function , denotes the vector of 

partial derivatives, . This derivative vector is the gradient of  with 

respect to . This kind of method is called gradient descent because the overall step in  is 
proportional to the negative gradient of the example's squared error. This is the direction in which the 
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error falls most rapidly. 

It may not be immediately apparent why only a small step is taken in the direction of the gradient. 
Could we not move all the way in this direction and completely eliminate the error on the example? 
In many cases this could be done, but usually it is not desirable. Remember that we do not seek or 
expect to find a value function that has zero error on all states, but only an approximation that 
balances the errors in different states. If we completely corrected each example in one step, then we 
would not find such a balance. In fact, the convergence results for gradient methods assume that the 
step-size parameter decreases over time. If it decreases in such a way as to satisfy the standard 
stochastic approximation conditions (2.7), then the gradient-descent method (8.2) is guaranteed to 
converge to a local optimum. 

We turn now to the case in which the target output, , of the th training example, , is not 

the true value, , but some approximation of it. For example,  might be a noise-corrupted 

version of , or it might be one of the backed-up values mentioned in the previous section. In 

such cases we cannot perform the exact update (8.2) because  is unknown, but we can 

approximate it by substituting  in place of . This yields the general gradient-descent method 
for state-value prediction:  
 

  
(8.3)

 

If  is an unbiased estimate, that is, if , for each , then  is guaranteed to 
converge to a local optimum under the usual stochastic approximation conditions (2.7) for decreasing 

the step-size parameter . 

For example, suppose the states in the examples are the states generated by interaction (or simulated 
interaction) with the environment using policy . Let  denote the return following each state, . 
Because the true value of a state is the expected value of the return following it, the Monte Carlo 

target  is by definition an unbiased estimate of . With this choice, the general 

gradient-descent method (8.3) converges to a locally optimal approximation to . Thus, the 
gradient-descent version of Monte Carlo state-value prediction is guaranteed to find a locally optimal 
solution. 

Similarly, we can use -step TD returns and their averages for . For example, the gradient-descent 

form of TD( ) uses the -return, , as its approximation to , yielding the forward-
view update:  
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(8.4)

 

Unfortunately, for ,  is not an unbiased estimate of , and thus this method does not 
converge to a local optimum. The situation is the same when DP targets are used such as 

. Nevertheless, such bootstrapping methods can be quite effective, 
and other performance guarantees are available for important special cases, as we discuss later in this 
chapter. For now we emphasize the relationship of these methods to the general gradient-descent 
form (8.3). Although increments as in (8.4) are not themselves gradients, it is useful to view this 
method as a gradient-descent method (8.3) with a bootstrapping approximation in place of the desired 

output, . 

As (8.4) provides the forward view of gradient-descent TD( ), so the backward view is provided by  
 

  (8.5)

 
where  is the usual TD error,  
 

  
(8.6)

 

and  is a column vector of eligibility traces, one for each component of , updated by  
 

  
(8.7)
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with . A complete algorithm for on-line gradient-descent TD( ) is given in Figure  8.1. 

  

Figure 8.1:On-line gradient-descent TD( ) for estimating . The approximate value function, , 

is implicitly a function of . 

Two methods for gradient-based function approximation have been used widely in reinforcement 
learning. One is multilayer artificial neural networks using the error backpropagation algorithm. This 
maps immediately onto the equations and algorithms just given, where the backpropagation process 
is the way of computing the gradients. The second popular form is the linear form, which we discuss 
extensively in the next section. 

Exercise 8.1   Show that table-lookup TD( ) is a special case of general TD( ) as given by 
equations ((8.5)-(8.7)). 

Exercise 8.2   State aggregation is a simple form of generalizing function approximation in which 
states are grouped together, with one table entry (value estimate) used for each group. Whenever a 
state in a group is encountered, the group's entry is used to determine the state's value, and when the 
state is updated, the group's entry is updated. Show that this kind of state aggregation is a special case 
of a gradient method such as (8.4). 

Exercise 8.3   The equations given in this section are for the on-line version of gradient-descent TD(

). What are the equations for the off-line version? Give a complete description specifying the new 
approximate value function at the end of an episode, , in terms of the approximate value function 

used during the episode, . Start by modifying a forward-view equation for TD( ), such as (8.4). 
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Exercise 8.4   For off-line updating, show that equations ((8.5)-(8.7)) produce updates identical to 
(8.4). 
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8.3 Linear Methods 

One of the most important special cases of gradient-descent function approximation is that in which the approximate 

function, , is a linear function of the parameter vector, . Corresponding to every state , there is a column vector of 

features , with the same number of components as . The features may be 
constructed from the states in many different ways; we cover a few possibilities below. However the features are 
constructed, the approximate state-value function is given by  
 

  
(8.8)

 
In this case the approximate value function is said to be linear in the parameters, or simply linear. 

It is natural to use gradient-descent updates with linear function approximation. The gradient of the approximate value 

function with respect to  in this case is  
 

 

 
Thus, the general gradient-descent update (8.3) reduces to a particularly simple form in the linear case. In addition, in 

the linear case there is only one optimum  (or, in degenerate cases, one set of equally good optima). Thus, any 
method guaranteed to converge to or near a local optimum is automatically guaranteed to converge to or near the 
global optimum. Because it is simple in these ways, the linear, gradient-descent case is one of the most favorable for 
mathematical analysis. Almost all useful convergence results for learning systems of all kinds are for linear (or 
simpler) function approximation methods. 
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In particular, the gradient-descent TD( ) algorithm discussed in the previous section (Figure  8.1) has been proved to 
converge in the linear case if the step-size parameter is reduced over time according to the usual conditions (2.7). 

Convergence is not to the minimum-error parameter vector, , but to a nearby parameter vector, , whose error is 
bounded according to  
 

  
(8.9)

 

That is, the asymptotic error is no more than  times the smallest possible error. As  approaches 1, the bound 
approaches the minimum error. An analogous bound applies to other on-policy bootstrapping methods. For example, 
linear gradient-descent DP backups (8.3), with the on-policy distribution, will converge to the same result as TD(0). 
Technically, this bound applies only to discounted continuing tasks, but a related result presumably holds for episodic 
tasks. There are also a few technical conditions on the rewards, features, and decrease in the step-size parameter, 
which we are omitting here. The full details can be found in the original paper (Tsitsiklis and Van Roy, 1997a). 

Critical to the above result is that states are backed up according to the on-policy distribution. For other backup 
distributions, bootstrapping methods using function approximation may actually diverge to infinity. Examples of this 
and a discussion of possible solution methods are given in Section 8.5 

Beyond these theoretical results, linear learning methods are also of interest because in practice they can be very 
efficient in terms of both data and computation. Whether or not this is so depends critically on how the states are 
represented in terms of the features. Choosing features appropriate to the task is an important way of adding prior 
domain knowledge to reinforcement learning systems. Intuitively, the features should correspond to the natural 
features of the task, those along which generalization is most appropriate. If we are valuing geometric objects, for 
example, we might want to have features for each possible shape, color, size, or function. If we are valuing states of a 
mobile robot, then we might want to have features for locations, degrees of remaining battery power, recent sonar 
readings, and so on. 

In general, we also need features for combinations of these natural qualities. This is because the linear form prohibits 
the representation of interactions between features, such as the presence of feature  being good only in the absence of 
feature . For example, in the pole-balancing task (Example 3.4), a high angular velocity may be either good or bad 
depending on the angular position. If the angle is high, then high angular velocity means an imminent danger of 
falling, a bad state, whereas if the angle is low, then high angular velocity means the pole is righting itself, a good 
state. In cases with such interactions one needs to introduce features for conjunctions of feature values when using 
linear function approximation methods. We next consider some general ways of doing this. 

Exercise 8.5   How could we reproduce the tabular case within the linear framework? 

Exercise 8.6   How could we reproduce the state aggregation case (see Exercise 8.4) within the linear framework? 

8.3.1 Coarse Coding 

Consider a task in which the state set is continuous and two-dimensional. A state in this case is a point in 2-space, a 
vector with two real components. One kind of feature for this case is those corresponding to circles in state space, as 
shown in Figure  8.2. If the state is inside a circle, then the corresponding feature has the value  and is said to be 
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present; otherwise the feature is  and is said to be absent. This kind of 1-0-valued feature is called a binary feature. 
Given a state, which binary features are present indicate within which circles the state lies, and thus coarsely code for 
its location. Representing a state with features that overlap in this way (although they need not be circles or binary) is 
known as coarse coding. 

 

  

Figure 8.2:Coarse coding. Generalization from state to state depends on the number of their features whose 
receptive fields (in this case, circles) overlap. These states have one feature in common, so there will be slight 

generalization between them. 
 

Assuming linear gradient-descent function approximation, consider the effect of the size and density of the circles. 

Corresponding to each circle is a single parameter (a component of ) that is affected by learning. If we train at one 
point (state), , then the parameters of all circles intersecting  will be affected. Thus, by (8.8), the approximate 
value function will be affected at all points within the union of the circles, with a greater effect the more circles a 
point has "in common" with , as shown in Figure  8.2. If the circles are small, then the generalization will be over a 
short distance, as in Figure  8.3a, whereas if they are large, it will be over a large distance, as in Figure  8.3b. 
Moreover, the shape of the features will determine the nature of the generalization. For example, if they are not 
strictly circular, but are elongated in one direction, then generalization will be similarly affected, as in Figure  8.3c. 

 

  

Figure 8.3:Generalization in linear function approximation methods is determined by the sizes and shapes of the 
features' receptive fields. All three of these cases have roughly the same number and density of features. 
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Features with large receptive fields give broad generalization, but might also seem to limit the learned function to a 
coarse approximation, unable to make discriminations much finer than the width of the receptive fields. Happily, this 
is not the case. Initial generalization from one point to another is indeed controlled by the size and shape of the 
receptive fields, but acuity, the finest discrimination ultimately possible, is controlled more by the total number of 
features. 

Example 8.1: Coarseness of Coarse Coding   This example illustrates the effect on learning of the size of the 
receptive fields in coarse coding. Linear function approximation based on coarse coding and (8.3) was used to learn a 
one-dimensional square-wave function (shown at the top of Figure  8.4). The values of this function were used as the 
targets, . With just one dimension, the receptive fields were intervals rather than circles. Learning was repeated with 
three different sizes of the intervals: narrow, medium, and broad, as shown at the bottom of the figure. All three cases 
had the same density of features, about 50 over the extent of the function being learned. Training examples were 

generated uniformly at random over this extent. The step-size parameter was , where  is the number of 
features that were present at one time. Figure  8.4 shows the functions learned in all three cases over the course of 
learning. Note that the width of the features had a strong effect early in learning. With broad features, the 
generalization tended to be broad; with narrow features, only the close neighbors of each trained point were changed, 
causing the function learned to be more bumpy. However, the final function learned was affected only slightly by the 
width of the features. Receptive field shape tends to have a strong effect on generalization but little effect on 
asymptotic solution quality. 

 

  

Figure 8.4:Example of feature width's strong effect on initial generalization (first row) and weak effect on 
asymptotic accuracy (last row). 

 

8.3.2 Tile Coding 

Tile coding is a form of coarse coding that is particularly well suited for use on sequential digital computers and for 
efficient on-line learning. In tile coding the receptive fields of the features are grouped into exhaustive partitions of 
the input space. Each such partition is called a tiling, and each element of the partition is called a tile. Each tile is the 
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receptive field for one binary feature. 

An immediate advantage of tile coding is that the overall number of features that are present at one time is strictly 
controlled and independent of the input state. Exactly one feature is present in each tiling, so the total number of 

features present is always the same as the number of tilings. This allows the step-size parameter, , to be set in an 

easy, intuitive way. For example, choosing , where  is the number of tilings, results in exact one-trial 

learning. If the example  is received, then whatever the prior value, , the new value will be 

. Usually one wishes to change more slowly than this, to allow for generalization and stochastic 

variation in target outputs. For example, one might choose , in which case one would move one-tenth of the 
way to the target in one update. 

Because tile coding uses exclusively binary (0-1-valued) features, the weighted sum making up the approximate value 
function (8.8) is almost trivial to compute. Rather than performing  multiplications and additions, one simply 
computes the indices of the  present features and then adds up the  corresponding components of the 
parameter vector. The eligibility trace computation (8.7) is also simplified because the components of the gradient, 

, are also usually , and otherwise . 

The computation of the indices of the present features is particularly easy if gridlike tilings are used. The ideas and 
techniques here are best illustrated by examples. Suppose we address a task with two continuous state variables. Then 
the simplest way to tile the space is with a uniform two-dimensional grid: 

 
 
 

 

 
Given the  and  coordinates of a point in the space, it is computationally easy to determine the index of the tile it is 
in. When multiple tilings are used, each is offset by a different amount, so that each cuts the space in a different way. 
In the example shown in Figure  8.5, an extra row and an extra column of tiles have been added to the grid so that no 
points are left uncovered. The two tiles highlighted are those that are present in the state indicated by the . The 
different tilings may be offset by random amounts, or by cleverly designed deterministic strategies (simply offsetting 
each dimension by the same increment is known not to be a good idea). The effects on generalization and asymptotic 
accuracy illustrated in Figures  8.3 and 8.4 apply here as well. The width and shape of the tiles should be chosen to 
match the width of generalization that one expects to be appropriate. The number of tilings should be chosen to 
influence the density of tiles. The denser the tiling, the finer and more accurately the desired function can be 
approximated, but the greater the computational costs. 

 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node88.html (5 di 9)22/06/2005 9.09.33



8.3 Linear Methods

  

Figure 8.5:Multiple, overlapping gridtilings. 
 

It is important to note that the tilings can be arbitrary and need not be uniform grids. Not only can the tiles be 
strangely shaped, as in Figure  8.6a, but they can be shaped and distributed to give particular kinds of generalization. 
For example, the stripe tiling in Figure  8.6b will promote generalization along the vertical dimension and 
discrimination along the horizontal dimension, particularly on the left. The diagonal stripe tiling in Figure  8.6c will 
promote generalization along one diagonal. In higher dimensions, axis-aligned stripes correspond to ignoring some of 
the dimensions in some of the tilings, that is, to hyperplanar slices. 

 

  

Figure 8.6:Tilings. 
 

Another important trick for reducing memory requirements is hashing--a consistent pseudo-random collapsing of a 
large tiling into a much smaller set of tiles. Hashing produces tiles consisting of noncontiguous, disjoint regions 
randomly spread throughout the state space, but that still form an exhaustive tiling. For example, one tile might 
consist of the four subtiles shown below: 
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Through hashing, memory requirements are often reduced by large factors with little loss of performance. This is 
possible because high resolution is needed in only a small fraction of the state space. Hashing frees us from the curse 
of dimensionality in the sense that memory requirements need not be exponential in the number of dimensions, but 
need merely match the real demands of the task. Good public-domain implementations of tile coding, including 
hashing, are widely available. 

Exercise 8.7   Suppose we believe that one of two state dimensions is more likely to have an effect on the value 
function than is the other, that generalization should be primarily across this dimension rather than along it. What kind 
of tilings could be used to take advantage of this prior knowledge? 

8.3.3 Radial Basis Functions 

Radial basis functions (RBFs) are the natural generalization of coarse coding to continuous-valued features. Rather 

than each feature being either 0 or 1, it can be anything in the interval , reflecting various degrees to which the 

feature is present. A typical RBF feature, , has a Gaussian (bell-shaped) response  dependent only on the 
distance between the state, , and the feature's prototypical or center state, , and relative to the feature's width, :  
 

 

 
The norm or distance metric of course can be chosen in whatever way seems most appropriate to the states and task at 
hand. Figure  8.7 shows a 1-dimensional example with a Euclidean distance metric. 
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Figure 8.7:One-dimensional radial basis functions. 
 

An RBF network is a linear function approximator using RBFs for its features. Learning is defined by equations (8.3) 
and (8.8), exactly as in other linear function approximators. The primary advantage of RBFs over binary features is 
that they produce approximate functions that vary smoothly and are differentiable. In addition, some learning methods 
for RBF networks change the centers and widths of the features as well. Such nonlinear methods may be able to fit the 
target function much more precisely. The downside to RBF networks, and to nonlinear RBF networks especially, is 
greater computational complexity and, often, more manual tuning before learning is robust and efficient. 

8.3.4 Kanerva Coding 

On tasks with very high dimensionality, say hundreds of dimensions, tile coding and RBF networks become 
impractical. If we take either method at face value, its computational complexity increases exponentially with the 
number of dimensions. There are a number of tricks that can reduce this growth (such as hashing), but even these 
become impractical after a few tens of dimensions. 

On the other hand, some of the general ideas underlying these methods can be practical for high-dimensional tasks. In 
particular, the idea of representing states by a list of the features present and then mapping those features linearly to an 
approximation may scale well to large tasks. The key is to keep the number of features from scaling explosively. Is 
there any reason to think this might be possible? 

First we need to establish some realistic expectations. Roughly speaking, a function approximator of a given 
complexity can only accurately approximate target functions of comparable complexity. But as dimensionality 
increases, the size of the state space inherently increases exponentially. It is reasonable to assume that in the worst 
case the complexity of the target function scales like the size of the state space. Thus, if we focus the worst case, then 
there is no solution, no way to get good approximations for high-dimensional tasks without using resources 
exponential in the dimension. 

A more useful way to think about the problem is to focus on the complexity of the target function as separate and 
distinct from the size and dimensionality of the state space. The size of the state space may give an upper bound on 
complexity, but short of that high bound, complexity and dimension can be unrelated. For example, one might have a 
1000-dimensional task where only one of the dimensions happens to matter. Given a certain level of complexity, we 
then seek to be able to accurately approximate any target function of that complexity or less. As the target level of 
complexity increases, we would like to get by with a proportionate increase in computational resources. 

From this point of view, the real source of the problem is the complexity of the target function, or of a reasonable 
approximation of it, not the dimensionality of the state space. Thus, adding dimensions, such as new sensors or new 
features, to a task should be almost without consequence if the complexity of the needed approximations remains the 
same. The new dimensions may even make things easier if the target function can be simply expressed in terms of 
them. Unfortunately, methods like tile coding and RBF coding do not work this way. Their complexity increases 
exponentially with dimensionality even if the complexity of the target function does not. For these methods, 
dimensionality itself is still a problem. We need methods whose complexity is unaffected by dimensionality per se, 
methods that are limited only by, and scale well with, the complexity of what they approximate. 

One simple approach that meets these criteria, which we call Kanerva coding, is to choose binary features that 
correspond to particular prototype states. For definiteness, let us say that the prototypes are randomly selected from 
the entire state space. The receptive field of such a feature is all states sufficiently close to the prototype. Kanerva 
coding uses a different kind of distance metric than in is used in tile coding and RBFs. For definiteness, consider a 
binary state space and the hamming distance, the number of bits at which two states differ. States are considered 
similar if they agree on enough dimensions, even if they are totally different on others. 

The strength of Kanerva coding is that the complexity of the functions that can be learned depends entirely on the 
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number of features, which bears no necessary relationship to the dimensionality of the task. The number of features 
can be more or less than the number of dimensions. Only in the worst case must it be exponential in the number of 
dimensions. Dimensionality itself is thus no longer a problem. Complex functions are still a problem, as they have to 
be. To handle more complex tasks, a Kanerva coding approach simply needs more features. There is not a great deal 
of experience with such systems, but what there is suggests that their abilities increase in proportion to their 
computational resources. This is an area of current research, and significant improvements in existing methods can 
still easily be found. 

     
Next: 8.4 Control with Function Up: 8. Generalization and Function Previous: 8.2 Gradient-Descent Methods   
Contents 
Mark Lee 2005-01-04 
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8.4 Control with Function Approximation 

We now extend value prediction methods using function approximation to control methods, following the pattern of 
GPI. First we extend the state-value prediction methods to action-value prediction methods, then we combine them with 
policy improvement and action selection techniques. As usual, the problem of ensuring exploration is solved by 
pursuing either an on-policy or an off-policy approach. 

The extension to action-value prediction is straightforward. In this case it is the action-value function, , that is 

represented as a parameterized functional form with parameter vector . Whereas before we considered training 
examples of the form , now we consider examples of the form . The target output, , can be any 

approximation of , including the usual backed-up values such as the full Monte Carlo return, , or the one-

step Sarsa-style return, . The general gradient-descent update for action-value prediction is  
 

 

 

For example, the backward view of the action-value method analogous to TD( ) is  
 

 

 
where  
 

 

 
and  
 

 

 

with . We call this method gradient-descent Sarsa( ), particularly when it is elaborated to form a full control 

method. For a constant policy, this method converges in the same way that TD( ) does, with the same kind of error 
bound (8.9). 
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To form control methods, we need to couple such action-value prediction methods with techniques for policy 
improvement and action selection. Suitable techniques applicable to continuous actions, or to actions from large discrete 
sets, are a topic of ongoing research with as yet no clear resolution. On the other hand, if the action set is discrete and 
not too large, then we can use the techniques already developed in previous chapters. That is, for each possible action, 

, available in the current state, , we can compute  and then find the greedy action 

. Policy improvement is done by changing the estimation policy to the greedy policy (in off-

policy methods) or to a soft approximation of the greedy policy such as the -greedy policy (in on-policy methods). 
Actions are selected according to this same policy in on-policy methods, or by an arbitrary policy in off-policy methods. 

  

Figure 8.8:Linear, gradient-descent Sarsa( ) with binary features and -greedy policy. Updates for both 
accumulating and replacing traces are specified, including the option (when using replacing traces) of clearing the 

traces of nonselected actions. 
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Figure 8.9:A linear, gradient-descent version of Watkins's Q( ) with binary features, -greedy policy, and 
accumulating traces. 

Figures  8.8 and 8.9 show examples of on-policy (Sarsa( )) and off-policy (Watkins's Q( )) control methods using 
function approximation. Both methods use linear, gradient-descent function approximation with binary features, such as 

in tile coding and Kanerva coding. Both methods use an -greedy policy for action selection, and the Sarsa method 
uses it for GPI as well. Both compute the sets of present features, , corresponding to the current state and all possible 
actions, . If the value function for each action is a separate linear function of the same features (a common case), then 
the indices of the  for each action are essentially the same, simplifying the computation significantly. 

All the methods we have discussed above have used accumulating eligibility traces. Although replacing traces (Section 
7.8) are known to have advantages in tabular methods, replacing traces do not directly extend to the use of function 
approximation. Recall that the idea of replacing traces is to reset a state's trace to  each time it is visited instead of 
incrementing it by . But with function approximation there is no single trace corresponding to a state, just a trace for 

each component of , which corresponds to many states. One approach that seems to work well for linear, gradient-
descent function approximation methods with binary features is to treat the features as if they were states for the 
purposes of replacing traces. That is, each time a state is encountered that has feature , the trace for feature  is set to  
rather than being incremented by , as it would be with accumulating traces. 
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When working with state-action traces, it may also be useful to clear (set to zero) the traces of all nonselected actions in 
the states encountered (see Section 7.8). This idea can also be extended to the case of linear function approximation 
with binary features. For each state encountered, we first clear the traces of all features for the state and the actions not 
selected, then we set to  the traces of the features for the state and the action that was selected. As we noted for the 
tabular case, this may or may not be the best way to proceed when using replacing traces. A procedural specification of 
both kinds of traces, including the optional clearing for nonselected actions, is given for the Sarsa algorithm in Figure  
8.8. 

Example 8.2: Mountain-Car Task   Consider the task of driving an underpowered car up a steep mountain road, as 
suggested by the diagram in the upper left of Figure  8.10. The difficulty is that gravity is stronger than the car's engine, 
and even at full throttle the car cannot accelerate up the steep slope. The only solution is to first move away from the 
goal and up the opposite slope on the left. Then, by applying full throttle the car can build up enough inertia to carry it 
up the steep slope even though it is slowing down the whole way. This is a simple example of a continuous control task 
where things have to get worse in a sense (farther from the goal) before they can get better. Many control 
methodologies have great difficulties with tasks of this kind unless explicitly aided by a human designer. 

 

  

Figure 8.10:The mountain-car task (upper left panel) and the cost-to-go function ( ) learned during 
one run. 

 

The reward in this problem is  on all time steps until the car moves past its goal position at the top of the mountain, 
which ends the episode. There are three possible actions: full throttle forward ( ), full throttle reverse ( ), and zero 
throttle ( ). The car moves according to a simplified physics. Its position, , and velocity, , are updated by  
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where the  operation enforces  and . When  reached the left 

bound,  was reset to zero. When it reached the right bound, the goal was reached and the episode was terminated. 
Each episode started from a random position and velocity uniformly chosen from these ranges. To convert the two 
continuous state variables to binary features, we used gridtilings as in Figure  8.5. We used ten  tilings, each 
offset by a random fraction of a tile width. 

The Sarsa algorithm in Figure  8.8 (using replace traces and the optional clearing) readily solved this task, learning a 
near optimal policy within 100 episodes. Figure  8.10 shows the negative of the value function (the cost-to-go function) 

learned on one run, using the parameters , , and  ( ). The initial action values were all zero, 
which was optimistic (all true values are negative in this task), causing extensive exploration to occur even though the 

exploration parameter, , was . This can be seen in the middle-top panel of the figure, labeled "Step 428." At this time 
not even one episode had been completed, but the car has oscillated back and forth in the valley, following circular 
trajectories in state space. All the states visited frequently are valued worse than unexplored states, because the actual 
rewards have been worse than what was (unrealistically) expected. This continually drives the agent away from 
wherever it has been, to explore new states, until a solution is found. Figure  8.11 shows the results of a detailed study 

of the effect of the parameters  and , and of the kind of traces, on the rate of learning on this task. 
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Figure 8.11:The effect of , , and the kind of traces on early performance on the mountain-car task. This study 
used five tilings. 

 

Exercise 8.8   Describe how the actor-critic control method can be combined with gradient-descent function 
approximation. 
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8.5 Off-Policy Bootstrapping 

We return now to the prediction case to take a closer look at the interaction between bootstrapping, function approximation, and the 
on-policy distribution. By bootstrapping we mean the updating of a value estimate on the basis of other value estimates. TD methods 

involve bootstrapping, as do DP methods, whereas Monte Carlo methods do not. TD( ) is a bootstrapping method for , and by 
convention we consider it not to be a bootstrapping method for . Although TD(1) involves bootstrapping within an episode, the 
net effect over a complete episode is the same as a nonbootstrapping Monte Carlo update. 

Bootstrapping methods are more difficult to combine with function approximation than are nonbootstrapping methods. For example, 
consider the case of value prediction with linear, gradient-descent function approximation. In this case, nonbootstrapping methods find 
minimal MSE (8.1) solutions for any distribution of training examples, , whereas bootstrapping methods find only near-minimal 

MSE (8.9) solutions, and only for the on-policy distribution. Moreover, the quality of the MSE bound for TD( ) gets worse the 

farther  strays from 1, that is, the farther the method moves from its nonbootstrapping form. 

The restriction of the convergence results for bootstrapping methods to the on-policy distribution is of greatest concern. This is not a 
problem for on-policy methods such as Sarsa and actor-critic methods, but it is for off-policy methods such as Q-learning and DP 
methods. Off-policy control methods do not backup states (or state-action pairs) with exactly the same distribution with which the 
states would be encountered following the estimation policy (the policy whose value function they are estimating). Many DP methods, 
for example, backup all states uniformly. Q-learning may backup states according to an arbitrary distribution, but typically it backs 
them up according to the distribution generated by interacting with the environment and following a soft policy close to a greedy 
estimation policy. We use the term off-policy bootstrapping for any kind of bootstrapping using a distribution of backups different 
from the on-policy distribution. Surprisingly, off-policy bootstrapping combined with function approximation can lead to divergence 
and infinite MSE. 

Example 8.3: Baird's Counterexample   Consider the six-state, episodic Markov process shown in Figure  8.12. Episodes begin in 
one of the five upper states, proceed immediately to the lower state, and then cycle there for some number of steps before terminating. 

The reward is zero on all transitions, so the true value function is , for all . The form of the approximate value function is 
shown by the equations inset in each state. Note that the overall function is linear and that there are fewer states than components of 

. Moreover, the set of feature vectors, , corresponding to this function is a linearly independent set, and the true value 

function is easily formed by setting . In all ways, this task seems a favorable case for linear function approximation. 

 

  

Figure 8.12:Baird's counterexample. The approximate value function for this Markov process is of the form shown by the linear 
expressions inside each state. The reward is always zero. 

 

The prediction method we apply to this task is a linear, gradient-descent form of DP policy evaluation. The parameter vector, , is 
updated in sweeps through the state space, performing a synchronous, gradient-descent backup at every state, , using the DP (full 
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backup) target:  
 

 

 
Like most DP methods, this one uses a uniform backup distribution, one of the simplest off-policy distributions. Otherwise this is an 
ideal case. There is no randomness and no asynchrony. Each state is updated exactly once per sweep according to a classical DP 
backup. The method is entirely conventional except in its use of gradient-descent function approximation. Yet for some initial values 
of the parameters, the system becomes unstable, as shown computationally in Figure  8.13. 

 

  

Figure 8.13:Computational demonstration of the instability of DP value prediction with linear function approximation on Baird's 

counterexample. The parameters were , , and . 
 

If we alter just the distribution of DP backups in Baird's counterexample, from the uniform distribution to the on-policy distribution 
(which generally requires asynchronous updating), then convergence is guaranteed to a solution with error bounded by (8.9) for 

. This example is striking because the DP method used is arguably the simplest and best-understood bootstrapping method, and 
the linear, gradient-descent method used is arguably the simplest and best-understood kind of function approximation. The example 
shows that even the simplest combination of bootstrapping and function approximation can be unstable if the backups are not done 
according to the on-policy distribution. 

There are also counterexamples similar to Baird's showing divergence for Q-learning. This is cause for concern because otherwise Q-
learning has the best convergence guarantees of all control methods. Considerable effort has gone into trying to find a remedy to this 
problem or to obtain some weaker, but still workable, guarantee. For example, it may be possible to guarantee convergence of Q-
learning as long as the behavior policy (the policy used to select actions) is sufficiently close to the estimation policy (the policy used 

in GPI), for example, when it is the -greedy policy. To the best of our knowledge, Q-learning has never been found to diverge in 
this case, but there has been no theoretical analysis. In the rest of this section we present several other ideas that have been explored. 

Suppose that instead of taking just a step toward the expected one-step return on each iteration, as in Baird's counterexample, we 
actually change the value function all the way to the best, least-squares approximation. Would this solve the instability problem? Of 

course it would if the feature vectors, , formed a linearly independent set, as they do in Baird's counterexample, 
because then exact approximation is possible on each iteration and the method reduces to standard tabular DP. But of course the point 
here is to consider the case when an exact solution is not possible. In this case stability is not guaranteed even when forming the best 
approximation at each iteration, as shown by the following example. 
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Figure 8.14:Tsitsiklis and Van Roy's counterexample to DP policy evaluation with least-squares linear function approximation. 
 

Example 8.4: Tsitsiklis and Van Roy's Counterexample   The simplest counterexample to linear least-squares DP is shown in 
Figure  8.14. There are just two nonterminal states, and the modifiable parameter  is a scalar. The estimated value of the first state is 

, and the estimated value of the second state is . The reward is zero on all transitions, so the true values are zero at both states, 

which is exactly representable with . If we set  at each step so as to minimize the MSE between the estimated value and 
the expected one-step return, then we have  
 

  
  

    

    (8.10)

 

where  denotes the value function given . The sequence  diverges when  and . 

One way to try to prevent instability is to use special methods for function approximation. In particular, stability is guaranteed for 
function approximation methods that do not extrapolate from the observed targets. These methods, called averagers, include nearest 
neighbor methods and local weighted regression, but not popular methods such as tile coding and backpropagation. 

Another approach is to attempt to minimize not the mean-squared error from the true value function (8.1), but the mean-squared error 
from the expected one-step return. It is natural to call this error measure the mean-squared Bellman error:  
 

  
(8.11)

 
This suggests the gradient-descent procedure:  
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where the expected values are implicitly conditional on . This update is guaranteed to converge to a minimum of the mean-squared 
Bellman error under the usual conditions on the step-size parameters. However, this method is feasible only for deterministic systems 
or when a model is available. The problem is that the update above involves the next state, , appearing in two expected values that 
are multiplied together. To get an unbiased sample of the product, one needs two independent samples of the next state, but during 
normal interaction with the environment only one is obtained. Because of this, the method is probably limited in practice to cases in 
which a model is available (to produce a second sample). In practice, this method is also sometimes slow to converge. To handle that 
problem, Baird (1995) has proposed combining this method parametrically with conventional TD methods. 

Exercise 8.9 (programming)   Look up the paper by Baird (1995) on the Internet and obtain his counterexample for Q-learning. 
Implement it and demonstrate the divergence. 
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8.6 Should We Bootstrap? 

At this point you may be wondering why we bother with bootstrapping methods at all. Nonbootstrapping methods 
can be used with function approximation more reliably and over a broader range of conditions than bootstrapping 
methods. Nonbootstrapping methods achieve a lower asymptotic error than bootstrapping methods, even when 
backups are done according to the on-policy distribution. By using eligibility traces and , it is even possible 
to implement nonbootstrapping methods on-line, in a step-by-step incremental manner. Despite all this, in practice 
bootstrapping methods are usually the methods of choice. 

 

  

Figure 8.15:The effect of on reinforcement learning performance. In all cases, the better the performance, the 

lowerthe curve. The two left panels are applications to simple continuous-state control tasks using the Sarsa( ) 
algorithm and tile coding, with either replacing or accumulating traces (Sutton, 1996). The upper-right panel is for 

policy evaluation on a random walk task using TD( ) (Singh and Sutton, 1996). The lower right panel is 
unpublished data for the pole-balancing task (Example 3.4) from an earlier study (Sutton, 1984). 
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In empirical comparisons, bootstrapping methods usually perform much better than nonbootstrapping methods. A 

convenient way to make such comparisons is to use a TD method with eligibility traces and vary  from 0 (pure 
bootstrapping) to 1 (pure nonbootstrapping). Figure  8.15 summarizes a collection of such results. In all cases, 

performance became much worse as  approached , the nonbootstrapping case. The example in the upper right of 
the figure is particularly significant in this regard. This is a policy evaluation (prediction) task and the performance 
measure used is root MSE (at the end of each episode, averaged over the first 20 episodes). Asymptotically, the 

 case must be best according to this measure, but here, short of the asymptote, we see it performing much 
worse. 

At this time it is unclear why methods that involve some bootstrapping perform so much better than pure 
nonbootstrapping methods. It could be that bootstrapping methods learn faster, or it could be that they actually 
learn something better than nonbootstrapping methods. The available results indicate that nonbootstrapping 
methods are better than bootstrapping methods at reducing MSE from the true value function, but reducing MSE is 
not necessarily the most important goal. For example, if you add 1000 to the true action-value function at all state-
action pairs, then it will have very poor MSE, but you will still get the optimal policy. Nothing quite that simple is 
going on with bootstrapping methods, but they do seem to do something right. We expect the understanding of 
these issues to improve as research continues. 
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8.7 Summary 

Reinforcement learning systems must be capable of generalization if they are to be applicable to 
artificial intelligence or to large engineering applications. To achieve this, any of a broad range of 
existing methods for supervised-learning function approximation can be used simply by treating each 
backup as a training example. Gradient-descent methods, in particular, allow a natural extension to 
function approximation of all the techniques developed in previous chapters, including eligibility 
traces. Linear gradient-descent methods are particularly appealing theoretically and work well in 
practice when provided with appropriate features. Choosing the features is one of the most important 
ways of adding prior domain knowledge to reinforcement learning systems. Linear methods include 
radial basis functions, tile coding, and Kanerva coding. Backpropagation methods for multilayer 
neural networks are methods for nonlinear gradient-descent function approximation. 

For the most part, the extension of reinforcement learning prediction and control methods to gradient-
descent forms is straightforward. However, there is an interesting interaction between function 
approximation, bootstrapping, and the on-policy/off-policy distinction. Bootstrapping methods, such 

as DP and TD( ) for , work reliably in conjunction with function approximation over a 
narrower range of conditions than do nonbootstrapping methods. Because the control case has not yet 
yielded to theoretical analysis, research has focused on the value prediction problem. In this case, on-
policy bootstrapping methods converge reliably with linear gradient-descent function approximation 

to a solution with mean-squared error bounded by  times the minimum possible error. Off-policy 
bootstrapping methods, on the other hand, may diverge to infinite error. Several approaches have 
been explored to making off-policy bootstrapping methods work with function approximation, but 
this is still an open research issue. Bootstrapping methods are of persistent interest in reinforcement 
learning, despite their limited theoretical guarantees, because in practice they usually work 
significantly better than nonbootstrapping methods. 
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8.8 Bibliographical and Historical Remarks 

Despite our treatment of generalization and function approximation late in the book, they have 
always been an integral part of reinforcement learning. It is only in the last decade or less that the 
field has focused on the tabular case, as we have here for the first seven chapters. Bertsekas and 
Tsitsiklis (1996) present the state of the art in function approximation in reinforcement learning, and 
the collection of papers by Boyan, Moore, and Sutton (1995) is also useful. Some of the early work 
with function approximation in reinforcement learning is discussed at the end of this section. 

8.2 

Gradient-descent methods for the minimizing mean-squared error in supervised learning are well 
known. Widrow and Hoff (1960) introduced the least-mean-square (LMS) algorithm, which is the 
prototypical incremental gradient-descent algorithm. Details of this and related algorithms are 
provided in many texts (e.g., Widrow and Stearns, 1985; Bishop, 1995; Duda and Hart, 1973). 

Gradient-descent analyses of TD learning date back at least to Sutton (1988). Methods more 
sophisticated than the simple gradient-descent methods covered in this section have also been studied 
in the context of reinforcement learning, such as quasi-Newton methods (Werbos, 1990) and 
recursive-least-squares methods (Bradtke, 1993, 1994; Bradtke and Barto, 1996; Bradtke, Ydstie, and 
Barto, 1994). Bertsekas and Tsitsiklis (1996) provide a good discussion of these methods. 

The earliest use of state aggregation in reinforcement learning may have been Michie and Chambers's 
BOXES system (1968). The theory of state aggregation in reinforcement learning has been developed 
by Singh, Jaakkola, and Jordan (1995) and Tsitsiklis and Van Roy (1996). 

8.3 

TD( ) with linear gradient-descent function approximation was first explored by Sutton (1984, 
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1988), who proved convergence of TD(0) in the mean to the minimal MSE solution for the case in 

which the feature vectors, , are linearly independent. Convergence with probability  
for general  was proved by several researchers at about the same time (Peng, 1993; Dayan and 
Sejnowski, 1994; Tsitsiklis, 1994; Gurvits, Lin, and Hanson, 1994). In addition, Jaakkola, Jordan, 
and Singh (1994) proved convergence under on-line updating. All of these results assumed linearly 

independent feature vectors, which implies at least as many components to  as there are states. 

Convergence of linear TD( ) for the more interesting case of general (dependent) feature vectors 
was first shown by Dayan (1992). A significant generalization and strengthening of Dayan's result 
was proved by Tsitsiklis and Van Roy (1997a). They proved the main result presented in Section 8.2, 

the bound on the asymptotic error of TD( ) and other bootstrapping methods. Recently they 
extended their analysis to the undiscounted continuing case (Tsitsiklis and Van Roy, 1997b). 

Our presentation of the range of possibilities for linear function approximation is based on that by 
Barto (1990). The term coarse coding is due to Hinton (1984), and our Figure  8.2 is based on one of 
his figures. Waltz and Fu (1965) provide an early example of this type of function approximation in a 
reinforcement learning system. 

Tile coding, including hashing, was introduced by Albus (1971, 1981). He described it in terms of his 
"cerebellar model articulator controller," or CMAC, as tile coding is known in the literature. The term 
"tile coding" is new to this book, though the idea of describing CMAC in these terms is taken from 
Watkins (1989). Tile coding has been used in many reinforcement learning systems (e.g., Shewchuk 
and Dean, 1990; Lin and Kim, 1991; Miller, Scalera, and Kim, 1994; Sofge and White, 1992; Tham, 
1994; Sutton, 1996; Watkins, 1989) as well as in other types of learning control systems (e.g., Kraft 
and Campagna, 1990; Kraft, Miller, and Dietz, 1992). 

Function approximation using radial basis functions (RBFs) has received wide attention ever since 
being related to neural networks by Broomhead and Lowe (1988). Powell (1987) reviewed earlier 
uses of RBFs, and Poggio and Girosi (1989, 1990) extensively developed and applied this approach. 

What we call "Kanerva coding" was introduced by Kanerva (1988) as part of his more general idea of 
sparse distributed memory. A good review of this and related memory models is provided by 
Kanerva (1993). This approach has been pursued by Gallant (1993) and by Sutton and Whitehead 
(1993), among others. 

8.4 

Q( ) with function approximation was first explored by Watkins (1989). Sarsa( ) with function 
approximation was first explored by Rummery and Niranjan (1994). The mountain-car example is 
based on a similar task studied by Moore (1990). The results on it presented here are from Sutton 
(1996) and Singh and Sutton (1996). 

Convergence of the control methods presented in this section has not been proved (and seems 
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unlikely for Q( ) given the results presented in Section 8.5). Convergence results for control 
methods with state aggregation and other special kinds of function approximation are proved by 
Tsitsiklis and Van Roy (1996), Singh, Jaakkola, and Jordan (1995), and Gordon (1995). 

8.5 

Baird's counterexample is due to Baird (1995). Tsitsiklis and Van Roy's counterexample is due to 
Tsitsiklis and Van Roy (1997a). Averaging methods for function approximation are developed by 
Gordon (1995, 1996). Gradient-descent methods for minimizing the Bellman error are due to Baird, 
who called them residual-gradient methods. Other examples of instability with off-policy DP 
methods and more complex methods of function approximation are given by Boyan and Moore 
(1995). Bradtke (1993) gives an example in which Q-learning using linear function approximation in 
a linear quadratic regulation problem converges to a destabilizing policy. 

 
The use of function approximation in reinforcement learning goes back to the early neural networks 
of Farley and Clark (1954; Clark and Farley, 1955), who used reinforcement learning to adjust the 
parameters of linear threshold functions representing policies. The earliest example we know of in 
which function approximation methods were used for learning value functions was Samuel's checkers 
player (1959, 1967). Samuel followed Shannon's (1950) suggestion that a value function did not have 
to be exact to be a useful guide to selecting moves in a game and that it might be approximated by 
linear combination of features. In addition to linear function approximation, Samuel experimented 
with lookup tables and hierarchical lookup tables called signature tables (Griffith, 1966, 1974; Page, 
1977; Biermann, Fairfield, and Beres, 1982). 

At about the same time as Samuel's work, Bellman and Dreyfus (1959) proposed using function 
approximation methods with DP. (It is tempting to think that Bellman and Samuel had some 
influence on one another, but we know of no reference to the other in the work of either.) There is 
now a fairly extensive literature on function approximation methods and DP, such as multigrid 
methods and methods using splines and orthogonal polynomials (e.g., Bellman and Dreyfus, 1959; 
Bellman, Kalaba, and Kotkin, 1973; Daniel, 1976; Whitt, 1978; Reetz, 1977; Schweitzer and 
Seidmann, 1985; Chow and Tsitsiklis, 1991; Kushner and Dupuis, 1992; Rust, 1996). 

Holland's (1986) classifier system used a selective feature-match technique to generalize evaluation 
information across state-action pairs. Each classifier matched a subset of states having specified 
values for a subset of features, with the remaining features having arbitrary values ("wild cards"). 
These subsets were then used in a conventional state-aggregation approach to function 
approximation. Holland's idea was to use a genetic algorithm to evolve a set of classifiers that 
collectively would implement a useful action-value function. Holland's ideas influenced the early 
research of the authors on reinforcement learning, but we focused on different approaches to function 
approximation. As function approximators, classifiers are limited in several ways. First, they are state-
aggregation methods, with concomitant limitations in scaling and in representing smooth functions 
efficiently. In addition, the matching rules of classifiers can implement only aggregation boundaries 
that are parallel to the feature axes. Perhaps the most important limitation of conventional classifier 
systems is that the classifiers are learned via the genetic algorithm, an evolutionary method. As we 
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discussed in Chapter 1, there is available during learning much more detailed information about how 
to learn than can be used by evolutionary methods. This perspective led us to instead adapt 
supervised learning methods for use in reinforcement learning, specifically gradient-descent and 
neural network methods. These differences between Holland's approach and ours are not surprising 
because Holland's ideas were developed during a period when neural networks were generally 
regarded as being too weak in computational power to be useful, whereas our work was at the 
beginning of the period that saw widespread questioning of that conventional wisdom. There remain 
many opportunities for combining aspects of these different approaches. 

A number of reinforcement learning studies using function approximation methods that we have not 
covered previously should be mentioned. Barto, Sutton, and Brouwer (1981) and Barto and Sutton 
(1981b) extended the idea of an associative memory network (e.g., Kohonen, 1977; Anderson, 
Silverstein, Ritz, and Jones, 1977) to reinforcement learning. Hampson (1983, 1989) was an early 
proponent of multilayer neural networks for learning value functions. Anderson (1986, 1987) coupled 
a TD algorithm with the error backpropagation algorithm to learn a value function. Barto and 
Anandan (1985) introduced a stochastic version of Widrow, Gupta, and Maitra's (1973) selective 

bootstrap algorithm, which they called the associative reward-penalty ( ) algorithm. Williams 
(1986, 1987, 1988, 1992) extended this type of algorithm to a general class of REINFORCE 
algorithms, showing that they perform stochastic gradient ascent on the expected reinforcement. 
Gullapalli (1990) and Williams devised algorithms for learning generalizing policies for the case of 
continuous actions. Phansalkar and Thathachar (1995) proved both local and global convergence 
theorems for modified versions of REINFORCE algorithms. Christensen and Korf (1986) 
experimented with regression methods for modifying coefficients of linear value function 
approximations in the game of chess. Chapman and Kaelbling (1991) and Tan (1991) adapted 
decision-tree methods for learning value functions. Explanation-based learning methods have also 
been adapted for learning value functions, yielding compact representations (Yee, Saxena, Utgoff, 
and Barto, 1990; Dietterich and Flann, 1995). 
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9. Planning and Learning 

In this chapter we develop a unified view of methods that require a model of the environment, such as 
dynamic programming and heuristic search, and methods that can be used without a model, such as 
Monte Carlo and temporal-difference methods. We think of the former as planning methods and of 
the latter as learning methods. Although there are real differences between these two kinds of 
methods, there are also great similarities. In particular, the heart of both kinds of methods is the 
computation of value functions. Moreover, all the methods are based on looking ahead to future 
events, computing a backed-up value, and then using it to update an approximate value function. 
Earlier in this book we presented Monte Carlo and temporal-difference methods as distinct 
alternatives, then showed how they can be seamlessly integrated by using eligibility traces such as in 

TD( ). Our goal in this chapter is a similar integration of planning and learning methods. Having 
established these as distinct in earlier chapters, we now explore the extent to which they can be 
intermixed. 
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9.1 Models and Planning 

By a model of the environment we mean anything that an agent can use to predict how the environment will respond to its 
actions. Given a state and an action, a model produces a prediction of the resultant next state and next reward. If the model is 
stochastic, then there are several possible next states and next rewards, each with some probability of occurring. Some models 
produce a description of all possibilities and their probabilities; these we call distribution models. Other models produce just 
one of the possibilities, sampled according to the probabilities; these we call sample models. For example, consider modeling 
the sum of a dozen dice. A distribution model would produce all possible sums and their probabilities of occurring, whereas a 
sample model would produce an individual sum drawn according to this probability distribution. The kind of model assumed in 

dynamic programming--estimates of the state transition probabilities and expected rewards,  and --is a distribution 
model. The kind of model used in the blackjack example in Chapter 5 is a sample model. Distribution models are stronger than 
sample models in that they can always be used to produce samples. However, in surprisingly many applications it is much 
easier to obtain sample models than distribution models. 

Models can be used to mimic or simulate experience. Given a starting state and action, a sample model produces a possible 
transition, and a distribution model generates all possible transitions weighted by their probabilities of occurring. Given a 
starting state and a policy, a sample model could produce an entire episode, and a distribution model could generate all possible 
episodes and their probabilities. In either case, we say the model is used to simulate the environment and produce simulated 
experience. 

The word planning is used in several different ways in different fields. We use the term to refer to any computational process 
that takes a model as input and produces or improves a policy for interacting with the modeled environment: 

 
 

 

 
Within artificial intelligence, there are two distinct approaches to planning according to our definition. In state-space planning, 
which includes the approach we take in this book, planning is viewed primarily as a search through the state space for an 
optimal policy or path to a goal. Actions cause transitions from state to state, and value functions are computed over states. In 
what we call plan-space planning, planning is instead viewed as a search through the space of plans. Operators transform one 
plan into another, and value functions, if any, are defined over the space of plans. Plan-space planning includes evolutionary 
methods and partial-order planning, a popular kind of planning in artificial intelligence in which the ordering of steps is not 
completely determined at all stages of planning. Plan-space methods are difficult to apply efficiently to the stochastic optimal 
control problems that are the focus in reinforcement learning, and we do not consider them further (but see Section 11.6 for one 
application of reinforcement learning within plan-space planning). 

The unified view we present in this chapter is that all state-space planning methods share a common structure, a structure that 
is also present in the learning methods presented in this book. It takes the rest of the chapter to develop this view, but there are 
two basic ideas: (1) all state-space planning methods involve computing value functions as a key intermediate step toward 
improving the policy, and (2) they compute their value functions by backup operations applied to simulated experience. This 
common structure can be diagrammed as follows: 
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Dynamic programming methods clearly fit this structure: they make sweeps through the space of states, generating for each 
state the distribution of possible transitions. Each distribution is then used to compute a backed-up value and update the state's 
estimated value. In this chapter we argue that various other state-space planning methods also fit this structure, with individual 
methods differing only in the kinds of backups they do, the order in which they do them, and in how long the backed-up 
information is retained. 

Viewing planning methods in this way emphasizes their relationship to the learning methods that we have described in this 
book. The heart of both learning and planning methods is the estimation of value functions by backup operations. The 
difference is that whereas planning uses simulated experience generated by a model, learning methods use real experience 
generated by the environment. Of course this difference leads to a number of other differences, for example, in how 
performance is assessed and in how flexibly experience can be generated. But the common structure means that many ideas 
and algorithms can be transferred between planning and learning. In particular, in many cases a learning algorithm can be 
substituted for the key backup step of a planning method. Learning methods require only experience as input, and in many 
cases they can be applied to simulated experience just as well as to real experience. Figure  9.1 shows a simple example of a 
planning method based on one-step tabular Q-learning and on random samples from a sample model. This method, which we 
call random-sample one-step tabular Q-planning, converges to the optimal policy for the model under the same conditions that 
one-step tabular Q-learning converges to the optimal policy for the real environment (each state-action pair must be selected an 

infinite number of times in Step 1, and  must decrease appropriately over time). 

  

Figure 9.1:Random-sample one-step tabular Q-planning 

In addition to the unified view of planning and learning methods, a second theme in this chapter is the benefits of planning in 
small, incremental steps. This enables planning to be interrupted or redirected at any time with little wasted computation, 
which appears to be a key requirement for efficiently intermixing planning with acting and with learning of the model. More 
surprisingly, later in this chapter we present evidence that planning in very small steps may be the most efficient approach even 
on pure planning problems if the problem is too large to be solved exactly. 
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9.2 Integrating Planning, Acting, and Learning 

When planning is done on-line, while interacting with the environment, a number of interesting issues 
arise. New information gained from the interaction may change the model and thereby interact with 
planning. It may be desirable to customize the planning process in some way to the states or decisions 
currently under consideration, or expected in the near future. If decision-making and model-learning 
are both computation-intensive processes, then the available computational resources may need to be 
divided between them. To begin exploring these issues, in this section we present Dyna-Q, a simple 
architecture integrating the major functions needed in an on-line planning agent. Each function appears 
in Dyna-Q in a simple, almost trivial, form. In subsequent sections we elaborate some of the alternate 
ways of achieving each function and the trade-offs between them. For now, we seek merely to 
illustrate the ideas and stimulate your intuition. 

Within a planning agent, there are at least two roles for real experience: it can be used to improve the 
model (to make it more accurately match the real environment) and it can be used to directly improve 
the value function and policy using the kinds of reinforcement learning methods we have discussed in 
previous chapters. The former we call model-learning, and the latter we call direct reinforcement 
learning (direct RL). The possible relationships between experience, model, values, and policy are 
summarized in Figure  9.2. Each arrow shows a relationship of influence and presumed improvement. 
Note how experience can improve value and policy functions either directly or indirectly via the 
model. It is the latter, which is sometimes called indirect reinforcement learning, that is involved in 
planning. 
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Figure 9.2:Relationships among learning, planning, and acting. 
 

Both direct and indirect methods have advantages and disadvantages. Indirect methods often make 
fuller use of a limited amount of experience and thus achieve a better policy with fewer environmental 
interactions. On the other hand, direct methods are much simpler and are not affected by biases in the 
design of the model. Some have argued that indirect methods are always superior to direct ones, while 
others have argued that direct methods are responsible for most human and animal learning. Related 
debates in psychology and AI concern the relative importance of cognition as opposed to trial-and-
error learning, and of deliberative planning as opposed to reactive decision-making. Our view is that 
the contrast between the alternatives in all these debates has been exaggerated, that more insight can 
be gained by recognizing the similarities between these two sides than by opposing them. For 
example, in this book we have emphasized the deep similarities between dynamic programming and 
temporal-difference methods, even though one was designed for planning and the other for modelfree 
learning. 

Dyna-Q includes all of the processes shown in Figure  9.2--planning, acting, model-learning, and 
direct RL--all occurring continually. The planning method is the random-sample one-step tabular Q-
planning method given in Figure  9.1. The direct RL method is one-step tabular Q-learning. The model 
-learning method is also table-based and assumes the world is deterministic. After each transition 

, the model records in its table entry for  the prediction that  will 
deterministically follow. Thus, if the model is queried with a state-action pair that has been 
experienced before, it simply returns the last-observed next state and next reward as its prediction. 
During planning, the Q-planning algorithm randomly samples only from state-action pairs that have 
previously been experienced (in Step 1), so the model is never queried with a pair about which it has 
no information. 
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Figure 9.3:The general Dyna Architecture 
 

The overall architecture of Dyna agents, of which the Dyna-Q algorithm is one example, is shown in 
Figure  9.3. The central column represents the basic interaction between agent and environment, 
giving rise to a trajectory of real experience. The arrow on the left of the figure represents direct 
reinforcement learning operating on real experience to improve the value function and the policy. On 
the right are model-based processes. The model is learned from real experience and gives rise to 
simulated experience. We use the term search control to refer to the process that selects the starting 
states and actions for the simulated experiences generated by the model. Finally, planning is achieved 
by applying reinforcement learning methods to the simulated experiences just as if they had really 
happened. Typically, as in Dyna-Q, the same reinforcement learning method is used both for learning 
from real experience and for planning from simulated experience. The reinforcement learning method 
is thus the "final common path" for both learning and planning. Learning and planning are deeply 
integrated in the sense that they share almost all the same machinery, differing only in the source of 
their experience. 

Conceptually, planning, acting, model-learning, and direct RL occur simultaneously and in parallel in 
Dyna agents. For concreteness and implementation on a serial computer, however, we fully specify the 
order in which they occur within a time step. In Dyna-Q, the acting, model-learning, and direct RL 
processes require little computation, and we assume they consume just a fraction of the time. The 
remaining time in each step can be devoted to the planning process, which is inherently computation-
intensive. Let us assume that there is time in each step, after acting, model-learning, and direct RL, to 
complete  iterations (Steps 1-3) of the Q-planning algorithm. Figure  9.4 shows the complete 
algorithm for Dyna-Q. 
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Figure 9.4:Dyna-Q Algorithm. denotes the contents of the model (predicted next state 
and reward) for state-action pair . Direct reinforcement learning, model-learning, and planning are 

implemented by steps (d), (e), and (f), respectively. If (e) and (f) were omitted, the remaining 
algorithm would be one-step tabular Q-learning. 

Example 9.1: Dyna Maze   Consider the simple maze shown inset in Figure  9.5. In each of the 47 
states there are four actions, up, down, right, and left, which take the agent deterministically to 
the corresponding neighboring states, except when movement is blocked by an obstacle or the edge of 
the maze, in which case the agent remains where it is. Reward is zero on all transitions, except those 
into the goal state, on which it is . After reaching the goal state (G), the agent returns to the start 

state (S) to begin a new episode. This is a discounted, episodic task with . 
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Figure 9.5:A simple maze (inset) and the average learning curves for Dyna-Q agents varying in their 
number of planning steps per real step. The task is to travel from S to S as quickly as possible. 

 

The main part of Figure  9.5 shows average learning curves from an experiment in which Dyna-Q 
agents were applied to the maze task. The initial action values were zero, the step-size parameter was 

, and the exploration parameter was . When selecting greedily among actions, ties 
were broken randomly. The agents varied in the number of planning steps, , they performed per real 
step. For each , the curves show the number of steps taken by the agent in each episode, averaged 
over 30 repetitions of the experiment. In each repetition, the initial seed for the random number 
generator was held constant across algorithms. Because of this, the first episode was exactly the same 
(about 1700 steps) for all values of , and its data are not shown in the figure. After the first episode, 
performance improved for all values of , but much more rapidly for larger values. Recall that the 

 agent is a nonplanning agent, utilizing only direct reinforcement learning (one-step tabular Q-
learning). This was by far the slowest agent on this problem, despite the fact that the parameter values (

 and ) were optimized for it. The nonplanning agent took about 25 episodes to reach ( -)optimal 
performance, whereas the  agent took about five episodes, and the  agent took only 
three episodes. 
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Figure 9.6:Policies found by planning and nonplanning Dyna-Q agents halfway through the second 
episode. The arrows indicate the greedy action in each state; no arrow is shown for a state if all of its 

action values are equal. The black square indicates the location of the agent. 
 

Figure  9.6 shows why the planning agents found the solution so much faster than the nonplanning 
agent. Shown are the policies found by the  and  agents halfway through the second 
episode. Without planning ( ), each episode adds only one additional step to the policy, and so 
only one step (the last) has been learned so far. With planning, again only one step is learned during 
the first episode, but here during the second episode an extensive policy has been developed that by 
the episode's end will reach almost back to the start state. This policy is built by the planning process 
while the agent is still wandering near the start state. By the end of the third episode a complete 
optimal policy will have been found and perfect performance attained. 

In Dyna-Q, learning and planning are accomplished by exactly the same algorithm, operating on real 
experience for learning and on simulated experience for planning. Because planning proceeds 
incrementally, it is trivial to intermix planning and acting. Both proceed as fast as they can. The agent 
is always reactive and always deliberative, responding instantly to the latest sensory information and 
yet always planning in the background. Also ongoing in the background is the model-learning process. 
As new information is gained, the model is updated to better match reality. As the model changes, the 
ongoing planning process will gradually compute a different way of behaving to match the new model. 

Exercise 9.1   The nonplanning method looks particularly poor in Figure  9.6 because it is a one-step 
method; a method using eligibility traces would do better. Do you think an eligibility trace method 
could do as well as the Dyna method? Explain why or why not. 

     
Next: 9.3 When the Model Up: 9. Planning and Learning Previous: 9.1 Models and Planning   
Contents 
Mark Lee 2005-01-04 
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9.3 When the Model Is Wrong 

In the maze example presented in the previous section, the changes in the model were relatively 
modest. The model started out empty, and was then filled only with exactly correct information. In 
general, we cannot expect to be so fortunate. Models may be incorrect because the environment is 
stochastic and only a limited number of samples have been observed, because the model was learned 
using function approximation that has generalized imperfectly, or simply because the environment 
has changed and its new behavior has not yet been observed. When the model is incorrect, the 
planning process will compute a suboptimal policy. 

In some cases, the suboptimal policy computed by planning quickly leads to the discovery and 
correction of the modeling error. This tends to happen when the model is optimistic in the sense of 
predicting greater reward or better state transitions than are actually possible. The planned policy 
attempts to exploit these opportunities and in doing so discovers that they do not exist. 

Example 9.2: Blocking Maze   A maze example illustrating this relatively minor kind of modeling 
error and recovery from it is shown in Figure  9.7. Initially, there is a short path from start to goal, to 
the right of the barrier, as shown in the upper left of the figure. After 1000 time steps, the short path 
is "blocked," and a longer path is opened up along the left-hand side of the barrier, as shown in upper 
right of the figure. The graph shows average cumulative reward for Dyna-Q and two other Dyna 
agents. The first part of the graph shows that all three Dyna agents found the short path within 1000 
steps. When the environment changed, the graphs become flat, indicating a period during which the 
agents obtained no reward because they were wandering around behind the barrier. After a while, 
however, they were able to find the new opening and the new optimal behavior. 
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Figure 9.7:Average performance of Dyna agents on a blocking task. The left environment was used 
for the first 1000 steps, the right environment for the rest. Dyna-Q+ is Dyna-Q with an exploration 

bonus that encourages exploration. Dyna-AC is a Dyna agent that uses an actor-critic learning 
method instead of Q-learning. 

 

Greater difficulties arise when the environment changes to become better than it was before, and yet 
the formerly correct policy does not reveal the improvement. In these cases the modeling error may 
not be detected for a long time, if ever, as we see in the next example. 

Example 9.3: Shortcut Maze   The problem caused by this kind of environmental change is 
illustrated by the maze example shown in Figure  9.8. Initially, the optimal path is to go around the 
left side of the barrier (upper left). After 3000 steps, however, a shorter path is opened up along the 
right side, without disturbing the longer path (upper right). The graph shows that two of the three 
Dyna agents never switched to the shortcut. In fact, they never realized that it existed. Their models 
said that there was no shortcut, so the more they planned, the less likely they were to step to the right 

and discover it. Even with an -greedy policy, it is very unlikely that an agent will take so many 
exploratory actions as to discover the shortcut. 
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Figure 9.8:Average performance of Dyna agents on a shortcut task. The left environment was used 
for the first 3000 steps, the right environment for the rest. 

 

The general problem here is another version of the conflict between exploration and exploitation. In a 
planning context, exploration means trying actions that improve the model, whereas exploitation 
means behaving in the optimal way given the current model. We want the agent to explore to find 
changes in the environment, but not so much that performance is greatly degraded. As in the earlier 
exploration/exploitation conflict, there probably is no solution that is both perfect and practical, but 
simple heuristics are often effective. 

The Dyna-Q+ agent that did solve the shortcut maze uses one such heuristic. This agent keeps track 
for each state-action pair of how many time steps have elapsed since the pair was last tried in a real 
interaction with the environment. The more time that has elapsed, the greater (we might presume) the 
chance that the dynamics of this pair has changed and that the model of it is incorrect. To encourage 
behavior that tests long-untried actions, a special "bonus reward" is given on simulated experiences 
involving these actions. In particular, if the modeled reward for a transition is , and the transition has 
not been tried in  time steps, then planning backups are done as if that transition produced a reward 

of , for some small . This encourages the agent to keep testing all accessible state 
transitions and even to plan long sequences of actions in order to carry out such tests. Of course all 
this testing has its cost, but in many cases, as in the shortcut maze, this kind of computational 
curiosity is well worth the extra exploration. 

Exercise 9.2   Why did the Dyna agent with exploration bonus, Dyna-Q+, perform better in the first 
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phase as well as in the second phase of the blocking and shortcut experiments? 

Exercise 9.3   Careful inspection of Figure  9.8 reveals that the difference between Dyna-Q+ and 
Dyna-Q narrowed slightly over the first part of the experiment. What is the reason for this? 

Exercise 9.4 (programming)   The exploration bonus described above actually changes the 

estimated values of states and actions. Is this necessary? Suppose the bonus  was used not in 
backups, but solely in action selection. That is, suppose the action selected was always that for which 

 was maximal. Carry out a gridworld experiment that tests and illustrates the 
strengths and weaknesses of this alternate approach. 

     
Next: 9.4 Prioritized Sweeping Up: 9. Planning and Learning Previous: 9.2 Integrating Planning, 
Acting,   Contents 
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9.4 Prioritized Sweeping 

In the Dyna agents presented in the preceding sections, simulated transitions are started in state-action 
pairs selected uniformly at random from all previously experienced pairs. But a uniform selection is 
usually not the best; planning can be much more efficient if simulated transitions and backups are 
focused on particular state-action pairs. For example, consider what happens during the second 
episode of the first maze task (Figure  9.6). At the beginning of the second episode, only the state-
action pair leading directly into the goal has a positive value; the values of all other pairs are still 
zero. This means that it is pointless to back up along almost all transitions, because they take the 
agent from one zero-valued state to another, and thus the backups would have no effect. Only a 
backup along a transition into the state just prior to the goal, or from it into the goal, will change any 
values. If simulated transitions are generated uniformly, then many wasteful backups will be made 
before stumbling onto one of the two useful ones. As planning progresses, the region of useful 
backups grows, but planning is still far less efficient than it would be if focused where it would do the 
most good. In the much larger problems that are our real objective, the number of states is so large 
that an unfocused search would be extremely inefficient. 

This example suggests that search might be usefully focused by working backward from goal states. 
Of course, we do not really want to use any methods specific to the idea of "goal state." We want 
methods that work for general reward functions. Goal states are just a special case, convenient for 
stimulating intuition. In general, we want to work back not just from goal states but from any state 
whose value has changed. Assume that the values are initially correct given the model, as they were 
in the maze example prior to discovering the goal. Suppose now that the agent discovers a change in 
the environment and changes its estimated value of one state. Typically, this will imply that the 
values of many other states should also be changed, but the only useful one-step backups are those of 
actions that lead directly into the one state whose value has already been changed. If the values of 
these actions are updated, then the values of the predecessor states may change in turn. If so, then 
actions leading into them need to be backed up, and then their predecessor states may have changed. 
In this way one can work backward from arbitrary states that have changed in value, either 
performing useful backups or terminating the propagation. 

As the frontier of useful backups propagates backward, it often grows rapidly, producing many state-
action pairs that could usefully be backed up. But not all of these will be equally useful. The values of 
some states may have changed a lot, whereas others have changed little. The predecessor pairs of 
those that have changed a lot are more likely to also change a lot. In a stochastic environment, 
variations in estimated transition probabilities also contribute to variations in the sizes of changes and 
in the urgency with which pairs need to be backed up. It is natural to prioritize the backups according 
to a measure of their urgency, and perform them in order of priority. This is the idea behind 
prioritized sweeping. A queue is maintained of every state-action pair whose estimated value would 
change nontrivially if backed up, prioritized by the size of the change. When the top pair in the queue 
is backed up, the effect on each of its predecessor pairs is computed. If the effect is greater than some 
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small threshold, then the pair is inserted in the queue with the new priority (if there is a previous entry 
of the pair in the queue, then insertion results in only the higher priority entry's remaining in the 
queue). In this way the effects of changes are efficiently propagated backward until quiescence. The 
full algorithm for the case of deterministic environments is given in Figure  9.9. 

  

Figure 9.9:The prioritized sweeping algorithm for a deterministic environment. 

Example 9.4: Prioritized Sweeping on Mazes   Prioritized sweeping has been found to dramatically 
increase the speed at which optimal solutions are found in maze tasks, often by a factor of 5 to 10. A 
typical example is shown in Figure  9.10. These data are for a sequence of maze tasks of exactly the 
same structure as the one shown in Figure  9.5, except that they vary in the grid resolution. Prioritized 
sweeping maintained a decisive advantage over unprioritized Dyna-Q. Both systems made at most 

 backups per environmental interaction. 
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Figure 9.10:Prioritized sweeping significantly shortens learning time on the Dyna maze task for a 
wide range of grid resolutions. Reprinted from Peng and Williams (1993). 
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Figure 9.11:A rod-maneuvering task and its solution by prioritized sweeping. Reprinted from Moore 
and Atkeson (1993). 

 

Example 9.5: Rod Maneuvering   The objective in this task is to maneuver a rod around some 
awkwardly placed obstacles to a goal position in the fewest number of steps (Figure  9.11). The rod 
can be translated along its long axis or perpendicular to that axis, or it can be rotated in either 
direction around its center. The distance of each movement is approximately 1/20 of the work space, 
and the rotation increment is 10 degrees. Translations are deterministic and quantized to one of 

 positions. The figure shows the obstacles and the shortest solution from start to goal, found 
by prioritized sweeping. This problem is still deterministic, but has four actions and 14,400 potential 
states (some of these are unreachable because of the obstacles). This problem is probably too large to 
be solved with unprioritized methods. 

Prioritized sweeping is clearly a powerful idea, but the algorithms that have been developed so far 
appear not to extend easily to more interesting cases. The greatest problem is that the algorithms 
appear to rely on the assumption of discrete states. When a change occurs at one state, these methods 
perform a computation on all the predecessor states that may have been affected. If function 
approximation is used to learn the model or the value function, then a single backup could influence a 
great many other states. It is not apparent how these states could be identified or processed efficiently. 
On the other hand, the general idea of focusing search on the states believed to have changed in value, 
and then on their predecessors, seems intuitively to be valid in general. Additional research may 
produce more general versions of prioritized sweeping. 
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Extensions of prioritized sweeping to stochastic environments are relatively straightforward. The 
model is maintained by keeping counts of the number of times each state-action pair has been 
experienced and of what the next states were. It is natural then to backup each pair not with a sample 
backup, as we have been using so far, but with a full backup, taking into account all possible next 
states and their probabilities of occurring. 

     
Next: 9.5 Full vs. Sample Up: 9. Planning and Learning Previous: 9.3 When the Model   Contents 
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9.5 Full vs. Sample Backups 

The examples in the previous sections give some idea of the range of possibilities for combining methods of 
learning and planning. In the rest of this chapter, we analyze some of the component ideas involved, starting with 
the relative advantages of full and sample backups. 
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Figure 9.12:The one-step backups. 
 

Much of this book has been about different kinds of backups, and we have considered a great many varieties. 
Focusing for the moment on one-step backups, they vary primarily along three binary dimensions. The first two 
dimensions are whether they back up state values or action values and whether they estimate the value for the 
optimal policy or for an arbitrary given policy. These two dimensions give rise to four classes of backups for 

approximating the four value functions, , , , and . The other binary dimension is whether the backups 
are full backups, considering all possible events that might happen, or sample backups, considering a single 
sample of what might happen. These three binary dimensions give rise to eight cases, seven of which correspond 
to specific algorithms, as shown in Figure  9.12. (The eighth case does not seem to correspond to any useful 
backup.) Any of these one-step backups can be used in planning methods. The Dyna-Q agents discussed earlier 

use  sample backups, but they could just as well use  full backups, or either full or sample  backups. The 
Dyna-AC system uses  sample backups together with a learning policy structure. For stochastic problems, 
prioritized sweeping is always done using one of the full backups. 

When we introduced one-step sample backups in Chapter 6, we presented them as substitutes for full backups. In 
the absence of a distribution model, full backups are not possible, but sample backups can be done using sample 
transitions from the environment or a sample model. Implicit in that point of view is that full backups, if possible, 
are preferable to sample backups. But are they? Full backups certainly yield a better estimate because they are 
uncorrupted by sampling error, but they also require more computation, and computation is often the limiting 
resource in planning. To properly assess the relative merits of full and sample backups for planning we must 
control for their different computational requirements. 

For concreteness, consider the full and sample backups for approximating , and the special case of discrete 

states and actions, a table-lookup representation of the approximate value function, , and a model in the form of 

estimated state-transition probabilities, , and expected rewards, . The full backup for a state-action pair, 
, is:  

 

  
(9.1)

 
The corresponding sample backup for , given a sample next state, , is the Q-learning-like update:  
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(9.2)

 

where  is the usual positive step-size parameter and the model's expected value of the reward,  is used in 
place of the sample reward that is used in applying Q-learning without a model. 

The difference between these full and sample backups is significant to the extent that the environment is 
stochastic, specifically, to the extent that, given a state and action, many possible next states may occur with 
various probabilities. If only one next state is possible, then the full and sample backups given above are identical 
(taking ). If there are many possible next states, then there may be significant differences. In favor of the 

full backup is that it is an exact computation, resulting in a new  whose correctness is limited only by the 

correctness of the  at successor states. The sample backup is in addition affected by sampling error. On 
the other hand, the sample backup is cheaper computationally because it considers only one next state, not all 
possible next states. In practice, the computation required by backup operations is usually dominated by the 

number of state-action pairs at which  is evaluated. For a particular starting pair, , let  be the branching 

factor, the number of possible next states, , for which . Then a full backup of this pair requires roughly 
 times as much computation as a sample backup. 

If there is enough time to complete a full backup, then the resulting estimate is generally better than that of  
sample backups because of the absence of sampling error. But if there is insufficient time to complete a full 
backup, then sample backups are always preferable because they at least make some improvement in the value 
estimate with fewer than  backups. In a large problem with many state-action pairs, we are often in the latter 
situation. With so many state-action pairs, full backups of all of them would take a very long time. Before that we 
may be much better off with a few sample backups at many state-action pairs than with full backups at a few 
pairs. Given a unit of computational effort, is it better devoted to a few full backups or to -times as many sample 
backups? 

Figure  9.13 shows the results of an analysis that suggests an answer to this question. It shows the estimation error 
as a function of computation time for full and sample backups for a variety of branching factors, . The case 
considered is that in which all  successor states are equally likely and in which the error in the initial estimate is 
1. The values at the next states are assumed correct, so the full backup reduces the error to zero upon its 

completion. In this case, sample backups reduce the error according to  where  is the number of sample 

backups that have been performed (assuming sample averages, i.e., ). The key observation is that for 
moderately large  the error falls dramatically with a tiny fraction of  backups. For these cases, many state-action 
pairs could have their values improved dramatically, to within a few percent of the effect of a full backup, in the 
same time that one state-action pair could be backed up fully. 
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Figure 9.13:Comparison of efficiency of full and sample backups. 
 

The advantage of sample backups shown in Figure  9.13 is probably an underestimate of the real effect. In a real 
problem, the values of the successor states would themselves be estimates updated by backups. By causing 
estimates to be more accurate sooner, sample backups will have a second advantage in that the values backed up 
from the successor states will be more accurate. These results suggest that sample backups are likely to be 
superior to full backups on problems with large stochastic branching factors and too many states to be solved 
exactly. 

Exercise 9.5   The analysis above assumed that all of the  possible next states were equally likely to occur. 
Suppose instead that the distribution was highly skewed, that some of the  states were much more likely to occur 
than most. Would this strengthen or weaken the case for sample backups over full backups? Support your answer. 
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9.6 Trajectory Sampling 

In this section we compare two ways of distributing backups. The classical approach, from dynamic 
programming, is to perform sweeps through the entire state (or state-action) space, backing up each state (or 
state-action pair) once per sweep. This is problematic on large tasks because there may not be time to complete 
even one sweep. In many tasks the vast majority of the states are irrelevant because they are visited only under 
very poor policies or with very low probability. Exhaustive sweeps implicitly devote equal time to all parts of 
the state space rather than focusing where it is needed. As we discussed in Chapter 4, exhaustive sweeps and 
the equal treatment of all states that they imply are not necessary properties of dynamic programming. In 
principle, backups can be distributed any way one likes (to assure convergence, all states or state-action pairs 
must be visited in the limit an infinite number of times), but in practice exhaustive sweeps are often used. 

The second approach is to sample from the state or state-action space according to some distribution. One could 
sample uniformly, as in the Dyna-Q agent, but this would suffer from some of the same problems as exhaustive 
sweeps. More appealing is to distribute backups according to the on-policy distribution, that is, according to the 
distribution observed when following the current policy. One advantage of this distribution is that it is easily 
generated; one simply interacts with the model, following the current policy. In an episodic task, one starts in 
the start state (or according to the starting-state distribution) and simulates until the terminal state. In a 
continuing task, one starts anywhere and just keeps simulating. In either case, sample state transitions and 
rewards are given by the model, and sample actions are given by the current policy. In other words, one 
simulates explicit individual trajectories and performs backups at the state or state-action pairs encountered 
along the way. We call this way of generating experience and backups trajectory sampling. 

It is hard to imagine any efficient way of distributing backups according to the on-policy distribution other than 
by trajectory sampling. If one had an explicit representation of the on-policy distribution, then one could sweep 
through all states, weighting the backup of each according to the on-policy distribution, but this leaves us again 
with all the computational costs of exhaustive sweeps. Possibly one could sample and update individual state-
action pairs from the distribution, but even if this could be done efficiently, what benefit would this provide 
over simulating trajectories? Even knowing the on-policy distribution in an explicit form is unlikely. The 
distribution changes whenever the policy changes, and computing the distribution requires computation 
comparable to a complete policy evaluation. Consideration of such other possibilities makes trajectory 
sampling seem both efficient and elegant. 

Is the on-policy distribution of backups a good one? Intuitively it seems like a good choice, at least better than 
the uniform distribution. For example, if you are learning to play chess, you study positions that might arise in 
real games, not random positions of chess pieces. The latter may be valid states, but to be able to accurately 
value them is a different skill from evaluating positions in real games. We also know from the Chapter 8 that 
the on-policy distribution has significant advantages when function approximation is used. At the current time 
this is the only distribution for which we can guarantee convergence with general linear function 
approximation. Whether or not function approximation is used, one might expect on-policy focusing to 
significantly improve the speed of planning. 
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Figure 9.14:Relative efficiency of backups distributed uniformly across the state space versus focused on 
simulated on-policy trajectories. Results are for randomly generated tasks of two sizes and various branching 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node100.html (2 di 3)22/06/2005 9.10.11



9.6 Trajectory Sampling

factors, . 
 

Focusing on the on-policy distribution could be beneficial because it causes vast, uninteresting parts of the 
space to be ignored, or it could be detrimental because it causes the same old parts of the space to be backed up 
over and over. We conducted a small experiment to assess the effect empirically. To isolate the effect of the 
backup distribution, we used entirely one-step full tabular backups, as defined by (9.1). In the uniform case, we 
cycled through all state-action pairs, backing up each in place, and in the on-policy case we simulated episodes, 
backing up each state-action pair that occurred under the current -greedy policy ( ). The tasks were 

undiscounted episodic tasks, generated randomly as follows. From each of the  states, two actions were 
possible, each of which resulted in one of  next states, all equally likely, with a different random selection of  
states for each state-action pair. The branching factor, , was the same for all state-action pairs. In addition, on 
all transitions there was a 0.1 probability of transition to the terminal state, ending the episode. We used 
episodic tasks to get a clear measure of the quality of the current policy. At any point in the planning process 

one can stop and exhaustively compute , the true value of the start state under the greedy policy, , 

given the current action-value function, , as an indication of how well the agent would do on a new episode 
on which it acted greedily (all the while assuming the model is correct). 

The upper part of Figure  9.14 shows results averaged over 200 sample tasks with 1000 states and branching 
factors of 1, 3, and 10. The quality of the policies found is plotted as a function of the number of full backups 
completed. In all cases, sampling according to the on-policy distribution resulted in faster planning initially and 
retarded planning in the long run. The effect was stronger, and the initial period of faster planning was longer, 
at smaller branching factors. In other experiments, we found that these effects also became stronger as the 
number of states increased. For example, the lower part of Figure  9.14 shows results for a branching factor of 
1 for tasks with 10,000 states. In this case the advantage of on-policy focusing is large and long-lasting. 

All of these results make sense. In the short term, sampling according to the on-policy distribution helps by 
focusing on states that are near descendants of the start state. If there are many states and a small branching 
factor, this effect will be large and long-lasting. In the long run, focusing on the on-policy distribution may hurt 
because the commonly occurring states all already have their correct values. Sampling them is useless, whereas 
sampling other states may actually perform some useful work. This presumably is why the exhaustive, 
unfocused approach does better in the long run, at least for small problems. These results are not conclusive 
because they are only for problems generated in a particular, random way, but they do suggest that sampling 
according to the on-policy distribution can be a great advantage for large problems, in particulardirectly for 
problems in which a small subset of the state-action space is visited under the on-policy distribution. 

Exercise 9.6   Some of the graphs in Figure  9.14 seem to be scalloped in their early portions, particularly the 
upper graph for  and the uniform distribution. Why do you think this is? What aspects of the data shown 
support your hypothesis? 

Exercise 9.7 (programming)   If you have access to a moderately large computer, try replicating the 
experiment whose results are shown in the lower part of Figure  9.14. Then try the same experiment but with 

. Discuss the meaning of your results. 
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9.7 Heuristic Search 

The predominant state-space planning methods in artificial intelligence are collectively known as 
heuristic search. Although superficially different from the planning methods we have discussed so far 
in this chapter, heuristic search and some of its component ideas can be combined with these methods 
in useful ways. Unlike these methods, heuristic search is not concerned with changing the 
approximate, or "heuristic," value function, but only with making improved action selections given 
the current value function. In other words, heuristic search is planning as part of a policy 
computation. 

In heuristic search, for each state encountered, a large tree of possible continuations is considered. 
The approximate value function is applied to the leaf nodes and then backed up toward the current 
state at the root. The backing up within the search tree is just the same as in the max-backups (those 

for  and ) discussed throughout this book. The backing up stops at the state-action nodes for the 
current state. Once the backed-up values of these nodes are computed, the best of them is chosen as 
the current action, and then all backed-up values are discarded. 

In conventional heuristic search no effort is made to save the backed-up values by changing the 
approximate value function. In fact, the value function is generally designed by people and never 
changed as a result of search. However, it is natural to consider allowing the value function to be 
improved over time, using either the backed-up values computed during heuristic search or any of the 
other methods presented throughout this book. In a sense we have taken this approach all along. Our 

greedy and -greedy action-selection methods are not unlike heuristic search, albeit on a smaller 
scale. For example, to compute the greedy action given a model and a state-value function, we must 
look ahead from each possible action to each possible next state, backup the rewards and estimated 
values, and then pick the best action. Just as in conventional heuristic search, this process computes 
backed-up values of the possible actions, but does not attempt to save them. Thus, heuristic search 
can be viewed as an extension of the idea of a greedy policy beyond a single step. 

The point of searching deeper than one step is to obtain better action selections. If one has a perfect 
model and an imperfect action-value function, then in fact deeper search will usually yield better 
policies.9.1 Certainly, if the search is all the way to the end of the episode, then the effect of the 
imperfect value function is eliminated, and the action determined in this way must be optimal. If the 

search is of sufficient depth  such that  is very small, then the actions will be correspondingly near 
optimal. On the other hand, the deeper the search, the more computation is required, usually resulting 
in a slower response time. A good example is provided by Tesauro's grandmaster-level backgammon 

player, TD-Gammon (Section 11.1). This system used TD( ) to learn an afterstate value function 
through many games of self-play, using a form of heuristic search to make its moves. As a model, TD-
Gammon used a priori knowledge of the probabilities of dice rolls and the assumption that the 
opponent always selected the actions that TD-Gammon rated as best for it. Tesauro found that the 
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deeper the heuristic search, the better the moves made by TD-Gammon, but the longer it took to make 
each move. Backgammon has a large branching factor, yet moves must be made within a few 
seconds. It was only feasible to search ahead selectively a few steps, but even so the search resulted in 
significantly better action selections. 

So far we have emphasized heuristic search as an action-selection technique, but this may not be its 
most important aspect. Heuristic search also suggests ways of selectively distributing backups that 
may lead to better and faster approximation of the optimal value function. A great deal of research on 
heuristic search has been devoted to making the search as efficient as possible. The search tree is 
grown selectively, deeper along some lines and shallower along others. For example, the search tree 
is often deeper for the actions that seem most likely to be best, and shallower for those that the agent 
will probably not want to take anyway. Can we use a similar idea to improve the distribution of 
backups? Perhaps it can be done by preferentially updating state-action pairs whose values appear to 
be close to the maximum available from the state. To our knowledge, this and other possibilities for 
distributing backups based on ideas borrowed from heuristic search have not yet been explored. 

We should not overlook the most obvious way in which heuristic search focuses backups: on the 
current state. Much of the effectiveness of heuristic search is due to its search tree being tightly 
focused on the states and actions that might immediately follow the current state. You may spend 
more of your life playing chess than checkers, but when you play checkers, it pays to think about 
checkers and about your particular checkers position, your likely next moves, and successor positions. 
However you select actions, it is these states and actions that are of highest priority for backups and 
where you most urgently want your approximate value function to be accurate. Not only should your 
computation be preferentially devoted to imminent events, but so should your limited memory 
resources. In chess, for example, there are far too many possible positions to store distinct value 
estimates for each of them, but chess programs based on heuristic search can easily store distinct 
estimates for the millions of positions they encounter looking ahead from a single position. This great 
focusing of memory and computational resources on the current decision is presumably the reason 
why heuristic search can be so effective. 

The distribution of backups can be altered in similar ways to focus on the current state and its likely 
successors. As a limiting case we might use exactly the methods of heuristic search to construct a 
search tree, and then perform the individual, one-step backups from bottom up, as suggested by 
Figure  9.15. If the backups are ordered in this way and a table-lookup representation is used, then 
exactly the same backup would be achieved as in heuristic search. Any state-space search can be 
viewed in this way as the piecing together of a large number of individual one-step backups. Thus, the 
performance improvement observed with deeper searches is not due to the use of multistep backups 
as such. Instead, it is due to the focus and concentration of backups on states and actions immediately 
downstream from the current state. By devoting a large amount of computation specifically relevant 
to the candidate actions, a much better decision can be made than by relying on unfocused backups. 
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Figure 9.15:The deep backups of heuristic search can be implemented as a sequence of one-step 
backups (shown here outlined). The ordering shown is for a selective depth-first search. 
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9.8 Summary 

We have presented a perspective emphasizing the surprisingly close relationships between planning 
optimal behavior and learning optimal behavior. Both involve estimating the same value functions, 
and in both cases it is natural to update the estimates incrementally, in a long series of small backup 
operations. This makes it straightforward to integrate learning and planning processes simply by 
allowing both to update the same estimated value function. In addition, any of the learning methods 
can be converted into planning methods simply by applying them to simulated (model-generated) 
experience rather than to real experience. In this case learning and planning become even more 
similar; they are possibly identical algorithms operating on two different sources of experience. 

It is straightforward to integrate incremental planning methods with acting and model-learning. 
Planning, acting, and model-learning interact in a circular fashion (Figure  9.2), each producing what 
the other needs to improve; no other interaction among them is either required or prohibited. The 
most natural approach is for all processes to proceed asynchronously and in parallel. If the processes 
must share computational resources, then the division can be handled almost arbitrarily--by whatever 
organization is most convenient and efficient for the task at hand. 

In this chapter we have touched upon a number of dimensions of variation among state-space 
planning methods. One of the most important of these is the distribution of backups, that is, of the 
focus of search. Prioritized sweeping focuses on the predecessors of states whose values have 
recently changed. Heuristic search applied to reinforcement learning focuses, inter alia, on the 
successors of the current state. Trajectory sampling is a convenient way of focusing on the on-policy 
distribution. All of these approaches can significantly speed planning and are current topics of 
research. 

Another interesting dimension of variation is the size of backups. The smaller the backups, the more 
incremental the planning methods can be. Among the smallest backups are one-step sample backups. 
We presented one study suggesting that one-step sample backups may be preferable on very large 
problems. A related issue is the depth of backups. In many cases deep backups can be implemented 
as sequences of shallow backups. 
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9.9 Bibliographical and Historical Remarks 

9.1 

The overall view of planning and learning presented here has developed gradually over a number of 
years, in part by the authors (Sutton, 1990, 1991a, 1991b; Barto, Bradtke, and Singh, 1991, 1995; 
Sutton and Pinette, 1985; Sutton and Barto, 1981b); it has been strongly influenced by Agre and 
Chapman (1990; Agre 1988), Bertsekas and Tsitsiklis (1989), Singh (1993), and others. The authors 
were also strongly influenced by psychological studies of latent learning (Tolman, 1932) and by 
psychological views of the nature of thought (e.g., Galanter and Gerstenhaber, 1956; Craik, 1943; 
Campbell, 1960; Dennett, 1978). 

9.2-3 

The terms direct and indirect, which we use to describe different kinds of reinforcement learning, are 
from the adaptive control literature (e.g., Goodwin and Sin, 1984), where they are used to make the 
same kind of distinction. The term system identification is used in adaptive control for what we call 
model-learning (e.g., Goodwin and Sin, 1984; Ljung and Söderstrom, 1983; Young, 1984). The Dyna 
architecture is due to Sutton (1990), and the results in these sections are based on results reported 
there. 

9.4 

Prioritized sweeping was developed simultaneously and independently by Moore and Atkeson (1993) 
and Peng and Williams (1993). The results in Figure  9.10 are due to Peng and Williams (1993). The 
results in Figure  9.11 are due to Moore and Atkeson. 
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9.5 

This section was strongly influenced by the experiments of Singh (1993). 

9.7 

For further reading on heuristic search, the reader is encouraged to consult texts and surveys such as 
those by Russell and Norvig (1995) and Korf (1988). Peng and Williams (1993) explored a forward 
focusing of backups much as is suggested in this section. 
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10. Dimensions of Reinforcement Learning 

In this book we have tried to present reinforcement learning not as a collection of individual methods, 
but as a coherent set of ideas cutting across methods. Each idea can be viewed as a dimension along 
which methods vary. The set of such dimensions spans a large space of possible methods. By 
exploring this space at the level of dimensions we hope to obtain the broadest and most lasting 
understanding. In this chapter we use the concept of dimensions in method space to recapitulate the 
view of reinforcement learning we have developed in this book and to identify some of the more 
important gaps in our coverage of the field. 
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●     10.1 The Unified View 
●     10.2 Other Frontier Dimensions 
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10.1 The Unified View 

All of the reinforcement learning methods we have explored in this book have three key ideas in 
common. First, the objective of all of them is the estimation of value functions. Second, all operate by 
backing up values along actual or possible state trajectories. Third, all follow the general strategy of 
generalized policy iteration (GPI), meaning that they maintain an approximate value function and an 
approximate policy, and they continually try to improve each on the basis of the other. These three 
ideas that the methods have in common circumscribe the subject covered in this book. We suggest 
that value functions, backups, and GPI are powerful organizing principles potentially relevant to any 
model of intelligence. 

Two of the most important dimensions along which the methods vary are shown in Figure  10.1. 
These dimensions have to do with the kind of backup used to improve the value function. The 
vertical dimension is whether they are sample backups (based on a sample trajectory) or full backups 
(based on a distribution of possible trajectories). Full backups of course require a model, whereas 
sample backups can be done either with or without a model (another dimension of variation). The 
horizontal dimension corresponds to the depth of backups, that is, to the degree of bootstrapping. At 
three of the four corners of the space are the three primary methods for estimating values: DP, TD, 
and Monte Carlo. Along the lower edge of the space are the sample-backup methods, ranging from 
one-step TD backups to full-return Monte Carlo backups. Between these is a spectrum including 

methods based on -step backups and mixtures of -step backups such as the -backups 
implemented by eligibility traces. 
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Figure 10.1:A slice of the space of reinforcement learning methods. 
 

DP methods are shown in the extreme upper-left corner of the space because they involve one-step 
full backups. The upper-right corner is the extreme case of full backups so deep that they run all the 
way to terminal states (or, in a continuing task, until discounting has reduced the contribution of any 
further rewards to a negligible level). This is the case of exhaustive search. Intermediate methods 
along this dimension include heuristic search and related methods that search and backup up to a 
limited depth, perhaps selectively. There are also methods that are intermediate along the vertical 
dimension. These include methods that mix full and sample backups, as well as the possibility of 
methods that mix samples and distributions within a single backup. The interior of the square is filled 
in to represent the space of all such intermediate methods. 

A third important dimension is that of function approximation. Function approximation can be 
viewed as an orthogonal spectrum of possibilities ranging from tabular methods at one extreme 
through state aggregation, a variety of linear methods, and then a diverse set of nonlinear methods. 
This third dimension might be visualized as perpendicular to the plane of the page in Figure  10.1. 

Another dimension that we heavily emphasized in this book is the binary distinction between on-
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policy and off-policy methods. In the former case, the agent learns the value function for the policy it 
is currently following, whereas in the latter case it learns the value function for the policy that it 
currently thinks is best. These two policies are often different because of the need to explore. The 
interaction between this dimension and the bootstrapping and function approximation dimension 
discussed in Chapter 8 illustrates the advantages of analyzing the space of methods in terms of 
dimensions. Even though this did involve an interaction between three dimensions, many other 
dimensions were found to be irrelevant, greatly simplifying the analysis and increasing its 
significance. 

In addition to the four dimensions just discussed, we have identified a number of others throughout 
the book: 

Definition of return
Is the task episodic or continuing, discounted or undiscounted? 

Action values vs. state values vs. afterstate values
What kind of values should be estimated? If only state values are estimated, then either a 
model or a separate policy (as in actor-critic methods) is required for action selection. 

Action selection/exploration
How are actions selected to ensure a suitable trade-off between exploration and exploitation? 

We have considered only the simplest ways to do this: -greedy and softmax action selection, 
and optimistic initialization of values. 

Synchronous vs. asynchronous
Are the backups for all states performed simultaneously or one by one in some order? 

Replacing vs. accumulating traces
If eligibility traces are used, which kind is most appropriate? 

Real vs. simulated
Should one backup real experience or simulated experience? If both, how much of each? 

Location of backups
What states or state-action pairs should be backed up? Modelfree methods can choose only 
among the states and state-action pairs actually encountered, but model-based methods can 
choose arbitrarily. There are many potent possibilities here. 

Timing of backups
Should backups be done as part of selecting actions, or only afterward? 

Memory for backups
How long should backed-up values be retained? Should they be retained permanently, or only 
while computing an action selection, as in heuristic search? 

Of course, these dimensions are neither exhaustive nor mutually exclusive. Individual algorithms 
differ in many other ways as well, and many algorithms lie in several places along several 
dimensions. For example, Dyna methods use both real and simulated experience to affect the same 
value function. It is also perfectly sensible to maintain multiple value functions computed in different 
ways or over different state and action representations. These dimensions do, however, constitute a 
coherent set of ideas for describing and exploring a wide space of possible methods. 
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10.2 Other Frontier Dimensions 

Much research remains to be done within this space of reinforcement learning methods. For example, 
even for the tabular case no control method using multistep backups has been proved to converge to 
an optimal policy. Among planning methods, basic ideas such as trajectory sampling and focusing 
sample backups are almost completely unexplored. On closer inspection, parts of the space will 
undoubtedly turn out to have far greater complexity and greater internal structure than is now 
apparent. There are also other dimensions along which reinforcement learning can be extended, we 
have not yet mentioned, that lead to a much larger space of methods. Here we identify some of these 
dimensions and note some of the open questions and frontiers that have been left out of the preceding 
chapters. 

One of the most important extensions of reinforcement learning beyond what we have treated in this 
book is to eliminate the requirement that the state representation have the Markov property. There are 
a number of interesting approaches to the non-Markov case. Most strive to construct from the given 
state signal and its past values a new signal that is Markov, or more nearly Markov. For example, one 
approach is based on the theory of partially observable MDPs (POMDPs). POMDPs are finite MDPs 
in which the state is not observable, but another "sensation" signal stochastically related to the state is 
observable. The theory of POMDPs has been extensively studied for the case of complete knowledge 
of the dynamics of the POMDP. In this case, Bayesian methods can be used to compute at each time 
step the probability of the environment's being in each state of the underlying MDP. This probability 
distribution can then be used as a new state signal for the original problem. The downside for the 
Bayesian POMDP approach is its computational expense and its strong reliance on complete 
environment models. Some of the recent work pursuing this approach is by Littman, Cassandra, and 
Kaelbling (1995), Parr and Russell (1995), and Chrisman (1992). If we are not willing to assume a 
complete model of a POMDP's dynamics, then existing theory seems to offer little guidance. 
Nevertheless, one can still attempt to construct a Markov state signal from the sequence of sensations. 
Various statistical and ad hoc methods along these lines have been explored (e.g., McCallum, 1992, 
1993, 1995; Lin and Mitchell, 1992; Chapman and Kaelbling, 1991; Moore, 1994; Rivest and 
Schapire, 1987; Colombetti and Dorigo, 1994; Whitehead and Ballard, 1991; Hochreiter and 
Schmidhuber, 1997). 

All of the above methods involve constructing an improved state representation from the non-Markov 
one provided by the environment. Another approach is to leave the state representation unchanged 
and use methods that are not too adversely affected by its being non-Markov (e.g., Singh, Jaakkola, 
and Jordan, 1994, 1995; Jaakkola, Singh and Jordan, 1995). In fact, most function approximation 
methods can be viewed in this way. For example, state aggregation methods for function 
approximation are in effect equivalent to a non-Markov representation in which all members of a set 
of states are mapped into a common sensation. There are other parallels between the issues of 
function approximation and non-Markov representations. In both cases the overall problem divides 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node106.html (1 di 3)22/06/2005 9.10.21



10.2 Other Frontier Dimensions

into two parts: constructing an improved representation, and making do with the current 
representation. In both cases the "making do" part is relatively well understood, whereas the 
constructive part is unclear and wide open. At this point we can only guess as to whether or not these 
parallels point to any common solution methods for the two problems. 

Another important direction for extending reinforcement learning beyond what we have covered in 
this book is to incorporate ideas of modularity and hierarchy. Introductory reinforcement learning is 
about learning value functions and one-step models of the dynamics of the environment. But much of 
what people learn does not seem to fall exactly into either of these categories. For example, consider 
what we know about tying our shoes, making a phone call, or traveling to London. Having learned 
how to do such things, we are then able to choose among them and plan as if they were primitive 
actions. What we have learned in order to do this are not conventional value functions or one-step 
models. We are able to plan and learn at a variety of levels and flexibly interrelate them. Much of our 
learning appears not to be about learning values directly, but about preparing us to quickly estimate 
values later in response to new situations or new information. Considerable reinforcement learning 
research has been directed at capturing such abilities (e.g., Watkins, 1989; Dayan and Hinton, 1993; 
Singh, 1992a, 1992b; Ring, 1994, Kaelbling, 1993b; Sutton, 1995). 

Researchers have also explored ways of using the structure of particular tasks to advantage. For 
example, many problems have state representations that are naturally lists of variables, like the 
readings of multiple sensors or actions that are lists of component actions. The independence or near 
independence of some variables from others can sometimes be exploited to obtain more efficient 
special forms of reinforcement learning algorithms. It is sometimes even possible to decompose a 
problem into several independent subproblems that can be solved by separate learning agents. A 
reinforcement learning problem can usually be structured in many different ways, some reflecting 
natural aspects of the problem, such as the existence of physical sensors, and others being the result 
of explicit attempts to decompose the problem into simpler subproblems. Possibilities for exploiting 
structure in reinforcement learning and related planning problems have been studied by many 
researchers (e.g., Boutilier, Dearden, and Goldszmidt, 1995; Dean and Lin, 1995). There are also 
related studies of multiagent or distributed reinforcement learning (e.g., Littman, 1994; Markey, 
1994; Crites and Barto, 1996; Tan, 1993). 

Finally, we want to emphasize that reinforcement learning is meant to be a general approach to 
learning from interaction. It is general enough not to require special-purpose teachers and domain 
knowledge, but also general enough to utilize such things if they are available. For example, it is 
often possible to accelerate reinforcement learning by giving advice or hints to the agent (Clouse and 
Utgoff, 1992; Maclin and Shavlik, 1994) or by demonstrating instructive behavioral trajectories (Lin, 
1992). Another way to make learning easier, related to "shaping" in psychology, is to give the 
learning agent a series of relatively easy problems building up to the harder problem of ultimate 
interest (e.g., Selfridge, Sutton, and Barto, 1985). These methods, and others not yet developed, have 
the potential to give the machine-learning terms training and teaching new meanings that are closer 
to their meanings for animal and human learning. 
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11. Case Studies 

In this final chapter we present a few case studies of reinforcement learning. Several of these are 
substantial applications of potential economic significance. One, Samuel's checkers player, is 
primarily of historical interest. Our presentations are intended to illustrate some of the trade-offs and 
issues that arise in real applications. For example, we emphasize how domain knowledge is 
incorporated into the formulation and solution of the problem. We also highlight the representation 
issues that are so often critical to successful applications. The algorithms used in some of these case 
studies are substantially more complex than those we have presented in the rest of the book. 
Applications of reinforcement learning are still far from routine and typically require as much art as 
science. Making applications easier and more straightforward is one of the goals of current research 
in reinforcement learning. 

 

Subsections 

●     11.1 TD-Gammon 
●     11.2 Samuel's Checkers Player 
●     11.3 The Acrobot 
●     11.4 Elevator Dispatching 
●     11.5 Dynamic Channel Allocation 
●     11.6 Job-Shop Scheduling 

 

Mark Lee 2005-01-04 

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node107.html22/06/2005 9.10.22



11.1 TD-Gammon

     
Next: 11.2 Samuel's Checkers Player Up: 11. Case Studies Previous: 11. Case Studies   Contents  
 

11.1 TD-Gammon 

One of the most impressive applications of reinforcement learning to date is that by Gerry Tesauro to 
the game of backgammon (Tesauro, 1992, 1994, 1995). Tesauro's program, TD-Gammon, required 
little backgammon knowledge, yet learned to play extremely well, near the level of the world's 
strongest grandmasters. The learning algorithm in TD-Gammon was a straightforward combination 

of the TD( ) algorithm and nonlinear function approximation using a multilayer neural network 
trained by backpropagating TD errors. 

Backgammon is a major game in the sense that it is played throughout the world, with numerous 
tournaments and regular world championship matches. It is in part a game of chance, and it is a 
popular vehicle for waging significant sums of money. There are probably more professional 
backgammon players than there are professional chess players. The game is played with 15 white and 
15 black pieces on a board of 24 locations, called points. Figure  11.1 shows a typical position early 
in the game, seen from the perspective of the white player. 

 

  

Figure 11.1:A backgammon position 
 

In this figure, white has just rolled the dice and obtained a 5 and a 2. This means that he can move 
one of his pieces 5 steps and one (possibly the same piece) 2 steps. For example, he could move two 
pieces from the 12 point, one to the 17 point, and one to the 14 point. White's objective is to advance 
all of his pieces into the last quadrant (points 19-24) and then off the board. The first player to 
remove all his pieces wins. One complication is that the pieces interact as they pass each other going 
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in different directions. For example, if it were black's move in Figure  11.1, he could use the dice roll 
of 2 to move a piece from the 24 point to the 22 point, "hitting" the white piece there. Pieces that 
have been hit are placed on the "bar" in the middle of the board (where we already see one previously 
hit black piece), from whence they reenter the race from the start. However, if there are two pieces on 
a point, then the opponent cannot move to that point; the pieces are protected from being hit. Thus, 
white cannot use his 5-2 dice roll to move either of his pieces on the 1 point, because their possible 
resulting points are occupied by groups of black pieces. Forming contiguous blocks of occupied 
points to block the opponent is one of the elementary strategies of the game. 

Backgammon involves several further complications, but the above description gives the basic idea. 
With 30 pieces and 24 possible locations (26, counting the bar and off-the-board) it should be clear 
that the number of possible backgammon positions is enormous, far more than the number of 
memory elements one could have in any physically realizable computer. The number of moves 
possible from each position is also large. For a typical dice roll there might be 20 different ways of 
playing. In considering future moves, such as the response of the opponent, one must consider the 
possible dice rolls as well. The result is that the game tree has an effective branching factor of about 
400. This is far too large to permit effective use of the conventional heuristic search methods that 
have proved so effective in games like chess and checkers. 

On the other hand, the game is a good match to the capabilities of TD learning methods. Although the 
game is highly stochastic, a complete description of the game's state is available at all times. The 
game evolves over a sequence of moves and positions until finally ending in a win for one player or 
the other, ending the game. The outcome can be interpreted as a final reward to be predicted. On the 
other hand, the theoretical results we have described so far cannot be usefully applied to this task. 
The number of states is so large that a lookup table cannot be used, and the opponent is a source of 
uncertainty and time variation. 

TD-Gammon used a nonlinear form of TD( ). The estimated value, , of any state (board 
position)  was meant to estimate the probability of winning starting from state . To achieve this, 
rewards were defined as zero for all time steps except those on which the game is won. To implement 
the value function, TD-Gammon used a standard multilayer neural network, much as shown in 
Figure  11.2. (The real network had two additional units in its final layer to estimate the probability of 
each player's winning in a special way called a "gammon" or "backgammon.") The network consisted 
of a layer of input units, a layer of hidden units, and a final output unit. The input to the network was 
a representation of a backgammon position, and the output was an estimate of the value of that 
position. 
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Figure 11.2:The neural network used in TD-Gammon 
 

In the first version of TD-Gammon, TD-Gammon 0.0, backgammon positions were represented to the 
network in a relatively direct way that involved little backgammon knowledge. It did, however, 
involve substantial knowledge of how neural networks work and how information is best presented to 
them. It is instructive to note the exact representation Tesauro chose. There were a total of 198 input 
units to the network. For each point on the backgammon board, four units indicated the number of 
white pieces on the point. If there were no white pieces, then all four units took on the value zero. If 
there was one piece, then the first unit took on the value 1. If there were two pieces, then both the 
first and the second unit were 1. If there were three or more pieces on the point, then all of the first 
three units were 1. If there were more than three pieces, the fourth unit also came on, to a degree 
indicating the number of additional pieces beyond three. Letting  denote the total number of pieces 

on the point, if , then the fourth unit took on the value . With four units for white 
and four for black at each of the 24 points, that made a total of 192 units. Two additional units 

encoded the number of white and black pieces on the bar (each took the value , where  is the 
number of pieces on the bar), and two more encoded the number of black and white pieces already 

successfully removed from the board (these took the value , where  is the number of pieces 
already borne off). Finally, two units indicated in a binary fashion whether it was white's or black's 
turn to move. The general logic behind these choices should be clear. Basically, Tesauro tried to 
represent the position in a straightforward way, making little attempt to minimize the number of 
units. He provided one unit for each conceptually distinct possibility that seemed likely to be 
relevant, and he scaled them to roughly the same range, in this case between 0 and 1. 

Given a representation of a backgammon position, the network computed its estimated value in the 
standard way. Corresponding to each connection from an input unit to a hidden unit was a real-valued 
weight. Signals from each input unit were multiplied by their corresponding weights and summed at 

the hidden unit. The output, , of hidden unit  was a nonlinear sigmoid function of the weighted 
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sum:  
 

 

 

where  is the value of the th input unit and  is the weight of its connection to the th hidden 
unit. The output of the sigmoid is always between 0 and 1, and has a natural interpretation as a 
probability based on a summation of evidence. The computation from hidden units to the output unit 
was entirely analogous. Each connection from a hidden unit to the output unit had a separate weight. 
The output unit formed the weighted sum and then passed it through the same sigmoid nonlinearity. 

TD-Gammon used the gradient-descent form of the TD( ) algorithm described in Section 8.2, with 
the gradients computed by the error backpropagation algorithm (Rumelhart, Hinton, and Williams, 
1986). Recall that the general update rule for this case is  
 

  
(11.1)

 

where  is the vector of all modifiable parameters (in this case, the weights of the network) and  is 

a vector of eligibility traces, one for each component of , updated by  
 

 

 

with . The gradient in this equation can be computed efficiently by the backpropagation 

procedure. For the backgammon application, in which  and the reward is always zero except 

upon winning, the TD error portion of the learning rule is usually just , as 
suggested in Figure  11.2. 

To apply the learning rule we need a source of backgammon games. Tesauro obtained an unending 
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sequence of games by playing his learning backgammon player against itself. To choose its moves, 
TD-Gammon considered each of the 20 or so ways it could play its dice roll and the corresponding 
positions that would result. The resulting positions are afterstates as discussed in Section 6.8. The 
network was consulted to estimate each of their values. The move was then selected that would lead 
to the position with the highest estimated value. Continuing in this way, with TD-Gammon making 
the moves for both sides, it was possible to easily generate large numbers of backgammon games. 
Each game was treated as an episode, with the sequence of positions acting as the states, 

. Tesauro applied the nonlinear TD rule (11.1) fully incrementally, that is, after each 
individual move. 

The weights of the network were set initially to small random values. The initial evaluations were 
thus entirely arbitrary. Since the moves were selected on the basis of these evaluations, the initial 
moves were inevitably poor, and the initial games often lasted hundreds or thousands of moves 
before one side or the other won, almost by accident. After a few dozen games however, performance 
improved rapidly. 

After playing about 300,000 games against itself, TD-Gammon 0.0 as described above learned to 
play approximately as well as the best previous backgammon computer programs. This was a striking 
result because all the previous high-performance computer programs had used extensive 
backgammon knowledge. For example, the reigning champion program at the time was, arguably, 
Neurogammon, another program written by Tesauro that used a neural network but not TD learning. 
Neurogammon's network was trained on a large training corpus of exemplary moves provided by 
backgammon experts, and, in addition, started with a set of features specially crafted for 
backgammon. Neurogammon was a highly tuned, highly effective backgammon program that 
decisively won the World Backgammon Olympiad in 1989. TD-Gammon 0.0, on the other hand, was 
constructed with essentially zero backgammon knowledge. That it was able to do as well as 
Neurogammon and all other approaches is striking testimony to the potential of self-play learning 
methods. 

The tournament success of TD-Gammon 0.0 with zero backgammon knowledge suggested an 
obvious modification: add the specialized backgammon features but keep the self-play TD learning 
method. This produced TD-Gammon 1.0. TD-Gammon 1.0 was clearly substantially better than all 
previous backgammon programs and found serious competition only among human experts. Later 
versions of the program, TD-Gammon 2.0 (40 hidden units) and TD-Gammon 2.1 (80 hidden units), 
were augmented with a selective two-ply search procedure. To select moves, these programs looked 
ahead not just to the positions that would immediately result, but also to the opponent's possible dice 
rolls and moves. Assuming the opponent always took the move that appeared immediately best for 
him, the expected value of each candidate move was computed and the best was selected. To save 
computer time, the second ply of search was conducted only for candidate moves that were ranked 
highly after the first ply, about four or five moves on average. Two-ply search affected only the 
moves selected; the learning process proceeded exactly as before. The most recent version of the 
program, TD-Gammon 3.0, uses 160 hidden units and a selective three-ply search. TD-Gammon 
illustrates the combination of learned value functions and decide-time search as in heuristic search 
methods. In more recent work, Tesauro and Galperin (1997) have begun exploring trajectory 
sampling methods as an alternative to search. 
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Table 11.1:Summary of TD-Gammon Results

Program Hidden Training Opponents Results

Units Games 

TD-Gam 
0.0 

40 300,000 other programs tied for best 

TD-Gam 
1.0 

80 300,000 Robertie, Magriel, ...  pts / 51 games

TD-Gam 
2.0 

40 800,000 various Grandmasters  pts / 38 games 

TD-Gam 
2.1 

80 1,500,000 Robertie  pt / 40 games

TD-Gam 
3.0 

80 1,500,000 Kazaros  pts / 20 games

 
Tesauro was able to play his programs in a significant number of games against world-class human 
players. A summary of the results is given in Table 11.1. Based on these results and analyses by 
backgammon grandmasters (Robertie, 1992; see Tesauro, 1995), TD-Gammon 3.0 appears to be at, 
or very near, the playing strength of the best human players in the world. It may already be the world 
champion. These programs have already changed the way the best human players play the game. For 
example, TD-Gammon learned to play certain opening positions differently than was the convention 
among the best human players. Based on TD-Gammon's success and further analysis, the best human 
players now play these positions as TD-Gammon does (Tesauro, 1995). 

     
Next: 11.2 Samuel's Checkers Player Up: 11. Case Studies Previous: 11. Case Studies   Contents 
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11.2 Samuel's Checkers Player 

An important precursor to Tesauro's TD-Gammon was the seminal work of Arthur Samuel (1959, 
1967) in constructing programs for learning to play checkers. Samuel was one of the first to make 
effective use of heuristic search methods and of what we would now call temporal-difference 
learning. His checkers players are instructive case studies in addition to being of historical interest. 
We emphasize the relationship of Samuel's methods to modern reinforcement learning methods and 
try to convey some of Samuel's motivation for using them. 

Samuel first wrote a checkers-playing program for the IBM 701 in 1952. His first learning program 
was completed in 1955 and was demonstrated on television in 1956. Later versions of the program 
achieved good, though not expert, playing skill. Samuel was attracted to game-playing as a domain 
for studying machine learning because games are less complicated than problems "taken from life" 
while still allowing fruitful study of how heuristic procedures and learning can be used together. He 
chose to study checkers instead of chess because its relative simplicity made it possible to focus more 
strongly on learning. 

Samuel's programs played by performing a lookahead search from each current position. They used 
what we now call heuristic search methods to determine how to expand the search tree and when to 
stop searching. The terminal board positions of each search were evaluated, or "scored," by a value 
function, or "scoring polynomial," using linear function approximation. In this and other respects 
Samuel's work seems to have been inspired by the suggestions of Shannon (1950). In particular, 
Samuel's program was based on Shannon's minimax procedure to find the best move from the current 
position. Working backward through the search tree from the scored terminal positions, each position 
was given the score of the position that would result from the best move, assuming that the machine 
would always try to maximize the score, while the opponent would always try to minimize it. Samuel 
called this the backed-up score of the position. When the minimax procedure reached the search tree's 
root--the current position--it yielded the best move under the assumption that the opponent would be 
using the same evaluation criterion, shifted to its point of view. Some versions of Samuel's programs 
used sophisticated search control methods analogous to what are known as "alpha-beta" cutoffs (e.g., 
see Pearl, 1984). 

Samuel used two main learning methods, the simplest of which he called rote learning. It consisted 
simply of saving a description of each board position encountered during play together with its 
backed-up value determined by the minimax procedure. The result was that if a position that had 
already been encountered were to occur again as a terminal position of a search tree, the depth of the 
search was effectively amplified since this position's stored value cached the results of one or more 
searches conducted earlier. One initial problem was that the program was not encouraged to move 
along the most direct path to a win. Samuel gave it a "a sense of direction" by decreasing a position's 
value a small amount each time it was backed up a level (called a ply) during the minimax analysis. 
"If the program is now faced with a choice of board positions whose scores differ only by the ply 
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number, it will automatically make the most advantageous choice, choosing a low-ply alternative if 
winning and a high-ply alternative if losing" (Samuel, 1959, p. 80). Samuel found this discounting-
like technique essential to successful learning. Rote learning produced slow but continuous 
improvement that was most effective for opening and endgame play. His program became a "better-
than-average novice" after learning from many games against itself, a variety of human opponents, 
and from book games in a supervised learning mode. 

Rote learning and other aspects of Samuel's work strongly suggest the essential idea of temporal-
difference learning--that the value of a state should equal the value of likely following states. Samuel 
came closest to this idea in his second learning method, his "learning by generalization" procedure for 
modifying the parameters of the value function. Samuel's method was the same in concept as that 
used much later by Tesauro in TD-Gammon. He played his program many games against another 
version of itself and performed a backup operation after each move. The idea of Samuel's backup is 
suggested by the diagram in Figure  11.3. Each open circle represents a position where the program 
moves next, an on-move position, and each solid circle represents a position where the opponent 
moves next. A backup was made to the value of each on-move position after a move by each side, 
resulting in a second on-move position. The backup was toward the minimax value of a search 
launched from the second on-move position. Thus, the overall effect was that of a backup consisting 
of one full move of real events and then a search over possible events, as suggested by Figure  11.3. 
Samuel's actual algorithm was significantly more complex than this for computational reasons, but 
this was the basic idea. 

 

  

Figure 11.3:The backup diagram for Samuel's checkers player. 
 

Samuel did not include explicit rewards. Instead, he fixed the weight of the most important feature, 
the piece advantage feature, which measured the number of pieces the program had relative to how 
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many its opponent had, giving higher weight to kings, and including refinements so that it was better 
to trade pieces when winning than when losing. Thus, the goal of Samuel's program was to improve 
its piece advantage, which in checkers is highly correlated with winning. 

However, Samuel's learning method may have been missing an essential part of a sound temporal-
difference algorithm. Temporal-difference learning can be viewed as a way of making a value 
function consistent with itself, and this we can clearly see in Samuel's method. But also needed is a 
way of tying the value function to the true value of the states. We have enforced this via rewards and 
by discounting or giving a fixed value to the terminal state. But Samuel's method included no rewards 
and no special treatment of the terminal positions of games. As Samuel himself pointed out, his value 
function could have become consistent merely by giving a constant value to all positions. He hoped 
to discourage such solutions by giving his piece-advantage term a large, nonmodifiable weight. But 
although this may decrease the likelihood of finding useless evaluation functions, it does not prohibit 
them. For example, a constant function could still be attained by setting the modifiable weights so as 
to cancel the effect of the nonmodifiable one. 

Since Samuel's learning procedure was not constrained to find useful evaluation functions, it should 
have been possible for it to become worse with experience. In fact, Samuel reported observing this 
during extensive self-play training sessions. To get the program improving again, Samuel had to 
intervene and set the weight with the largest absolute value back to zero. His interpretation was that 
this drastic intervention jarred the program out of local optima, but another possibility is that it jarred 
the program out of evaluation functions that were consistent but had little to do with winning or 
losing the game. 

Despite these potential problems, Samuel's checkers player using the generalization learning method 
approached "better-than-average" play. Fairly good amateur opponents characterized it as "tricky but 
beatable" (Samuel, 1959). In contrast to the rote-learning version, this version was able to develop a 
good middle game but remained weak in opening and endgame play. This program also included an 
ability to search through sets of features to find those that were most useful in forming the value 
function. A later version (Samuel, 1967) included refinements in its search procedure, such as alpha-
beta pruning, extensive use of a supervised learning mode called "book learning," and hierarchical 
lookup tables called signature tables (Griffith, 1966) to represent the value function instead of linear 
function approximation. This version learned to play much better than the 1959 program, though still 
not at a master level. Samuel's checkers-playing program was widely recognized as a significant 
achievement in artificial intelligence and machine learning. 
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11.3 The Acrobot 

Reinforcement learning has been applied to a wide variety of physical control tasks (e.g., for a collection of 
robotics applications, see Connell and Mahadevan, 1993). One such task is the acrobot, a two-link, underactuated 
robot roughly analogous to a gymnast swinging on a high bar (Figure  11.4). The first joint (corresponding to the 
gymnast's hands on the bar) cannot exert torque, but the second joint (corresponding to the gymnast bending at the 
waist) can. The system has four continuous state variables: two joint positions and two joint velocities. The 
equations of motion are given in Figure  11.5. This system has been widely studied by control engineers (e.g., 
Spong, 1994) and machine-learning researchers (e.g., Dejong and Spong, 1994; Boone, 1997). 

 

  

Figure 11.4:The acrobot. 
 
 

  

Figure 11.5:The equations of motions of the simulated acrobot. A time step of 0.05 seconds was used in the 
simulation, with actions chosen after every four time steps. The torque applied at the second joint is denoted by 
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. There were no constraints on the joint positions, but the angular velocities were limited to 

and . The constants were (masses of the links), 
(lengths of links), (lengths to center of mass of links), (moments of inertia of links), 

and (gravity). 
 

One objective for controlling the acrobot is to swing the tip (the "feet") above the first joint by an amount equal to 
one of the links in minimum time. In this task, the torque applied at the second joint is limited to three choices: 
positive torque of a fixed magnitude, negative torque of the same magnitude, or no torque. A reward of  is given 

on all time steps until the goal is reached, which ends the episode. No discounting is used ( ). Thus, the 

optimal value, , of any state, , is the minimum time to reach the goal (an integer number of steps) starting 
from . 

Sutton (1996) addressed the acrobot swing-up task in an on-line, modelfree context. Although the acrobot was 
simulated, the simulator was not available for use by the agent/controller in any way. The training and interaction 
were just as if a real, physical acrobot had been used. Each episode began with both links of the acrobot hanging 
straight down and at rest. Torques were applied by the reinforcement learning agent until the goal was reached, 
which always happened eventually. Then the acrobot was restored to its initial rest position and a new episode was 
begun. 

The learning algorithm used was Sarsa( ) with linear function approximation, tile coding, and replacing traces as 
in Figure 8.8. With a small, discrete action set, it is natural to use a separate set of tilings for each action. The next 
choice is of the continuous variables with which to represent the state. A clever designer would probably represent 
the state in terms of the angular position and velocity of the center of mass and of the second link, which might 
make the solution simpler and consistent with broad generalization. But since this was just a test problem, a more 

naive, direct representation was used in terms of the positions and velocities of the links: , and . The 
two angles are restricted to a limited range by the physics of the acrobot (see Figure  11.5) and the two angles are 

naturally restricted to . Thus, the state space in this task is a bounded rectangular region in four dimensions. 

This leaves the question of what tilings to use. There are many possibilities, as discussed in Chapter 8. One is to use 
a complete grid, slicing the four-dimensional space along all dimensions, and thus into many small four-
dimensional tiles. Alternatively, one could slice along only one of the dimensions, making hyperplanar stripes. In 
this case one has to pick which dimension to slice along. And of course in all cases one has to pick the width of the 
slices, the number of tilings of each kind, and, if there are multiple tilings, how to offset them. One could also slice 
along pairs or triplets of dimensions to get other tilings. For example, if one expected the velocities of the two links 
to interact strongly in their effect on value, then one might make many tilings that sliced along both of these 
dimensions. If one thought the region around zero velocity was particularly critical, then the slices could be more 
closely spaced there. 

Sutton used tilings that sliced in a variety of simple ways. Each of the four dimensions was divided into six equal 
intervals. A seventh interval was added to the angular velocities so that tilings could be offset by a random fraction 
of an interval in all dimensions (see Chapter 8, subsection "Tile Coding"). Of the total of 48 tilings, 12 sliced along 
all four dimensions as discussed above, dividing the space into  tiles each. Another 12 
tilings sliced along three dimensions (3 randomly offset tilings each for each of the 4 sets of three dimensions), and 
another 12 sliced along two dimensions (2 tilings for each of the 6 sets of two dimensions. Finally, a set of 12 
tilings depended each on only one dimension (3 tilings for each of the 4 dimensions). This resulted in a total of 
approximately  tiles for each action. This number is small enough that hashing was not necessary. All 
tilings were offset by a random fraction of an interval in all relevant dimensions. 
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The remaining parameters of the learning algorithm were , , , and . The use of 
a greedy policy ( ) seemed preferable on this task because long sequences of correct actions are needed to do 
well. One exploratory action could spoil a whole sequence of good actions. Exploration was ensured instead by 
starting the action values optimistically, at the low value of 0. As discussed in Section 2.7 and Example 8.2, this 
makes the agent continually disappointed with whatever rewards it initially experiences, driving it to keep trying 
new things. 

 

  

Figure 11.6:Learning curves for Sarsa( ) on the acrobot task. 
 

Figure  11.6 shows learning curves for the acrobot task and the learning algorithm described above. Note from the 
single-run curve that single episodes were sometimes extremely long. On these episodes, the acrobot was usually 
spinning repeatedly at the second joint while the first joint changed only slightly from vertical down. Although this 
often happened for many time steps, it always eventually ended as the action values were driven lower. All runs 
ended with an efficient policy for solving the problem, usually lasting about 75 steps. A typical final solution is 
shown in Figure  11.7. First the acrobot pumps back and forth several times symmetrically, with the second link 
always down. Then, once enough energy has been added to the system, the second link is swung upright and 
stabbed to the goal height. 
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Figure 11.7:A typical learned behavior of the acrobot. Each group is a series of consecutive positions, the thicker 
line being the first. The arrow indicates the torque applied at the second joint. 
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11.4 Elevator Dispatching 

Waiting for an elevator is a situation with which we are all familiar. We press a button and then wait for an elevator to arrive 
traveling in the right direction. We may have to wait a long time if there are too many passengers or not enough elevators. Just how 
long we wait depends on the dispatching strategy the elevators use to decide where to go. For example, if passengers on several 
floors have requested pickups, which should be served first? If there are no pickup requests, how should the elevators distribute 
themselves to await the next request? Elevator dispatching is a good example of a stochastic optimal control problem of economic 
importance that is too large to solve by classical techniques such as dynamic programming. 

Crites and Barto (1996; Crites, 1996) studied the application of reinforcement learning techniques to the four-elevator, ten-floor 
system shown in Figure  11.8. Along the right-hand side are pickup requests and an indication of how long each has been waiting. 
Each elevator has a position, direction, and speed, plus a set of buttons to indicate where passengers want to get off. Roughly 
quantizing the continuous variables, Crites and Barto estimated that the system has over  states. This large state set rules out 
classical dynamic programming methods such as value iteration. Even if one state could be backed up every microsecond it would 
still require over 1000 years to complete just one sweep through the state space. 

 

  

Figure 11.8:Four elevators in a ten-story building. 
 

In practice, modern elevator dispatchers are designed heuristically and evaluated on simulated buildings. The simulators are quite 
sophisticated and detailed. The physics of each elevator car is modeled in continuous time with continuous state variables. 
Passenger arrivals are modeled as discrete, stochastic events, with arrival rates varying frequently over the course of a simulated 
day. Not surprisingly, the times of greatest traffic and greatest challenge to the dispatching algorithm are the morning and evening 
rush hours. Dispatchers are generally designed primarily for these difficult periods. 

The performance of elevator dispatchers is measured in several different ways, all with respect to an average passenger entering the 
system. The average waiting time is how long the passenger waits before getting on an elevator, and the average system time is how 
long the passenger waits before being dropped off at the destination floor. Another frequently encountered statistic is the percentage 
of passengers whose waiting time exceeds 60 seconds. The objective that Crites and Barto focused on is the average squared 
waiting time. This objective is commonly used because it tends to keep the waiting times low while also encouraging fairness in 
serving all the passengers. 

Crites and Barto applied a version of one-step Q-learning augmented in several ways to take advantage of special features of the 
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problem. The most important of these concerned the formulation of the actions. First, each elevator made its own decisions 
independently of the others. Second, a number of constraints were placed on the decisions. An elevator carrying passengers could 
not pass by a floor if any of its passengers wanted to get off there, nor could it reverse direction until all of its passengers wanting to 
go in its current direction had reached their floors. In addition, a car was not allowed to stop at a floor unless someone wanted to get 
on or off there, and it could not stop to pick up passengers at a floor if another elevator was already stopped there. Finally, given a 
choice between moving up or down, the elevator was constrained always to move up (otherwise evening rush hour traffic would 
tend to push all the elevators down to the lobby). These last three constraints were explicitly included to provide some prior 
knowledge and make the problem easier. The net result of all these constraints was that each elevator had to make few and simple 
decisions. The only decision that had to be made was whether or not to stop at a floor that was being approached and that had 
passengers waiting to be picked up. At all other times, no choices needed to be made. 

That each elevator made choices only infrequently permitted a second simplification of the problem. As far as the learning agent 
was concerned, the system made discrete jumps from one time at which it had to make a decision to the next. When a continuous-
time decision problem is treated as a discrete-time system in this way it is known as a semi-Markov decision process. To a large 
extent, such processes can be treated just like any other Markov decision process by taking the reward on each discrete transition as 
the integral of the reward over the corresponding continuous-time interval. The notion of return generalizes naturally from a 
discounted sum of future rewards to a discounted integral of future rewards:  
 

 

 
where  on the left is the usual immediate reward in discrete time and  on the right is the instantaneous reward at continuous 
time . In the elevator problem the continuous-time reward is the negative of the sum of the squared waiting times of all 

waiting passengers. The parameter  plays a role similar to that of the discount-rate parameter . 

The basic idea of the extension of Q-learning to semi-Markov decision problems can now be explained. Suppose the system is in 
state  and takes action  at time , and then the next decision is required at time  in state . After this discrete-event transition, 

the semi-Markov Q-learning backup for a tabular action-value function, , would be:  
 

 

 
Note how  acts as a variable discount factor that depends on the amount of time between events. This method is due to 
Bradtke and Duff (1995). 

One complication is that the reward as defined--the negative sum of the squared waiting times--is not something that would 
normally be known while an actual elevator was running. This is because in a real elevator system one does not know how many 
people are waiting at a floor, only how long it has been since the button requesting a pickup on that floor was pressed. Of course 
this information is known in a simulator, and Crites and Barto used it to obtain their best results. They also experimented with 
another technique that used only information that would be known in an on-line learning situation with a real set of elevators. In 
this case one can use how long since each button has been pushed together with an estimate of the arrival rate to compute an 
expected summed squared waiting time for each floor. Using this in the reward measure proved nearly as effective as using the 
actual summed squared waiting time. 

For function approximation, a nonlinear neural network trained by backpropagation was used to represent the action-value function. 
Crites and Barto experimented with a wide variety of ways of representing states to the network. After much exploration, their best 
results were obtained using networks with 47 input units, 20 hidden units, and two output units, one for each action. The way the 
state was encoded by the input units was found to be critical to the effectiveness of the learning. The 47 input units were as follows: 
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●     18 units: Two units encoded information about each of the nine hall buttons for down pickup requests. A real-valued unit 
encoded the elapsed time if the button had been pushed, and a binary unit was on if the button had not been pushed. 

●     16 units: A unit for each possible location and direction for the car whose decision was required. Exactly one of these units 
was on at any given time. 

●     10 units: The location of the other elevators superimposed over the 10 floors. Each elevator had a "footprint'' that depended 
on its direction and speed. For example, a stopped elevator caused activation only on the unit corresponding to its current 
floor, but a moving elevator caused activation on several units corresponding to the floors it was approaching, with the 
highest activations on the closest floors. No information was provided about which one of the other cars was at a particular 
location. 

●     1 unit: This unit was on if the elevator whose decision was required was at the highest floor with a passenger waiting. 
●     1 unit: This unit was on if the elevator whose decision was required was at the floor with the passenger who had been 

waiting for the longest amount of time. 
●     1 unit: Bias unit was always on. 

Two architectures were used. In RL1, each elevator was given its own action-value function and its own neural network. In RL2, 
there was only one network and one action-value function, with the experiences of all four elevators contributing to learning in the 
one network. In both cases, each elevator made its decisions independently of the other elevators, but shared a single reward signal 
with them. This introduced additional stochasticity as far as each elevator was concerned because its reward depended in part on the 
actions of the other elevators, which it could not control. In the architecture in which each elevator had its own action-value 
function, it was possible for different elevators to learn different specialized strategies (although in fact they tended to learn the 
same strategy). On the other hand, the architecture with a common action-value function could learn faster because it learned 
simultaneously from the experiences of all elevators. Training time was an issue here, even though the system was trained in 
simulation. The reinforcement learning methods were trained for about four days of computer time on a 100 mips processor 
(corresponding to about 60,000 hours of simulated time). While this is a considerable amount of computation, it is negligible 
compared with what would be required by any conventional dynamic programming algorithm. 

The networks were trained by simulating a great many evening rush hours while making dispatching decisions using the 
developing, learned action-value functions. Crites and Barto used the Gibbs softmax procedure to select actions as described in 
Section 2.3, reducing the "temperature" gradually over training. A temperature of zero was used during test runs on which the 
performance of the learned dispatchers was assessed. 

 

  

Figure 11.9:Comparison of elevator dispatchers. The SECTOR dispatcher is similar to what is used in many actual elevator 
systems. The RL1 and RL2 dispatchers were constructed through reinforcement learning. 

 

Figure  11.9 shows the performance of several dispatchers during a simulated evening rush hour, what researchers call down-peak 
traffic. The dispatchers include methods similar to those commonly used in the industry, a variety of heuristic methods, 
sophisticated research algorithms that repeatedly run complex optimization algorithms on-line (Bao et al., 1994), and dispatchers 
learned by using the two reinforcement learning architectures. By all of the performance measures, the reinforcement learning 
dispatchers compare favorably with the others. Although the optimal policy for this problem is unknown, and the state of the art is 
difficult to pin down because details of commercial dispatching strategies are proprietary, these learned dispatchers appeared to 
perform very well. 
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11.5 Dynamic Channel Allocation 

An important problem in the operation of a cellular telephone system is how to efficiently use the 
available bandwidth to provide good service to as many customers as possible. This problem is 
becoming critical with the rapid growth in the use of cellular telephones. Here we describe a study 
due to Singh and Bertsekas (1997) in which they applied reinforcement learning to this problem. 

Mobile telephone systems take advantage of the fact that a communication channel--a band of 
frequencies--can be used simultaneously by many callers if these callers are spaced physically far 
enough apart that their calls do not interfere with each another. The minimum distance at which there 
is no interference is called the channel reuse constraint. In a cellular telephone system, the service 
area is divided into a number of regions called cells. In each cell is a base station that handles all the 
calls made within the cell. The total available bandwidth is divided permanently into a number of 
channels. Channels must then be allocated to cells and to calls made within cells without violating the 
channel reuse constraint. There are a great many ways to do this, some of which are better than others 
in terms of how reliably they make channels available to new calls, or to calls that are "handed off" 
from one cell to another as the caller crosses a cell boundary. If no channel is available for a new or a 
handed-off call, the call is lost, or blocked. Singh and Bertsekas considered the problem of allocating 
channels so that the number of blocked calls is minimized. 

A simple example provides some intuition about the nature of the problem. Imagine a situation with 
three cells sharing two channels. The three cells are arranged in a line where no two adjacent cells 
can use the same channel without violating the channel reuse constraint. If the left cell is serving a 
call on channel 1 while the right cell is serving another call on channel 2, as in the left diagram 
below, then any new call arriving in the middle cell must be blocked. 

 
 

 

 
Obviously, it would be better for both the left and the right cells to use channel 1 for their calls. Then 
a new call in the middle cell could be assigned channel 2, as in the right diagram, without violating 
the channel reuse constraint. Such interactions and possible optimizations are typical of the channel 
assignment problem. In larger and more realistic cases with many cells, channels, and calls, and 
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uncertainty about when and where new calls will arrive or existing calls will have to be handed off, 
the problem of allocating channels to minimize blocking can become extremely complex. 

The simplest approach is to permanently assign channels to cells in such a way that the channel reuse 
constraint can never be violated even if all channels of all cells are used simultaneously. This is 
called a fixed assignment method. In a dynamic assignment method, in contrast, all channels are 
potentially available to all cells and are assigned to cells dynamically as calls arrive. If this is done 
right, it can take advantage of temporary changes in the spatial and temporal distribution of calls in 
order to serve more users. For example, when calls are concentrated in a few cells, these cells can be 
assigned more channels without increasing the blocking rate in the lightly used cells. 

The channel assignment problem can be formulated as a semi-Markov decision process much as the 
elevator dispatching problem was in the previous section. A state in the semi-MDP formulation has 
two components. The first is the configuration of the entire cellular system that gives for each cell the 
usage state (occupied or unoccupied) of each channel for that cell. A typical cellular system with 49 
cells and 70 channels has a staggering  configurations, ruling out the use of conventional 
dynamic programming methods. The other state component is an indicator of what kind of event 
caused a state transition: arrival, departure, or handoff. This state component determines what kinds 
of actions are possible. When a call arrives, the possible actions are to assign it a free channel or to 
block it if no channels are available. When a call departs, that is, when a caller hangs up, the system 
is allowed to reassign the channels in use in that cell in an attempt to create a better configuration. At 
time  the immediate reward, , is the number of calls taking place at that time, and the return is  
 

 

 
where  plays a role similar to that of the discount-rate parameter . Maximizing the 
expectation of this return is the same as minimizing the expected (discounted) number of calls 
blocked over an infinite horizon. 

This is another problem greatly simplified if treated in terms of afterstates (Section 6.8). For each 
state and action, the immediate result is a new configuration, an afterstate. A value function is learned 
over just these configurations. To select among the possible actions, the resulting configuration was 
determined and evaluated. The action was then selected that would lead to the configuration of 
highest estimated value. For example, when a new call arrived at a cell, it could be assigned to any of 
the free channels, if there were any; otherwise, it had to be blocked. The new configuration that 
would result from each assignment was easy to compute because it was always a simple deterministic 
consequence of the assignment. When a call terminated, the newly released channel became available 
for reassigning to any of the ongoing calls. In this case, the actions of reassigning each ongoing call 
in the cell to the newly released channel were considered. An action was then selected leading to the 
configuration with the highest estimated value. 
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Linear function approximation was used for the value function: the estimated value of a configuration 
was a weighted sum of features. Configurations were represented by two sets of features: an 
availability feature for each cell and a packing feature for each cell-channel pair. For any 
configuration, the availability feature for a cell gave the number of additional calls it could accept 
without conflict if the rest of the cells were frozen in the current configuration. For any given 
configuration, the packing feature for a cell-channel pair gave the number of times that channel was 
being used in that configuration within a four-cell radius of that cell. All of these features were 
normalized to lie between  and 1. A semi-Markov version of linear TD(0) was used to update the 
weights. 

Singh and Bertsekas compared three channel allocation methods using a simulation of a  cellular 
array with 70 channels. The channel reuse constraint was that calls had to be 3 cells apart to be 
allowed to use the same channel. Calls arrived at cells randomly according to Poisson distributions 
possibly having different means for different cells, and call durations were determined randomly by 
an exponential distribution with a mean of three minutes. The methods compared were a fixed 
assignment method (FA), a dynamic allocation method called "borrowing with directional channel 
locking" (BDCL), and the reinforcement learning method (RL). BDCL (Zhang and Yum, 1989) was 
the best dynamic channel allocation method they found in the literature. It is a heuristic method that 
assigns channels to cells as in FA, but channels can be borrowed from neighboring cells when 
needed. It orders the channels in each cell and uses this ordering to determine which channels to 
borrow and how calls are dynamically reassigned channels within a cell. 

Figure  11.10 shows the blocking probabilities of these methods for mean arrival rates of 150, 200, 
and 300 calls/hour as well as for a case in which different cells had different mean arrival rates. The 
reinforcement learning method learned on-line. The data shown are for its asymptotic performance, 
but in fact learning was rapid. The RL method blocked calls less frequently than did the other 
methods for all arrival rates and soon after starting to learn. Note that the differences between the 
methods decreased as the call arrival rate increased. This is to be expected because as the system gets 
saturated with calls there are fewer opportunities for a dynamic allocation method to set up favorable 
usage patterns. In practice, however, it is the performance of the unsaturated system that is most 
important. For marketing reasons, cellular telephone systems are built with enough capacity that more 
than 10% blocking is rare. 
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Figure 11.10:Performance of FA, BDCL, and RL channel allocation methods for different mean call 
arrival rates. 

 

Nie and Haykin (1996) also studied the application of reinforcement learning to dynamic channel 
allocation. They formulated the problem somewhat differently than Singh and Bertsekas did. Instead 
of trying to minimize the probability of blocking a call directly, their system tried to minimize a more 
indirect measure of system performance. Cost was assigned to patterns of channel use depending on 
the distances between calls using the same channels. Patterns in which channels were being used by 
multiple calls that were close to each other were favored over patterns in which channel-sharing calls 
were far apart. Nie and Haykin compared their system with a method called MAXAVAIL (Sivarajan, 
McEliece, and Ketchum, 1990), considered to be one of the best dynamic channel allocation 
methods. For each new call, it selects the channel that maximizes the total number of channels 
available in the entire system. Nie and Haykin showed that the blocking probability achieved by their 
reinforcement learning system was closely comparable to that of MAXAVAIL under a variety of 
conditions in a 49-cell, 70-channel simulation. A key point, however, is that the allocation policy 
produced by reinforcement learning can be implemented on-line much more efficiently than 
MAXAVAIL, which requires so much on-line computation that it is not feasible for large systems. 

The studies we described in this section are so recent that the many questions they raise have not yet 
been answered. We can see, though, that there can be different ways to apply reinforcement learning 
to the same real-world problem. In the near future, we expect to see many refinements of these 
applications, as well as many new applications of reinforcement learning to problems arising in 
communication systems. 
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11.6 Job-Shop Scheduling 

Many jobs in industry and elsewhere require completing a collection of tasks while satisfying temporal and 
resource constraints. Temporal constraints say that some tasks have to be finished before others can be started; 
resource constraints say that two tasks requiring the same resource cannot be done simultaneously (e.g., the same 
machine cannot do two tasks at once). The objective is to create a schedule specifying when each task is to begin 
and what resources it will use that satisfies all the constraints while taking as little overall time as possible. This is 
the job-shop scheduling problem. In its general form, it is NP-complete, meaning that there is probably no 
efficient procedure for exactly finding shortest schedules for arbitrary instances of the problem. Job-shop 
scheduling is usually done using heuristic algorithms that take advantage of special properties of each specific 
instance. 

Zhang and Dietterich (1995, 1996; Zhang, 1996) were motivated to apply reinforcement learning to job-shop 
scheduling because the design of domain-specific, heuristic algorithms can be expensive and time-consuming. 
Their goal was to show how reinforcement learning can be used to learn how to quickly find constraint-satisfying 
schedules of short duration in specific domains, thereby reducing the amount of hand engineering required. They 
addressed the NASA space shuttle payload processing problem (SSPP), which requires scheduling the tasks 
required for installation and testing of shuttle cargo bay payloads. An SSPP typically requires scheduling for two 
to six shuttle missions, each requiring between 34 and 164 tasks. An example of a task is MISSION-SEQUENCE-
TEST, which has a duration of 7200 time units and requires the following resources: two quality control officers, 
two technicians, one ATE, one SPCDS, and one HITS. Some resources are divided into pools, and if a task needs 
more than one resource of a specific type, the resources must belong to the same pool, and the pool has to be the 
right one. For example, if a task needs two quality control officers, they both have to be in the pool of quality 
control officers working on the same shift at the right site. It is not too hard to find a conflict-free schedule for a 
job, one that meets all the temporal and resource constraints, but the objective is to find a conflict-free schedule 
with the shortest possible total duration, which is much more difficult. 

How can you do this using reinforcement learning? Job-shop scheduling is usually formulated as a search in the 
space of schedules, what is called a discrete, or combinatorial, optimization problem. A typical solution method 
would sequentially generate schedules, attempting to improve each over its predecessor in terms of constraint 
violations and duration (a hill-climbing, or local search, method). You could think of this as a nonassociative 
reinforcement learning problem of the type we discussed in Chapter 2 with a very large number of possible 
actions: all the possible schedules! But aside from the problem of having so many actions, any solution obtained 
this way would just be a single schedule for a single job instance. In contrast, what Zhang and Dietterich wanted 
their learning system to end up with was a policy that could quickly find good schedules for any SSPP. They 
wanted it to learn a skill for job-shop scheduling in this specific domain. 

For clues about how to do this, they looked to an existing optimization approach to SSPP, in fact, the one actually 
in use by NASA at the time of their research: the iterative repair method developed by Zweben and Daun (1994). 
The starting point for the search is a critical path schedule, a schedule that meets the temporal constraints but 
ignores the resource constraints. This schedule can be constructed efficiently by scheduling each task prior to 
launch as late as the temporal constraints permit, and each task after landing as early as these constraints permit. 
Resource pools are assigned randomly. Two types of operators are used to modify schedules. They can be applied 
to any task that violates a resource constraint. A REASSIGN-POOL operator changes the pool assigned to one of 
the task's resources. This type of operator applies only if it can reassign a pool so that the resource requirement is 
satisfied. A MOVE operator moves a task to the first earlier or later time at which its resource needs can be 
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satisfied and uses the critical path method to reschedule all of the task's temporal dependents. 

At each step of the iterative repair search, one operator is applied to the current schedule, selected according to 
the following rules. The earliest task with a resource constraint violation is found, and a REASSIGN-POOL 
operator is applied to this task if possible. If more than one applies, that is, if several different pool reassignments 
are possible, one is selected at random. If no REASSIGN-POOL operator applies, then a MOVE operator is selected 
at random based on a heuristic that prefers short-distance moves of tasks having few temporal dependents and 
whose resource requirements are close to the task's overallocation. After an operator is applied, the number of 
constraint violations of the resulting schedule is determined. A simulated annealing procedure is used decide 
whether to accept or reject this new schedule. If  denotes the number of constraint violations removed by the 

repair, then the new schedule is accepted with probability , where  is the current computational 
temperature that is gradually decreased throughout the search. If accepted, the new schedule becomes the current 
schedule for the next iteration; otherwise, the algorithm attempts to repair the old schedule again, which will 
usually produce different results due to the random decisions involved. Search stops when all constraints are 
satisfied. Short schedules are obtained by running the algorithm several times and selecting the shortest of the 
resulting conflict-free schedules. 

Zhang and Dietterich treated entire schedules as states in the sense of reinforcement learning. The actions were 
the applicable REASSIGN-POOL and MOVE operators, typically numbering about 20. The problem was treated as 
episodic, each episode starting with the same critical path schedule that the iterative repair algorithm would start 
with and ending when a schedule was found that did not violate any constraint. The initial state--a critical path 
schedule--is denoted . The rewards were designed to promote the quick construction of conflict-free schedules 
of short duration. The system received a small negative reward ( ) on each step that resulted in a schedule 
that still violated a constraint. This encouraged the agent to find conflict-free schedules quickly, that is, with a 
small number of repairs to . Encouraging the system to find short schedules is more difficult because what it 
means for a schedule to be short depends on the specific SSPP instance. The shortest schedule for a difficult 
instance, one with a lot of tasks and constraints, will be longer than the shortest schedule for a simpler instance. 
Zhang and Dietterich devised a formula for a resource dilation factor (RDF), intended to be an instance-
independent measure of a schedule's duration. To account for an instance's intrinsic difficulty, the formula makes 
use of a measure of the resource overallocation of . Since longer schedules tend to produce larger RDFs, the 
negative of the RDF of the final conflict-free schedule was used as a reward at the end of each episode. With this 
reward function, if it takes  repairs starting from a schedule  to obtain a final conflict-free schedule, , the 

return from  is . 

This reward function was designed to try to make a system learn to satisfy the two goals of finding conflict-free 
schedules of short duration and finding conflict-free schedules quickly. But the reinforcement learning system 
really has only one goal--maximizing expected return--so the particular reward values determine how a learning 
system will tend to trade off these two goals. Setting the immediate reward to the small value of  means 
that the learning system will regard one repair, one step in the scheduling process, as being worth  units of 
RDF. So, for example, if from some schedule it is possible to produce a conflict-free schedule with one repair or 
with two, an optimal policy will take extra repair only if it promises a reduction in final RDF of more than . 

Zhang and Dietterich used TD( ) to learn the value function. Function approximation was by a multilayer neural 

network trained by backpropagating TD errors. Actions were selected by an -greedy policy, with  decreasing 
during learning. One-step lookahead search was used to find the greedy action. Their knowledge of the problem 
made it easy to predict the schedules that would result from each repair operation. They experimented with a 
number of modifications to this basic procedure to improve its performance. One was to use the TD( ) algorithm 
backward after each episode, with the eligibility trace extending to future rather than to past states. Their results 
suggested that this was more accurate and efficient than forward learning. In updating the weights of the network, 
they also sometimes performed multiple weight updates when the TD error was large. This is apparently 
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equivalent to dynamically varying the step-size parameter in an error-dependent way during learning. 

They also tried an experience replay technique due to Lin (1992). At any point in learning, the agent remembered 
the best episode up to that point. After every four episodes, it replayed this remembered episode, learning from it 
as if it were a new episode. At the start of training, they similarly allowed the system to learn from episodes 
generated by a good scheduler, and these could also be replayed later in learning. To make the lookahead search 
faster for large-scale problems, which typically had a branching factor of about 20, they used a variant they called 
random sample greedy search that estimated the greedy action by considering only random samples of actions, 
increasing the sample size until a preset confidence was reached that the greedy action of the sample was the true 
greedy action. Finally, having discovered that learning could be slowed considerably by excessive looping in the 
scheduling process, they made their system explicitly check for loops and alter action selections when a loop was 
detected. Although all of these techniques could improve the efficiency of learning, it is not clear how crucial all 
of them were for the success of the system. 

Zhang and Dietterich experimented with two different network architectures. In the first version of their system, 
each schedule was represented using a set of 20 handcrafted features. To define these features, they studied small 
scheduling problems to find features that had some ability to predict RDF. For example, experience with small 
problems showed that only four of the resource pools tended to cause allocation problems. The mean and standard 
deviation of each of these pools' unused portions over the entire schedule were computed, resulting in 10 real-
valued features. Two other features were the RDF of the current schedule and the percentage of its duration 
during which it violated resource constraints. The network had 20 input units, one for each feature, a hidden layer 
of 40 sigmoidal units, and an output layer of 8 sigmoidal units. The output units coded the value of a schedule 
using a code in which, roughly, the location of the activity peak over the 8 units represented the value. Using the 
appropriate TD error, the network weights were updated using error backpropagation, with the multiple weight-
update technique mentioned above. 

The second version of the system (Zhang and Dietterich, 1996) used a more complicated time-delay neural 
network (TDNN) borrowed from the field of speech recognition (Lang, Waibel, and Hinton, 1990). This version 
divided each schedule into a sequence of blocks (maximal time intervals during which tasks and resource 
assignments did not change) and represented each block by a set of features similar to those used in the first 
program. It then scanned a set of "kernel" networks across the blocks to create a set of more abstract features. 
Since different schedules had different numbers of blocks, another layer averaged these abstract features over 
each third of the blocks. Then a final layer of 8 sigmoidal output units represented the schedule's value using the 
same code as in the first version of the system. In all, this network had 1123 adjustable weights. 

A set of 100 artificial scheduling problems was constructed and divided into subsets used for training, 
determining when to stop training (a validation set), and final testing. During training they tested the system on 
the validation set after every 100 episodes and stopped training when performance on the validation set stopped 
changing, which generally took about 10,000 episodes. They trained networks with different values of  (0.2 and 
0.7), with three different training sets, and they saved both the final set of weights and the set of weights 
producing the best performance on the validation set. Counting each set of weights as a different network, this 
produced 12 networks, each of which corresponded to a different scheduling algorithm. 

Figure  11.11 shows how the mean performance of the 12 TDNN networks (labeled G12TDN) compared with the 
performances of two versions of Zweben and Daun's iterative repair algorithm, one using the number of 
constraint violations as the function to be minimized by simulated annealing (IR-V) and the other using the RDF 
measure (IR-RDF). The figure also shows the performance of the first version of their system that did not use a 
TDNN (G12N). The mean RDF of the best schedule found by repeatedly running an algorithm is plotted against 
the total number of schedule repairs (using a log scale). These results show that the learning system produced 
scheduling algorithms that needed many fewer repairs to find conflict-free schedules of the same quality as those 
found by the iterative repair algorithms. Figure  11.12 compares the computer time required by each scheduling 
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algorithm to find schedules of various RDFs. According to this measure of performance, the best trade-off 
between computer time and schedule quality is produced by the non-TDNN algorithm (G12N). The TDNN 
algorithm (G12TDN) suffered due to the time it took to apply the kernel-scanning process, but Zhang and 
Dietterich point out that there are many ways to make it run faster. 

 

  

Figure 11.11:Comparison of accepted schedule repairs. Reprinted with permission from Zhang and Dietterich, 
1996. 
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Figure 11.12:Comparison of CPU time. Reprinted with permission from Zhang and Dietterich, 1996. 
 

These results do not unequivocally establish the utility of reinforcement learning for job-shop scheduling or for 
other difficult search problems. But they do suggest that it is possible to use reinforcement learning methods to 
learn how to improve the efficiency of search. Zhang and Dietterich's job-shop scheduling system is the first 
successful instance of which we are aware in which reinforcement learning was applied in plan-space, that is, in 
which states are complete plans (job-shop schedules in this case), and actions are plan modifications. This is a 
more abstract application of reinforcement learning than we are used to thinking about. Note that in this 
application the system learned not just to efficiently create one good schedule, a skill that would not be 
particularly useful; it learned how to quickly find good schedules for a class of related scheduling problems. It is 
clear that Zhang and Dietterich went through a lot of trial-and-error learning of their own in developing this 
example. But remember that this was a groundbreaking exploration of a new aspect of reinforcement learning. 
We expect that future applications of this kind and complexity will become more routine as experience 
accumulates. 
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Footnotes

... selection.2.1

The difference between instruction and evaluation can be clarified by contrasting two types of 
function optimization algorithms. One type is used when information about the gradient of the 
function being minimized (or maximized) is directly available. The gradient instructs the 
algorithm as to how it should move in the search space. The errors used by many supervised 
learning algorithms are gradients (or approximate gradients). The other type of optimization 
algorithm uses only function values, corresponding to evaluative information, and has to 
actively probe the function at additional points in the search space in order to decide where to 
go next. Classical examples of these types of algorithms are, respectively, the Robbins-Monro 
and the Kiefer-Wolfowitz stochastic approximation algorithms (see, e.g., Kashyap, Blaydon, 
and Fu, 1970). 
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... probability.2.2

Our description is actually a considerable simplification of these learning automata 
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algorithms. For example, they are defined as well for  and often use a different step-
size parameter on success and on failure. Nevertheless, the limitations identified in this section 
still apply. 
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.

... agent.3.1

We use the terms agent, environment, and action instead of the engineers' terms controller, 
controlled system (or plant), and control signal because they are meaningful to a wider 
audience. 
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... .3.2

We restrict attention to discrete time to keep things as simple as possible, even though many 
of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 
1996; Werbos, 1992; Doya, 1996). 
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... .3.3

We use  instead of  to denote the immediate reward due to the action taken at time  
because it emphasizes that the next reward and the next state, , are jointly determined. 
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.

.

.

.

... do.3.4

Better places for imparting this kind of prior knowledge are the initial policy or value 
function, or in influences on these. See Lin (1992), Maclin and Shavlik (1994), and Clouse 
(1996). 
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...episodes,3.5

Episodes are often called "trials" in the literature. 

.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/footnode.html (5 di 8)22/06/2005 9.10.49



Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... both3.6

Ways to formulate tasks that are both continuing and undiscounted are the subject of current 
research (e.g., Mahadevan, 1996; Schwartz, 1993; Tadepalli and Ok, 1994). Some of the ideas 
are discussed in Section 6.7. 
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... journey.6.1

If this were a control problem with the objective of minimizing travel time, then we would of 
course make the rewards the negative of the elapsed time. But since we are concerned here 
only with prediction (policy evaluation), we can keep things simple by using positive 
numbers. 
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... policies.9.1

There are interesting exceptions to this. See, e.g., Pearl (1984). 
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