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In the cortex, the timing of successive action potentials is highly irregular. The interpretation
of this irregularity has led to two divergent views of cortical organization. On the one hand, the
irregularity might arise from stochastic forces. If so, the irregular interspike interval reflects a
random process and implies that an instantaneous estimate of the spike rate can be obtained by
averaging the pooled responses of many individual neurons. In keeping with this theory, one
would expect that the precise timing of individual spikes conveys little information. Alternatively,
the irregular ISI may result from precise coincidences of presynaptic events. In this scenario, it is
postulated that the timing of spikes, their intervals and patterns can convey information. According
to this view, the irregularity of the ISI reflects a rich bandwidth for information transfer.

In this handout, we take the former point of view, that the irregular interspike interval reflects
a random process. We assume that the generation of each spike depends only on an underlying
continuous/analog driving signal, r(t), that we will refer to as the instantaneous firing rate. It
follows that the generation of each spike is independent of all the other spikes, hence we refer to
this as the independent spike hypothesis.

If the independent spike hypothesis were true, then the spike train would be completely de-
scribed a particular kind of random process called a Poisson process. Note that even though a
Poisson spike train is generated by a random process, some stimuli could still evoke spikes very
reliably by forcing the instantaneous firing rate to be very large at particular moments in time so
that the probability of firing would then be arbitrarily close to 1.

Certain features of neuronal firing, however, violate the independent spike hypothesis. Fol-
lowing the generation of an action potential, there is an interval of time known as the absolute
refractory period during which the neuron can not fire another spike. For a longer interval known
as the relative refractory period, the likelihood of a spike being fired is much reduced. Bursting is
another non-Poisson feature of neuronal spiking. Some neurons fire action potentials is clusters or
bursts, and these tend to be poorly described a purely Poisson spike-generation process. Below, I
present ways of extending the Poisson model to account for refractoriness and bursting.

1



Probability and Random Processes

A random variable is a number assigned to every outcome of an experiment. This could be the
outcome of the roll of a die, or the number of action potentials generated by a visual neuron during
a 1 sec stimulus presentation. The probability of getting each possible outcome is characterized
by a probability density function. For a fair die, there is a 1/6 probability of getting each possi-
ble outcome. The familiar bell-shaped curve of the normal distribution is another example of a
probability density function.

The integral of a probability density function is called the cumulative distribution function.
Cumulative distributions characterize the probability of getting an outcome less than or equal to
some specified value. For example, there is a 1/2 probability of getting a roll less than or equal to
3 on a fair die.

A random process is a rule for assigning a function x(t) to every outcome of an experiment.
For example, the voltage trace recorded from an intracellular electrode during a 1 sec stimulus
presentation might be considered a random process.

Instantaneous Firing Rate

Define �(t), the neural response function, to be a bunch of impulses, one for each action potential:

�(t) =
kX

i=1

Æ(t� ti);

where k is the total number of spikes in the spike train, and ti are the times that each spike occurred.
The unit impulse signal is defined as:

Æ(t) =

(
1 if t = 0
0 otherwise

;

such that the integral of Æ(t) is one: Z
1

�1

Æ(t) = 1:

We would like to think of the neural response function as a random process. The neural response
function is completely equivalent to a list of the spike times in the spike train. Nevertheless, it is
useful for re-expressing sums over spikes as integrals over time. For example, we can write the
spike count, the number of spikes fired between times t1 and t2 as the integral:

n =
Z t2

t1

�(t)dt;

because each spike contributes 1 to the integral.

The instantaneous firing rate (e.g., of a sensory neuron) can now be formally defined to be the
expectation of the neural response function, averaged over an infinite number of repeats (e.g., of
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the same stimulus presentation):
r(t) = h�(t)i:

In practice, of course, you can not run an infinite number of trials. The function you get by
averaging over a finite number of trials, is an estimate of the instantaneous firing rate:

rM(t) = 1

M

MX
j=1

�j(t);

where M is the number of trials and �j(t) is the neural response function for each trial. This, of
course, is not a continuous function because it is just a sum of Æ functions. You get a smooth
function only in the formal limit with an infinite number of trials. Typically, when working with
real data, you would blur rM to make it smooth. We do not have to worry about that in this class
because the theoretical/computational neuroscientist has the luxury of being able to just make up
a continuous function, r(t).

The average spike count can then be defined from the instantaneous firing rate:

hni =
Z t2

t1

r(t)dt: (1)

This is equivalent, of course, to counting the spikes nj in each of a very large (i.e., infinite) number
of repeated trials, and then averaging those spike counts across the trials.

For sufficiently small intervals, when t2 = t+ Æt=2 and t1 = t� Æt=2, the average spike count
can be approximated by hni = r(t)Æt. Furthermore, Æt can be reduced until the probability that
more than one spike could appear in this interval is small enough to be ignored. In this case, the
average spike count is equal to the probability of firing a single spike. That is, the probability of a
spike occurring during a given brief time interval is equal to the value of the instantaneous firing
rate during that time interval times the length of the interval:

Pf1 spike during the interval (t� Æt; t+ Æt)g = r(t) Æt: (2)

Unlike the neural response function which provides a complete description of the neural re-
sponse, the instantaneous firing rate is a highly reduced description. It is constructed by averaging
the neural response function over many repeated trials, to identify the “systematic component” of
the response that is common to all trials. Other averages of the neural response function could be
constructed, for example, the response correlation function h�(t)�(t0)i. The question is whether or
not it is worth the effort to keep track of anything other than the instantaneous firing rate.

Poisson Processes

Poisson processes are important in a variety of problems involving rare, random events in time or
space, e.g., radioactive emissions, traffic accidents, and action potentials.
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Homogeneous Poisson Process

We will begin by assuming that the underlying instantaneous firing rate r is constant over time.
This is called a homogeneous Poisson process. Later we will treat the inhomogeneous case in
which r(t) varies over time. Imagine that we are given a long interval (0; T ) and we place a single
spike in that interval at random. Then we pick a sub-interval (t1; t2) of length �t = t2 � t1. The
probability that the spike occurred during the sub-interval equals �t=T .

Now let’s place k spikes in the (0; T ) interval and find the probability that n of them fall in the
(t1; t2) sub-interval. The answer is given by the binomial formula:

Pfn spikes during�tg =
k!

(k � n)!n!
p
n
q
k�n

;

where p = �t=T and q = 1 � p. If you have never seen this binomial formula before, look in
any undergraduate level probability or statistics book. The binomial formula is what you use to
calculate the probability of n events of a certain type out of k trials, for example, the probability of
getting 10 sixes out of 100 rolls of a fair die.

Next we increase k and T keeping the ratio r = k=T constant. Since k is the total number
of spikes and T is the total time, r = k=T is the mean firing rate, the average number of spikes
per second. It can be shown that as k ! 1, the probability that n spikes will be in an interval of
length �t equals:

Pfn spikes during�tg = e
�r�t (r�t)n

n!
: (3)

This is the formula for the Poisson probability density function. Given the mean firing rate r,
the formula tells you the probability of having n spikes during a time interval of length �t. The
formula is only correct when the spikes are completely independent of one another, i.e., that they
are placed randomly throughout the full (0; T ) time interval.

The spike count for a homogeneous Poisson process, dropping the time-dependence from Eq. 1,
is given by:

hni =
Z t2

t1

rdt = r�t; (4)

for any interval of length �t = t2 � t1. As expected, the average spike count equals the mean
firing rate times the duration. The variance of the spike count is a bit harder to derive but it turns
out that the result is the same, i.e.,

�
2

n = r�t:

The ratio of the variance to the mean spike count is called the Fano factor,

F = �2
n

hni
= 1: (5)

The Fano factor characterizes the variability in the spike count. The fact that the spike count mean
and variance are equal is a distinguishing characteristic of a Poisson process.
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Waiting Time Between Spikes

Given any time t0, what is the waiting time for the next spike to occur? This can be computed if
we know the probability for no spike to occur within the interval (t0; t0 + �). Plugging n = 0 into
Eq. 3,

Pfnext spike occurs after �g = e
�r�

The probability that a spike has already occurred is 1 minus this result, i.e.,

Pfnext spike occurs before �g = 1� e
�r�

: (6)

This is a cumulative distribution function for the probability of a spike occurring within the interval
(t0; t0 + �). It is zero for � = 0 and increases monotonically to 1. The longer one waits, the more
likely a spike is to occur.

The probability density function for the waiting time until the next spike is the derivative of the
above cumulative distribution:

p(�) = d
dt

�
1� e

�r�
�
= r e

�r�
: (7)

Thus, the interspike interval density for a homogeneous Poisson spike train is an exponential func-
tion. The most likely interspike intervals are short ones and long intervals have a probability that
falls exponentially as a function of their duration. Interspike interval histograms can be extracted
from data by counting the number of interspike intervals falling in various time bins.

The mean duration between events is:

h�i =
Z

1

0

� p(�) d� = 1

r
;

consistent with our interpretation of r as the mean rate. The variance of the interspike intervals is:

�
2

� =
Z

1

0

�
2
p(�) d� � h�i2 = 1

r2
:

The ratio of the standard deviation to the mean interspike interval is called the coefficient of varia-
tion,

CV = ��
h�i

= 1: (8)

The coefficient of variation characterizes the variability in the interspike intervals. The fact that the
coefficient of variation is one is another distinguishing characteristic of a homogeneous Poisson
process.

Notice that our choice of the starting time t0 does not affect any of these results. The waiting
time until the next spike does not depend on whether or not a spike has occurred recently.

Generating Poisson Spike Trains

There are two commonly used procedures for numerically generating Poisson spike trains. The
first approach is based on the approximation in Eq. 2 for the probability of a spike occurring
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during a short time interval. For the homogeneous Poisson process, this expression can be rewritten
(removing the time dependence) as

Pf1 spike during Ætg � rÆt

This equation can be used to generate a Poisson spike train by first subdividing time into a bunch of
short intervals, each of duration Æt. Then generate a sequence of random numbers x[i], uniformly
distributed between 0 and 1. For each interval, if x[i] � rÆt, generate a spike. Otherwise, no spike
is generated. This procedure is appropriate only when Æt is very small, i.e, only when rÆt � 1.
Typically, Æt = 1 msec should suffice. The problem with this approach is that each spike is
assigned a discrete time bin, not a continuous time value.

The second approach for generating a homogeneous Poisson spike train, that circumvents this
problem, is simply to choose interspike intervals randomly from the exponential distribution. Each
successive spike time is given by the previous spike time plus the randomly drawn interspike
interval1. Now each spike is assigned a continuous time value instead of a discrete time bin.
However, to do anything with the simulated spike train (e.g., use it to provide synaptic input to
another simulated neuron), it is usually much more convenient to discretely sample the spike train
(e.g., in 1 msec bins), which makes this approach for generating the spike times equivalent to the
first approach described above.

Figure 1A shows a snippet of a spike train that was generated using the first of these two
methods. The instantaneous firing rate was chosen to be r = 100 spikes/second, and the time
binsize was chosen to be Æt = 1 msec. In fact, I generated many different spike trains, each of
1 sec duration (1000 time samples). Then I counted the number of spikes in each of these repeats.
Figure 1B shows a histogram of the spike counts, superimposed with the theoretical (Poisson)
spike count density given by Eq. 3. As expected, both the mean and the variance of the spike
count histogram are 100 spikes/sec, so the Fano factor is one. Finally, Fig. 1C plots the interspike
intervals calculated from the simulation (of course, these intervals are accurate only to 1 msec
because the spikes were spaced by integer multiples of the time binsize), superimposed with the
theoretical (exponential) interspike interval density given by Eq. 7. As expected, both the mean
and the standard deviation of the interspike interval histogram is 10 msec, so the coefficient of
variation is 1.

Inhomogeneous Poisson Process

The Poisson model, for time-varying firing rates is basically the same. We simply replace the
constant r with a rate function r(t) that varies with time.

For an inhomogeneous Poisson process, the probability of observing exactly n spikes in a
particular interval (t1; t2) is given by:

Pfn spikes during (t1; t2)g = e
hni (hni)n

n!
;

1At the risk of confusing you, remember that even though you are choosing each spike time based on an interspike
interval, the spike times are truly independent of one another because exponentially distributed interspike intervals
correspond to a Poisson (independent spike) process.
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Figure 1: A. Snippet of a Poisson spike train with r = 100 and Æt = 1 msec. B. Spike count
histogram calculated from many Poisson spike trains, each of 1 sec duration with r = 100, superim-
posed with the theoretical (Poisson) spike count density. C. Interspike interval histogram calculated
from the simulated Poisson spike trains superimposed with the theoretical (exponential) interspike
interval density. D. Snippet bursty spike train generated by replacing each spike in A with a “burst”
of zero, one, or more spikes. The height of each impulse represents the number of spikes in that time
bin. The number of spikes per burst was Poisson distributed with a mean of hnbi = 1 spike/burst. E.
Spike count histogram calculated from many bursty spike trains like that in D, superimposed with
the Poisson spike count density. The bursty spike trains have the same mean spike count, but the
variance of the bursty spike count histogram is twice that of the Poisson. F. Renewal process spike
train generated from A by removing all but every fourth spike. G. Spike count histogram calculated
from many renewal spike trains like that in F. The mean spike count is 1/4 that of the Poisson, as
expected. H. Interspike interval histogram calculated from the renewal process spike trains super-
imposed with the theoretical (gamma) interspike interval density. The mean interspike interval is
40 msec, four times longer than that in C, as expected because we have removed 3/4 of the spikes.
The standard deviation of the interspike intervals is 20 msec so the coefficient of variation is 1/2.
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where hni is the average spike count given by Eq. 1. This reduces to the homogeneous case (Eq. 3)
by noting that for a homogeneous Poisson process hni = r�t (see Eq. 4). It turns out that the
variance of the spike count is still equal to the mean spike count,

�
2

n = hni;

so that the Fano factor is still equal to one. I find this to be quite remarkable; regardless of how
the instantaneous firing rate varies over time and no matter what time interval you consider, the
variance in the spike count always equals the mean spike count (for a derivation, see Appendix A.5
of Rieke et al., 1997).

As long as r(t) varies slowly with respect the the time interval Æt (or equivalently, as long
as Æt is short enough), we can still use Eq. 2 to generate the spikes. In particular, r(t) must be
nearly constant over each interval of length Æt. The procedure is as follows. The rate function
r(t) is sampled with a sampling interval of Æt to produce a discrete-time sequence r[i]. Then a
sequence of random (uniformly distributed between 0 and 1) numbers x[i] is generated. For each
time sample i, a spike is generated when x[i] � r[i]Æt. This procedure was used to generate the
spike trains for Fig. 4 of the Synaptic Input handout.

Refractory Period

One way to add refractory effects to the Poisson spike model is by setting the instantaneous firing
rate to zero for a couple milliseconds immediately after a spike is fired. The gradual recovery
process during the relative refractory period can then be modeled by letting r(t) return to the its
original value at a predetermined rate, for example, with an exponential time course. A better
(more theoretically grounded) way to add a refractory period is to replace the Poisson process with
a renewal process as discussed below.

Bursting

The simplest way to add burstiness to the Poisson model is to replace each Poisson spike with
an event that might consist of zero, one, or more spikes. To do this, replace the instantaneous
firing rate r(t) with the instantaneous event rate re(t), and generate a Poisson train of events using
the methods described above. Then specify a probability distribution for the number of spikes per
event. A Poisson distribution can be used for this as well, for example, with a mean of 1 spike/burst.
For each event, we need to draw (at random) a spike count from this distribution. To do this, choose
a random number x uniformly between 0 and 1, and pass it as argument to the inverse of the
cumulative Poission distribution. Figure 2, for example, plots the cumulative Poisson distribution
with mean 1 spike/burst. When x = 0:2 you get 0 spikes in an event, when x = 0:4 you get 1 spike
in an event, and when x = 0:8 you get 2 spikes in an event.

Figure 1D shows a bursty spike train generated by starting with the “event train” in Fig. 1A
and replacing each event with a “burst” of zero or more spikes. In fact, I generated many different
bursty spike trains this way, each of 1 sec duration, and counted the number of spikes in each
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Figure 2: Poisson cumulative distribution function with a mean of 1 spike/burst.

repeat. Figure 1E shows a histogram of the spike counts, superimposed with the Poisson spike
count density. The bursty spike trains have the same mean spike count, but the variance of the
bursty spike count histogram is twice that of the Poisson. Hence, the Fano factor is 2.

It turns out that there are simple relationships to predict the mean and variance of the spike
count from the mean and variance of the number of events per trial and of the number of spikes
per event. Define hnei to be the mean number of events per trial (100 in our example) and hnbi to
be the mean number of spikes per event (1 in our example). Then the mean number of spikes per
trial is given by:

hni = hnei hnbi:

In our example, hni = 100, as expected. Likewise, define �2

e to be the variance of the event count
(100 in our example) and �2

b to be the variance in the number of spikes per burst (1 in our example).
Then the variance in the spike count is given by:

�
2

n = �
2

e (hnbi
2 + �

2

b ):

In our example, �2

n = 2. See Bair et al.(1994) for further examples, and for references on how to
prove these results.

Connecting up the Poisson Spike Generator

To use the Poisson spike generator in a simulation, we need to hook it up to a model neuron. The
simplest way to do this is the choose the Poisson rate to be proportional to membrane potential
above some threshold:

r(t) = � [V (t)� Vth];
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Figure 3: F-I curve a Poisson neuron, that is, firing rate as a function function of injected current
for current steps of various amplitudes. Parameters: C = 0:2 nF, g = 0:02 uS, Vth = 15 mV,
E = Vrest = 0 mV.

where � has units of spikes/sec/mV and determines the slope of the F-I curve (firing rate as a
function of injected current for current steps of various amplitudes).

The passive membrane response to a step of constant current I , switched on at t = 0 and
remaining on indefinitely is given by:

V (t) = u(t) (I=g)
�
1� e

(�t=�)
�
;

where u(t) = 0 for t < 0 is the unit step signal, and we have assumed that V (0) = Vrest = E = 0.
The steady state membrane potential is proportional to the injected current:

Vs = (I=g):

So the steady state firing rate is given by:

r(t) = � [Vs � Vth]

= � (I=g)� �Vth

The firing rate is proportional to the injected current once above threshold. An example is shown
in Fig. 3. Each data point was computed by simulating 5 secs of a Poisson spike process for each
current amplitude, and counting the number of spikes that resulted. The graph is not perfectly
linear because the Poisson model is a random process. In the limit, if we were to simulate longer
and longer stimulation epochs, the graph would become perfectly linear.
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Renewal Processes

It is possible to go beyond the Poisson model by allowing the firing probability to depend on both:
(1) the instantaneous firing rate, and (2) the time since the most recent previous spike (but not
on spike times before the most recent one). This results in a model of spike generation called a
renewal process.

A simple way to generate a renewal process spike train is to start with a Poisson spike train and
delete all but every �th spike. An example is shown in Fig. 1F. This results in a spike train whose
interspike intervals are given by the gamma probability density function:

p(�) = (�r)� ���1
e
��r�

=(�� 1)!; (9)

where � (an integer) is called the order of the gamma distribution. When � is one, p(�) becomes
the exponential; the interval distribution expected of a Poisson process. When � is infinity, p(�) is
the distribution of no variance and the spike train is perfectly regular. The mean interspike interval
is h�i = 1=r for the gamma distribution, just as it is for the Poisson distribution. However, the
interspike interval standard deviation of the gamma distribution is different,

�� =
h�i
p
�
;

so that the coefficient of variation of the gamma distribution is given by:

CV =
��

h�i
=

1
p
�
: (10)

Empirical Support

There is evidence that the instantaneous firing rate contains most of the information carried by a
neuronal spike train, and hence that the independent spike hypothesis is largely correct. However,
this issue is currently the subject of heated debate (e.g., Softky and Koch 1993, 1995; Shadlen and
Newsome, 1994, 1995).

Neural responses are noisy. Interspike intervals of cortical cells are highly variable; the coef-
ficient of variation is typically near 1 as expected of a Poisson process (Softky and Koch, 1993).
Spike counts of cortical cells are also highly variable; the variance in the spike count is typically
proportional to the mean spike count with a Fano factor of about 1.5 (e.g., Dean, 1981; Tolhurst et
al., 1983; Bradley et al., 1987; Snowden et al., 1992; Britten et al., 1993; Softky and Koch, 1993).
Strictly speaking this is a violation of the Poisson model, but it is consistent with a bursty spiking
process like that simulated in Figs. 1D-E.

There are a number of studies in which random process models have been successfully applied
to model the statistics of spike trains. I will mention only two examples here. Troy and Robson
(1992) calculated the interval statistics of spike trains recorded from retinal ganglion cells, and
found that they were well modeled as coming from renewal processes with gamma-distributed
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intervals. Bair et al. (1994), analyzed the spike trains of neurons in visual area MT. They found
that the spiking in about a third of the cells was compatible with a Poisson process. Most of the
rest of the cells typically responded in bursts, where the bursts were Poisson-distributed, again like
the bursty spiking process simulated in Figs. 1D-E.

Caveat: Where’s the Noise?

To summarize, I have proposed that we can model a neural response function with an underlying
deterministic instantaneous firing rate signal and a random process spike generator. Although this
model provides a good description of a large amount of data, especially considering its simplicity,
it should not be oversold.

The main problem with all this is that it does not provide the proper mechanistic explanation
of neuronal response variability. Spike generation, by itself, is highly reliable and deterministic, as
has been demonstrated by countless numbers of in vitro studies. Mainen and Sejnowski (1995), for
example, recorded from neurons in rat cortex slices while injecting complex time-varying currents.
The resulting spike trains were reproducible across repeats to less than 1 msec.

The noise in in vivo neural responses is believed to result from the fact that synapses are very
unreliable. In fact, greater than half of the arriving presynaptic nerve impulses fail to evoke a
postsynaptic response (e.g., Allen and Stevens, 1994). The noise in the synapses, not in the spike
generator!
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