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ABSTRACT
Soft computing (SC) is an evolving collection of
methodologies, i.e., fuzzy, neuro, and evolutionary
computing. Chaotic computing and immune systems
are added later to enhance the soft computing
capabilities. The fusion of SC components creates new
functions i.e.

flexible knowledge representation

(symbol and pattern), acquisition and inference.
Tractability, machine intelligent quotient, robustness
and low cost are also achieved. Among them immune
systems are very suitable for control and diagnosis of
multi-agent systems (large-scale and complex systems)
that interact among human beings, environment and
artificial objects corresponding to the usage of
complex interactions among antibodies and antigensin
the immune systems. Perception and motion are
achieved at the same time.

This paper describes novel sensor fault diagnosis for
supply(UPS) feedback

control system and new decision making of arobot in a

an uninterruptible power

changeable environment using immune networks and
other soft computing methodol ogies based on cognitive
distributed artificial intelligence (CDAI) and reactive
distributed Al

(RDAI) approaches. Smulation

studies show that the proposed methods are feasible
and promising for control and diagnosis of large-scale

and complex dynamical systems.
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INTRODUCTION

Firstly, this paper proposes a new method of sensor
failure detection for a large-scale and complex control
systems such as multi-UPS systems operated in
parallel using immune networks.

Recently, systems have been increasing in scale and
complexity. In such systems, once a certain sensor
becomes faulty (abnormal) it often causes a fatal
situation since the influence of the failed sensor
propagates through the whole system. To prevent the
above situation, fault diagnosis techniques have
become more and more urgent. Such diagnosis of plant
systems, however, are bringing the problems that

faulty states are often detected at the propagated points



rather than at the failure origins. Therefore, it is
necessary to identify the faulty sensor exactly by
integrating the data obtained from the equipped
SENsors.

To overcome these difficulties, cognitive distributed
artificial intelligence (CDAI) approaches and reactive
distributed artificial intelligence (RDAI) approaches
are now available. Cause consequence tree (CCT)
[1][2], signed digraph (SD) [3][4][5] and fuzzy
decision tree (FDT) [6][ 7][8] approaches were reported
for CDAI. On the other hand, immune network
approaches [9][10][11] were proposed for RDAI.
Immunity-based systems were well reviewed by
Dasgupta et al. [12]. Since the immune network is one
of the soft computing methodologies [13], it is well
understood to compare it with a neural network [14].
The networks close to Grossberg ‘s ART and
Kohonen's self-organized network are constructed
using artificial immune systems[15],[16].

Reactivity is a behavior-based model of activity, as
opposed to the symbol manipulation model used in
planning. This leads to the notion of cognitive cost, i.e.,
the complexity of the over architecture needed to
achieve a task. Cognitive agents support a complex
architecture, which means that their cognitive cost is
high. Cognitive agents have internal representation of
the world, which must be in enough with the world
itself. The process of relating the internal
representation and the world is considered as a
complex task. On the other hand, reactive agents are
simple, easy to understand and do not support internal
representation of the world. Thus, their cognitive cost
is low and tends to what is called cognitive economy,
i.e, the property of being able to perform even
complex actions with simple architectures. Because of
their complexity, cognitive agents are often considered
as self-sufficient: they can work alone or with a few
other agents. On the contrary, reactive agents need

companionship cannot work isolated, they usually

achieve their tasks in groups. Reactive agents are
companionship. Reactive agents are situated: they do
not take past events into account and cannot foresee
the future. Their action is based on what happens now.
They try to distinguish situations in the world and
world indexes and react accordingly. Thus, reactive
agents cannot be foreseen ahead. But, what can be
considered as a weakness is one of their strengths
because they do not have to revise their world model
when perturbations change the world in an unexpected
way. Robustness and fault tolerance are two of the
main properties of reactive agent systems. A group of
reactive agents can complete tasks even when one of
them breaks down. The loss of one agent does not
prohibit the completion of the whole task, because
allocation of roles is achieved locally by perception of
the environmental needs. Thus, reactive agent systems
are considered as very flexible and adaptive [17].

Ishida [9] studied the mutual recognition feature of
the immune network model for fault diagnosis. In his
implementation, fault tolerance was attained by mutual
recognition of interconnected unitsin the studied plant,
i.e, system level recognition was achieved by unit
level recognition. However, this approach is steady
state analysis and is not applicable to dynamical
systems.

Kayama et al. devised a sensor fault detection
scheme for a complex and large-scal e feedback system
using immune networks using Kohonen feature maps
and fuzzy inference. In their work the sensors were
considered as antibodies connected with each other.
Each sensor watched another sensor’s output and
informed its abnormality by fuzzy decision making
from learning vector quantizations from other sensors.
The scheme presented by Kayama et al. cannot be
applied to dynamical systems|[10].

Ishiguro et al. [11] applied the immune network

model to online fault-diagnosis of plant systems. To



apply the immune network to plant fault diagnosis,
following assumption were made.

1) Thenumber of failureoriginsisone;

2) Falure states propagate through branches

without exceptions; and

3) No feedback loop exists in the future

propagation.
Therefore their method is not directly applicable to
feedback control systems.

In this paper feedback systems are decomposed into
decision tree structure that has only the forward passes
with branches using fuzzy decision tree concept [6]
based on knowledge obtained by s$mulations. The
presented system uses a fast fuzzy neural network with
general parameter (GP) learning [19]. Then, the
sensors are assumed as antibodies in our immune
network. Each antibody receives the stimulation and

suppression from the adjacent antibodies and also from

I. SENSOR FAULT
IMMUNE NETWORKS
A. Sensor Fault Diagnosis for UPS Control System

DIAGNOSIS USING

Ishiguro et al. applied immune network in fault
diagnosis in a plant [11], and used following
assumptions.

The number of failure originsisone,

Failure states propagate through branches

without exceptions, and

No feedback loop exists in the future

propagation.
The variables that reflect the state of the sensors, called
as failure origin ratios, are normalized between 1 and
0. If the failure origin ratio of a certain sensor
increases, the possibility of failure origin of the sensor
increases or otherwise decreases. The failure origin
ratio corresponds to the concentration of antibodiesin
the immune network and varies by its stimulation and

suppression and that of adjacent sensors on both sides.

itself by calculating failure rate with the fast fuzzy
neural network [19], and the dispassion. The density
(concentration) of each antibody, called as failure
origin ratio, is calculated by nonlinear differential
equation driven by the received signals presented by
Farmer et al. The sensor that shows the highest
failure origin ratio is considered as failed sensor.

Secondly, the same decision making process
described above by calculating concentration rate of
each antibody in the immune system, a surviving robot
in the environment where predators, obstacles, and
foods exist, is proposed [21].

This paper is organized as follows. Section |
describes sensor fault diagnosis using immune
networks. Decision making of a robot interacting
changeable environment is given in Section Il and Last

Section concludes this paper.

The magnitude of the suppression and stimulation vary
based on the failure origin ratio of the adjacent sensors.
When the fast fuzzy neural network [19] detects the
faulty state of the sensor i, it increases the failure
origin ratio X, . The failure origin ratio X;_, of the
adjacent sensor | - 1 on source side is increased by
stimulation of the sensor i. In this case the failure
origin ratio X ,, of the sensor i+1 is decreased by
the suppression of the sensor i . On the other hand, the
fast fuzzy neural network detects the fault-free state of
sensor | and suppresses (decreases) the failure origin
ratio X; . From the above consideration, the failure

origin ratio X; is calculated asfollows.

%:{b(xm)- d(x,)+s - Kx (@
dt

_ 1
1+exp{a(x - a)}

where K and a are positive constants, a is a

(2)

negative constant, b and d are the stimulation and



suppression from the adjacent sensors, s represent the
stimulation and suppression calculated by the fast
fuzzy neural network [19], and k denotes the

dispassion factor to ensure the global stability of the

dispassion
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Fig. 1. Concentration of antibody.

In this paper, feedback systems are decomposed into Fig. 2. Decomposition of systemsinto tree structure.

decision tree structure which has only the forward
passes with branches using fuzzy decision tree concept
[6] based on knowledge obtained by simulations, as
shown in Fig. 2, which is automatically achieved by
our developed fast fuzzy neural network with general
parameter (GP) learning [19].

—> stimulation
———-> suppression
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B. Smulation Results

The UPS system used in our research is shown in Fig.
3. For simplicity, we consider four sensors, that is, an
inverter line current (iiu ), aload line current (ilu ), a
load u-phase voltage (VCiU ), and a load w-phase
voltage (VCIW).

The configuration of the fast fuzzy neural network
with GP learning is shown in Fig. 4. The number of
delay elements is set to 10. The number of Gaussian
iluand iiu and is 2 for vciw
and VCIU. In Eq. 1, 5is 0 for normal state and is 0.4

functions is 3 for

for abnormal state. The centers of Gaussian functions
were uniformly distributed over the whole range. The

applied overlapping factor is0.2.
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Fig. 3. UPS control system

Fig. 4. Fast fuzzy neural network.

The stimulation and suppression (see Eq. 1) are The result of sensor fault detection is shown in Fig.

shownin Fig. 5, wherek is0.1,ais3.3,and a is0.5. 6.

These parameters are empirically tuned.
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Fig. 6. Result of sensor failure detection.

II. SURVIVING ROBOT IN A CHANGEABLE
ENVIRONMENT [21]

A. A surviving robot in a changeable environment
using decision making by immune networks
An artificial decision making robot 'immunoid' by
interactions among antibodies in artificial immune
networks is considered. In this simulated
environment, there are following three kinds of
objects. (1) predator, (2) obstacles, and (3) food. It is
assumed that pre-specified quantity of initial energy

is given to the immunoid at the beginning of each

simulation. For quantitative evaluation, the following
assumptions are made.
1. If the immunoid moves, it consumes energy
Em
2. If the immunoid is captured by a predator, it
consumes energy E,
3. If the immunoid collides with an obstacle, it
losses energy E,
4. If theimmunoid picks up food once, it obtains
energy E;
The predators attack the immunoid if they detect the

immunoid within the pre-specified detectable range.



Therefore, in order to survive as long as possible, the
immunoid must select a competence module
(antidody) suitable for the current situation (antigen).
The immunoid are equipped with external and

internal detectors. External detectors can sense eight

directions as shown in Fig. 7. Each can detect the
distance to the objects by three degrees, near, mid,
and far. The internal detector senses the current

energy level.

front

back

detector range

Fig.7. Simulated environment.
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Fig.8. Representations of antibodies.

The immunoid moves in the eight directions The
detected current situation and prepared competence
modules work as antigens and antibodies,
respectively. To make an immunoid (antibody) select
a suitable antibody against the current antigen, the
way of description of antibodies is highly important.
Moreover, it is noticed that the immunogical
arbitration mechanism selects an antibody in bottom
up manner by communicating among the antibodies.

To realize the above requirements the description of

antibodies are defined as follows. The identity of a
specific antibody is generally determined by the
structure of its paratope and idiotope. Fig. 8 depicts

the representation of antibodies.

As shown in this figure 8, a pair of precondition
action to paratope, the number of disallowed
antibodies and the degree of disallowance to idiotope

are respectively assigned. In addition, the structure of



paratope is divided into four portions: objects,
direction, distance, and action.

For adequate selection of antibodies, one state
variable called concentration is assigned to each
antibody. The selection of antibodies is simply
carried out in awinner-take all fashion. Namely, only
one antibody is alowed to activate and act

correspondingly to the world if its concentration is

— s /

dA (t)/dt =
f

at+1)=1/(1+exp(0.5- A(t)

=1

where N isthe number of antibodies, and m denotes matching
ratio between antibody i and antigen, m; denotes degree of
disallowance of antibody j for antibody i. Thefirst and second
terms of right hand side denote the stimulation and
suppression from other antibodies, respectively. The third
term represents the stimulation from antigen, and the forth

term the natural death.

B. Smulation results (All simulations are carried out in our
laboratory).

100 simulations are carried out with

No. of predators= 5; No. of obstacles= 5; No. of foods= 10;
and No. of antibodies= 91 for a mediumsize multi-agent

system.

Average lifetime:
1. Immunoid’srandom walk: 313.14
2. Without interactions among antibodies: 564.86

3. With interactions among antibodies: 621.46

No. of collides against predators and obstacles and obtaining

foods:
S. No. Predators Predators Foods
1 19.91 184 0.54
2 9.04 5.92 4.27
3 7.84 5.23 5.02

e § d 0
gaa m;a; (t)/ a m; -
j=1

(%]

the largest. The concentration of the antibody is
influenced by the stimulation and suppression from
other antibodies, the stimulation from antigen, and
the dissipation factor (i.e. natural death). The
concentration of i-th antibody, which is denoted by a;,
is calculated by (3) and (4) gives the rate of

interaction among antigens and antibodies.
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The proposed method is clearly the best.

This approach is promising for decision-making in
autonomous mobile robots (one of multi-agent robots).
However, two disadvantages exist. One is how to cope with
environmental changes. The other is how to design agents. It
is required in the future to devise some real-time
reinforcement learning. In these simulation studies, designs of

agents are much improved.

[1l. CONCLUSIONS

Among soft computing methodol ogies immune networks are
suitable to construct reactive distributed artificial intelligence.
This paper proposed one of the promising methods for
diagnosis and control of large-scale and complex systems
(multi-agent systems) using immune networks and other soft
computing methodologies. In order to make these systems be
optimized and evolve evolutionary computation [20] will be

introduced for future research.
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