EVOLVING BOTH HARDWARE SUBSYSTEMSAND THE SELECTION OF
VARIANTS OF SUCH INTO AN ASSEMBLED SYSTEM

Jim Torresen
Department of Informatics, University of Oslo
P.O. Box 1080 Blindern, N-0316 Oslo, Norway
E-mail: jimtoer@ifi.uio.no

KEYWORDS
Electronics, Parallel methods, Performance analysis, Signal
processing, Signal processors.

ABSTRACT

Evolvable Hardware (EHW) has been proposed as a new
method for designing electronic circuits. However, there
are several problems to solve for making high performance
systems. One is the limited scalability of the ordinary ap-
proach. To reduce this problem, a novel digital signal pro-
cessing architecture has been developed that allows for in-
cremental evolution. This is based on initially evolving sub-
circuits. In this paper, it is extended by evolving the best
possible combination of subcircuits. Each such circuit is se-
lected among a set of alternative circuits. The architecture
is applied as a prosthetic hand controller. By applying the
proposed method, the average performance is improved com-
pared to more ordinary approaches.

INTRODUCTION

Recently, several automated procedures suited for design of
pattern recognition and control problems have been devel-
oped. One of these is called evolvable hardware (EHW). It
has been applied to a large range of real-world applications.
One - implied in this paper, is prosthetic hand control.

To enhance the lives of people who have lost a hand, pros-
thetic hands have existed for a long time. These are operated
by the signals generated by contracting muscles — named
electromyography (EMG) signals, in the remaining part of
the arm (Scott and Parker, 1988). Presently available systems
normally provide only two motions: Open and close hand
grip. The systems are based on the user adapting himself
to a fixed controller. That is, he must train himself to issue
muscular motions trigging the wanted action in the prosthetic
hand. A long time is often required for rehabilitation.

By using EHW it is possible to make the controller itself
adapt to each disabled person. The controller is constructed
as a pattern classification hardware which maps input pat-
terns to desired actions of the prosthetic hand. Adaptable
controllers have been proposed based on neural networks
(Fuji, 1998). These require a floating point CPU or a neural
network chip. EHW based controllers, on the other hand, use
a few layers of digital logic gates for the processing. Thus,

a more compact implementation can be provided making it
more feasible to be installed inside a prosthetic hand.

Experiments based the EHW approach have already been
undertaken by Kajitani et al (Kajitani et al., 1999). The re-
search on adaptable controllers is based on designing a con-
troller providing six different motions in three different de-
grees of freedom. Such a complex controller could probably
only be designed by adapting the controller to each dedicated
user. It consists of AND gates succeeded by OR gates (Pro-
grammable Logic Array). The latter gates are the outputs of
the controller, and the controller is evolved as one complete
circuit. The simulation indicates a similar performance as ar-
tificial neural network but since the EHW controller requires
a much smaller hardware it is to be preferred.

One of the main problems in evolving hardware systems
seems to be the limitation in the chromosome string length
(Lee et al., 1997; Yao and Higuchi, 1997). A long string is
normally required for solving a complex problem as seen in

Figure 1.
Large and
- Small and complex problem
simple problem

10010110101 100101101...10110001001

Small
system Large
system

Figure 1: The Chromosome String Length and Representa-
tion Ability

However, a larger number of generations is required by
the evolutionary algorithm as the string increases. This often
makes the search space becoming too large. Thus, work has
been undertaken to try to diminish this limitation. Various
experiments on speeding up the evolution have been under-
taken — see (Torresen, 2000).

Incremental evolution for EHW was first introduced in
(Torresen, 1998) for a character recognition system. The ap-
proach is a divide-and-conquer on the evolution of the EHW
system, and thus, named increased complexity evolution. It
consists of a division of the problem domain together with
incremental evolution of the hardware system. Evolution
is first undertaken individually on a set of basic units. The
evolved units are the building blocks used in further evolu-
tion of a larger and more complex system. The benefits of
applying this scheme is both a simpler and smaller search

space compared to conducting evolution in one single run.
The goal is to develop a scheme that could evolve systems
for complex real-world applications.

In this paper, it is applied to evolve a prosthetic hand con-
troller circuit. A new EHW architecture as well as how in-
cremental evolution is applied are described. Further, it is
extended by evolving the best possible combination of sub-
circuits. Each such circuit is selected among a set of alterna-
tive circuits. This should improve the generalization perfor-
mance of gate level EHW and make it a strong alternative to
artificial neural networks.

The next two sections introduce the concepts of the evolv-
able hardware based prosthetic hand controller. Then results
are given in one section with conclusions in the last section.

PROSTHETIC HAND CONTROL

The research on adaptable controllers presented in this paper
is based on designing controllers providing six different mo-
tions in three different degrees of freedom: Open and Close
hand, Extension and Flection of wrist, Pronation and Supina-
tion of wrist. The data set consists of the same motions as
used in earlier work (Kajitani et al., 1999), and it is collected
by Dr. Kajitani at Electrotechnical Laboratory in Japan.

The published results on adaptive controllers are usually
based on data for non-disabled persons. Since it is possible
to observe the hand motions, a good training set can be gen-
erated. For the disabled person this is not possible since there
is no hand to observe. The person would have to by himself
distinguish the different motions. Thus, it would be a harder
task to get a high performance for such a training set but it
will indicate the expected response to be obtainable by the
prosthesis user. This kind of training set is applied in this
paper. Some of the initial results using this data set can be
found in (Torresen, 2001).

Data Set

The absolute value of the EMG signal is integrated for 1 s
and the resulting value is coded by four bits. To improve
the performance of the controller it is beneficial to be using
several channels. In these experiments four channels were
used in total, giving an input vector of 4 x 4 = 16 bits. The
controller interfaces are illustrated in Figure 2.

EMG Ch. #1 — — Open Hand
] R +— Close Hand
EMG Ch. #2 = Pr(]):;lrllzm — Wrist Extension
EMG Ch. #3 = Controller ~ — Wrist Flection
: — Wrist Pronation
EMG Ch. #4 = — Wrist Supination

Figure 2: lllustration of the Controller Interfaces

The output vector consists of one binary output for each
hand motion, and therefore, the output vector is coded by six
bits. For each vector only one bit is “1”. Thus, the data set is
collected from a disabled person by considering one motion
at a time. For each of the six possible motions, a total of
50 data vectors are collected, resulting in a total of: 6 x 50

= 300 vectors. Further, two such sets were made, one to be
used for evolution (training) and the others to be used as a
separate test set for evaluating the best circuit after evolution
is finished.

AN ARCHITECTURE FOR INCREMENTAL EVOLU-
TION

In this section, the proposed architecture for the controller is
described. This includes the algorithm for undertaking the
incremental evolution. This is all based on the principle of
increased complexity evolution.

MO: Open Hand

AND- —— Open Hand

— OR
| unit

—— Close Hand

‘Wrist Extension

Max
Detector

— Wrist Flection

—— Wrist Pronation

| unit

BT

Xis Xo

—— Wrist Supination

Figure 3: The Digital Gate Based Architecture of the Pros-
thetic Hand Controller

The architecture is illustrated in Figure 3. It consists of
one subsystem for each of the six prosthetic motions. In
each subsystem, the binary inputs xg . ..x15 are processed
by a number of different units, starting by the AND-OR unit.
This is a layer of AND gates followed by a layer of OR
gates. Each gate has the same number of inputs, and the
number can be selected to be two, three or four. The out-
puts of the OR gates are routed to the Selector. This unit
selects which of these outputs that are to be counted by the
succeeding counter. That is, for each new input, the Counter
is counting the number of selected outputs being “1” from
the corresponding AND-OR unit. Finally, the Max Detector
outputs which counter — corresponding to one specific mo-
tion, is having the largest value. Each output from the Max
Detector is connected to the corresponding motor in the pros-
thesis. If the Counter having the largest value corresponds to
the correct hand motion, the input has been correctly classi-
fied. One of the motivations for introducing the selectors is to
be able to adjust the number of outputs from each AND-OR
unit in a flexible way. A scheme, based on using multi-input
AND gates together with counters, has been proposed earlier
(Yasunaga et al., 2000). However, the architecture used in
this paper is distinguished by including OR-gates, together
with the selector units involving incremental evolution. The
incremental evolution of this system can be described by the
following steps:

1. Step 1 evolution. Evolve the AND-OR unit for each
subsystem separately one at a time. Apply all vectors
in the training set for the evolution of each subsystem.
There are no interaction among the subsystems at this
step, and the fitness is measured on the output of the
AND-OR units.

2. Step 2 evolution. Assemble the six AND-OR units into
one system as seen in Figure 3. The AND-OR units
are now fixed and the Selectors are to be evolved in the
assembled system — in one common run. The fitness is
measured using the same training set as in step 1 but the
evaluation is now on the output of the Max Detector.

3. The system is now ready to be applied in the prosthesis.

In the first step, subsystems are evolved separately, while
in the second step these are evolved together. The motivation
for evolving separate subsystems — instead of a single sys-
tem in one operation, is that earlier work has shown that the
evolution time can be substantially reduced by this approach
(Torresen, 2000; Torresen, 1998).

The layers of AND and OR gates in one AND-OR unit
consist of 32 gates each. This number has been selected to
give a chromosome string of about 1000 bits which has been
shown earlier to be appropriate. A larger number would
have been beneficial for expressing more complex Boolean
functions. However, the search space for evolution could
easily become too large. For the step 1 evolution, each gate’s
inputs are determined by evolution. The encoding of each
gate in the binary chromosome string is as follows:

[Inp.1 (5 bit) | Inp.2 (5bit) | (Inp.3 (5 bit)) | (Inp.4 (5 hit)) |

As described in the previous section, the EMG signal in-
put consists of 16 bits. Inverted versions of these are made
available on the inputs as well, making up a total of 32 in-
put lines to the gate array. The evolution is based on gate
level building blocks. However, since several output bits are
used to represent one motion, the signal resolution becomes
increased from the two binary levels.

For the step 2 evolution, each line in each selector is rep-
resented by one bit in the chromosome. This makes a chro-
mosome of 32 x 6 bits= 192 bits. If a bit is “0”, the corre-
sponding line should not be input to the counter, whereas if
the bit “1”, the line should be input.

FitnessMeasure.

In step 1 evolution, the fitness is measured on all the 32 out-
puts of each AND-OR unit. As an alternative experiment, we
would like to measure the fitness on a limited number (16 is
here used as an example) of the outputs. That is, each AND-
OR unit still has 32 outputs but — as seen in Figure 4, only 16
are included in the computation of the fitness function:

16
Fitness = Z Output OR gate 4 @

i=1

The 16 outputs not used are included in the chromosome
and have random values. That is, their values do not affect
the fitness of the circuit. After evolution, all 32 outputs are
applied for computing the performance:

32
Performance = Z Output OR gate ¢ 2

i=1

Performance computation
after step 1 evolution

Fitness computation
in step 1 evolution

=T BT
gTD 3E}

i i ped|
FHO—D— HHO—T
| Chromosdme | [Chromosome |

Figure 4: A “Fitness Measure” Equal to 16

Since 16 OR gates are used for fithess computation, the
“fitness measure” equals 16. In the figure, gate 1 to 16 are
used for the fitness function. However, in principle any 16
gates out of the 32 can be used. Other numbers than 16 were
tested in experiments but 16 showed to give the best perfor-
mance results and was used in the following reported experi-
ments.

This could be an interesting approach to improve the gene-
ralisation of the circuit. Only the OR gates in the AND-OR
unit are “floating” during the evolution since all AND gates
may be inputs to the 16 OR gates used by the fitness function.
The 16 “floating” OR-gates then provide additional combina-
tion of these trained AND gates.

Motion
1 Motion
2
otion
3

a) b)

Figure 5: lllustration of Noise Added to a) A Plain Signal
and b) A Pre-Processed Signal

Another way to look at this is that the “floating” gates pro-
vide “noise”. However, the noise is not added to the plain
input but to a preprocessed and improved signal (output from
the AND gates) as illustrated in Figure 5. The inner circle for
each motion indicates the training set domain, with the outer
circle indicating the added generalisation obtained by adding
“noise”.

In a) the signal is not pre-processed and adding noise
makes the interference among classes worse while in b) it
improves the generalisation rather than introducing interfer-
ence. The step 2 evolution will be evolving the ratio of noise
in the final system by adjusting the number of selector bits
set for gates 1 to 16 compared to for gates 17 to 32.

Fitness Function

The fitness function is important for the performance when
evolving circuits. For the step 1 evolution, the fitness func-
tion —applied for each AND-OR unit separately, is as follows

for the motion m (m € [0, 5]) unit:

50m—1 O 50m+49 O

Fm) =5 > Yot Y Sa+g

j=0 =1 J=50m i=1

_ 0 |f yi,j 7é dm,j
where x = { U iy = duy

j=50m+50 i=1

where y; ; in the computed output of OR gate ¢ and d,, ; is
the corresponding target value of the training vector j. P is
the total number of vectors in the training set (P = 300). As
mentioned earlier, each subsystem is trained for one motion
(the middle expression of F7). This includes outputting “0”
for input vectors for other motions (the first and last expres-
sions of Fy).

The s is a scaling factor to implicitly emphasize on the
vectors for the motion the given subsystem is assigned to de-
tect. An appropriate value (s = 4) was found after some
initial experiments. The O is the number of outputs included
in the fitness function and is either 16 or 32 in the following
experiments (referred to as “fitness measure” in the previous
section).

The fitness function for the step 2 evolution is applied on
the complete system and is given as follows:

P-1
= Z xz where
Jj=0

0 else

This fitness function counts the number of training vectors
for which the target output being “1” equals the id of the
counter having the maximum output (as mentioned earlier
only one output bit is “1” for each training vector).

Subsystem Selection in Step 2 Evolution.

Several subsystems (e.g. four AND-OR units in the follow-
ing experiments) are evolved in the step 1 evolution for each
hand motion. Still, normally only one AND-OR unit is
evolved at a time for each of the six hand motions. These six
become assembled and their total performance is measured.
This is followed by the step 2 evolution. This is repeated for
four times. However, there could be high performing system
combinations consisting of units from the four different runs.

It is here proposed to incorporate the selection of the unit
for each motion into the step 2 evolution as illustrated in Fig-
ure 6. In addition to evolving the selectors, one of four units
is selected for each motion. The goal of this approach is to
evolve (in step 2 evolution) systems with higher performance
than what is achieved for the best system evolved the original
way (only selector evolution) (Torresen, 2001).

One possible obstacle of this approach is that the best se-
lector settings for one AND-OR unit are probably different
from another one. Thus, if a unit is substituted by mutation
(crossover could lead to the same phenomen — depending on
the crossover point), this system could easily get a low fitness
value and be excluded from the population. This occurs even

{ 1 ifd,, ; = 1and m = for which max}_,(Counter;)

Motion 0

Selection made by
step 2 evolution

A prosthetic hand controller assembly

Motion 0 Motion 1 Motion 5

Figure 6: Subsystem Selection in Step 2 Evolution

though it could have achieved a high performance if the cor-
responding selector settings had been allowed to be adjusted.

Intelligent recombination operators could be applied in
this scheme. If the unit applied for one motion is substi-
tuted by mutation, then it could be possible to substitute all
the selector settings by those which may have been evolved
earlier for this unit. Another choice is to run a mutation oper-
ator for some generations only on the selectors for the unit(s)
that have been substituted. This approach could reduce the
problem presented in the previous paragraph. This has not
yet been implemented.

The Evolutionary Algorithm

The simple Genetic Algorithm (GA) — given by Goldberg
(Goldberg, 1989), was applied for the evolution with a pop-
ulation size of 50. For each new generation an entirely new
population of individuals is generated. Elitism is used, thus,
the best individuals from each generation are carried over to
the next generation. The (single point) crossover rate is 0.8,
thus the cloning rate is 0.2. Roulette wheel selection scheme
is applied. The mutation rate — the probability of bit inversion
for each bit in the binary chromosome string, is 0.01. For
some of the following experiments, other parameters have
been used, but these are then mentioned in the text.

Various experiments were undertaken to find appropriate
GA parameters. The ones that seemed to give the best re-
sults were selected and fixed for all the experiments. This
was necessary due to the large number of experiments that
would have been required if GA parameters should be able
vary through all the experiments. The preliminary experi-
ments indicated that the parameter setting was not a major
critical issue.

The proposed architecture fits into most FPGAs. The evo-
lution is undertaken off-line using software simulation. How-
ever, since no feed-back connections are used and the number
of gates between the input and output is limited, the real per-

Type of system #inp/gate | Step 1 evolution Step 1+2 evolution
Min | Max | Avr | Min Max | Avr
A: Fitness measure 16 (train) 3 63.7 | 69.7 | 65.5 | 71.33 | 76.33 | 73.1
A: Fitness measure 16 (test) 3 50.3 | 60.7 | 55.7 | 44 67 | 55.1
B: Fitness measure 32 (train) 3 51 | 57.7 | 534 | 70 76 72.9
B: Fitness measure 32 (test) 3 40 | 46.7 | 444 | 45 54.3 | 50.1
C: Direct evolution (train) 4 56.7 | 63.3 | 59.3 - - -
C: Direct evolution (test) 4 32.7 | 43.7 | 36.6 - - -

Table 1: The Results of Evolving the Prosthetic Hand Controller in Different Ways

formance should equal the simulation. Any spikes could be
removed using registers in the circuit.

For each experiment presented, four different runs of GA
were performed. Thus, each of the four resulting circuits
from step 1 evolution is taken to step 2 evolution and evolved
for four runs.

RESULTS

This section reports the experiments undertaken to search for
an optimal configuration of the prosthetic hand controller.
They will be targeted at obtaining the best possible perfor-
mance for the test set.

Table 1 shows the main initial results — in percentage cor-
rect classification (Torresen, 2001). Several different ways
of evolving the controller are included. The training set and
test set performances are listed on separate lines in the table.
Each gate in the AND-OR unit has three or four inputs. The
columns beneath “Step 1 evolution” report the performance
after only the first step of evolution. That is, each subsys-
tem is evolved separately, and afterwards they become as-
sembled to compute their total performance. The “Step 1+2
evolution” columns show the performance when the selec-
tor units have been evolved too (step 2 of evolution without
subsystem selection). In average, there is an improvement in
the performance for the latter. Thus, the proposed increased
complexity evolution give rise to improved performances.

In total, the best way of evolving the controller is the one
listed first in the table. The circuit evolved with the best test
set performance obtained 67% correct classification. The cir-
cuit had a 60.7% test set performance after step 1 evolution
(evaluated with all 32 outputs of the subsystems). Thus, the
step 2 evolution provides a substantial increase up to 67%.
Other circuits didn’t perform that well, but the important is-
sue is that it has been shown that the proposed architecture
provides the potential for achieving high degree of general-
ization.

A feed-forward neural network was trained and tested with
the same data sets. The network consisted of (two weight
layers with) 16 inputs, 40 hidden units and 6 outputs. In the
best case, a test set performance of 58.8% correct classifica-
tion was obtained. The training set performance was 88%.
Thus, a higher training set performance but a lower test set
performance than for the best EHW circuit. This shows that
the EHW architecture holds good generalisation properties.

The experiment B is the same as A except that in B all
32 outputs of each AND-OR unit are used to compute the
fitness function in the step 1 evolution. In A, each AND-

OR unit also has 32 outputs but only 16 are included in the
computation of the fitness function as described in the “Fit-
ness Measure” section. The performance of A in the table
for the step 1 evolution is computed by using all the 32 out-
puts. Thus, over 10% better training set as well as the test
set performance (in average) are obtained by having 16 out-
puts “floating” rather than measuring their fitness during the
evolution.

Each subsystem is evolved for 10,000 generations each,
whereas the step 2 evolution was applied for 100 generation.
These numbers were selected after a number of experiments.
The circuits evolved with direct evolution (E) were under-
taken for 100,000 generations. This is more than six times
10,000 which were used in the other experiments. The train-
ing set performance is impressive when thinking of the sim-
ple circuit used. Each motion is controlled by a single four
input OR gate. However, the test set performance is very
much lower than what is achieved by the other approaches.

Subsystem Selection in Step 2 Evolution.

To test the feature of selecting units in addition to selector
settings in step 2 evolution, experiments were undertaken by
using the best circuits from step 1 evolution. These were the
AND-OR units from the four runs named “A” earlier, and
each having the test set performance shown in Table 2. This
table also includes the average performance of the four step 2
runs for each circuit evolved in a step 1 run (no unit selection
in step 2).

Run number Avr

1 2 3 4
Step 1 evolution 60.7 | 57 | 50.3 | 54.7 | 55.7
Step 1+2 evolution | 61.9 | 54.2 | 52.6 | 51.8 | 55.1

Table 2: The Test Set Performance of the Four Runs of Ex-
periment A

Type of system Step 1+2 evolution

Min | Max | Avr
Selecting units from four runs 49.7 | 57.7 | 54.2
Sel. from two “best” runs (#1land #2) | 57.3 | 64.3 | 59.4
Sel. from two “worst” runs (#3 and #4) | 49.3 | 57.3 | 54.9

Table 3: The Test Set Performance After Evolving both Se-
lectors and the Selection of AND-OR Unit From Different
Runs in Step 2 Evolution

Run # Motion Perf

I

Selecting units from the two “best” runs
(Run #1 and #2 in step 1 evolution of A)

58
64.3
57.3

58

(Run #3 and #4 in step 1 evolution of A)

Selecting units from the two “worst” runs

57.3

57.3

49.3
55.67

R OWONRDMWNBR

WA WWERPRFPRFP R
B RADMNBINNODNDNDDNN
AR PNONRW
AWM WRFRRPRPPRP

W WWEFEEEFEDNMNDR
WhWWwerkerrero

Table 4; A List of Which Run a Unit is Selected From for Each Prosthetic Motion

Table 3 reveals the results when the AND-OR units are
selected in step 2 evolution in addition to the selector set-
tings. Each row in the table is the result of four runs. Each
run is continued for 1000 generations. The crossover rate is
0.5 and the mutation rate is 0.005. By selecting units from
all four runs, the average performance is less than the origi-
nal step 2 evolution. This could be due to different optimal
selector settings for each of the AND-OR units and lead to
the problem described earlier (when a unit is substituted by
mutation).

Better results are achieved, when selecting units only from
two runs. The two “best” runs are those referred to as run
#1 and #2 in Table 2, while the two “worst” are run #3 and
#4. The best evolved circuit is not better than the best one
evolved by the original step 2 evolution. However, the per-
formances (“Avr”) are better than the averages of the two
corresponding runs by the original step 2 evolution scheme.
These average to 58.1% (run #1 and #2) and 52.2% (run #3
and #4), respectively. The total average (of the two average
figures in Table 3) for selecting units from two runs is higher
than any other experiment undertaken (57.2%). Further, the
average performance of 59.4% is better than that obtained
for artificial neural networks in the best case.

A plot of the test set performance (measured each time the
training set performance was improved) during the evolution
is included in Figure 7. This is for selecting among run #1
and #2. The performance varies throughout the evolution.
One important result is that the worst performing circuit has
the best performance in the end of the evolution. If compu-
tation speed is a major issue, the evolution could have been
stopped at around 100 generations with almost the same per-
formance as for 1000 generations.

In Table 4, it is listed which AND-OR unit is selected for
each motion. When selecting units from the two “best” —
step 1 evolution runs, a majority of run #1 is selected. This
is reasonable since it resulted in the best performance in the
original step 2 evolution—see Table 2. For the two worst runs
it is in average selected equally from the two runs, which
could be explained by the less performance difference for
the two runs (in both step 1 and step 2 evolution). Thus, the
approach seems to be successful in selecting the best out of
two systems. Moreover, the scheme is then promising for
increasing the average test set performance.

~
=)

————————————

=)
S
\

o
S

IS
S
1
1
1
|
=
)
x

@
8

S

E;

Performance in %

N
=]

=)

o

1 5 9 13 19 27 33 37 42 55 90 104 191214231275 335403 568 776 1000

Generation number

Figure 7: The Test Set Performance of the Four Different
Runs When Selecting Among the Two Best Runs From Step
1 Evolution

CONCLUSIONS

In this paper, an EHW architecture for pattern classifica-
tion including incremental evolution has been introduced.
Experiments have been undertaken for selecting the best
combination of circuits from different runs. The best cir-
cuit evolved shows a slightly better average generalization
performance that what was obtained by artificial neural net-
works in the best case. The results illustrate that this is a
promising approach for evolving systems for complex real-
world applications.

ACKNOWLEDGMENTS

The author would like to thank the group leader Dr. Higuchi
and the researchers in the Evolvable Systems Laboratory, Na-
tional Institute of Advanced Industrial Science and Technol-
ogy (AIST), Japan for inspiring discussions and fruitful com-
ments on my work, during my visit there in January-April
2000. Further, I will express my gratefulness to the Japan
Science and Technology Corporation (JST) for awarding me
the STA fellowship making the visit possible.

REFERENCES

Fuji, S. (1998). Development of prosthetic hand using
adaptable control method for human characteristics. In
Proc. of Fifth International Conference on Intelligent
Autonomous Systems, pages 360-367.

Goldberg, D. (1989). Genetic Algorithms in search, opti-
mization, and machine learning. Addison-Wesley.

Kajitani, 1., Hoshino, T., Kajihara, N., lwata, M., and
Higuchi, T. (1999). An evolvable hardware chip and
its application as a multi-function prosthetic hand con-
troller. In Proc. of 16th National Conference on Artifi-
cial Intelligence (AAAI-99), pages 182-187.

Lee, W.-P., Hallam, J., and Lund, H. (1997). Learning com-
plex robot behaviours by evolutionary computing with
task decomposition. In Birk, A. and Demiris, J., editors,
Learning Robots: Proc. of 6th European Workshop,
EWLR-6 Brighton, volume 1545 of Lecture Notes in Ar-
tificial Intelligence, pages 155-172. Springer-Verlag.

Scott, R. and Parker, P. (1988). Myoelectric prostheses: State
of the art. Journal of Medical Engineering and Technol-
ogy, 12(4):143-151.

Torresen, J. (1998). A divide-and-conquer approach to evolv-
able hardware. In Sipper, M. et al., editors, Evolv-
able Systems: From Biology to Hardware. Second In-
ternational Conference, ICES 98, volume 1478 of Lec-
ture Notes in Computer Science, pages 57-65. Springer-
Verlag.

Torresen, J. (2000). Scalable evolvable hardware applied to
road image recognition. In et al., J. L., editor, Proc. of
the 2nd NASA/DoD Workshop on Evolvable Hardware,
pages 245-252. IEEE Computer Society, Silicon Valley,
USA.

Torresen, J. (2001). Two-step incremental evolution of a digi-
tal logic gate based prosthetic hand controller. In Evolv-
able Systems: From Biology to Hardware. Fourth Inter-
national Conference, (ICES’01), volume 2210 of Lec-
ture Notes in Computer Science, pages 1-13. Springer-
Verlag.

Yao, X. and Higuchi, T. (1997). Promises and challenges of
evolvable hardware. In Higuchi, T. et al., editors, Evolv-
able Systems: From Biology to Hardware. First Inter-
national Conference, ICES 96, volume 1259 of Lec-
ture Notes in Computer Science, pages 55—78. Springer-
Verlag.

Yasunaga, M., Nakamura, T., Yoshihara, I., and Kim, J.
(2000). Genetic algorithm-based design methodology
for pattern recognition hardware. In Miller, J. et al.,
editors, Evolvable Systems: From Biology to Hard-
ware. Third International Conference, ICES 2000, vol-
ume 1801 of Lecture Notes in Computer Science, pages
264-273. Springer-Verlag.

BIOGRAPHY

JIM TORRESEN was born in Mandal, Norway. He re-
ceived his M.Sc. and Ph.D. degrees in computer architec-
ture and design from the Norwegian University of Science
and Technology, University of Trondheim in 1991 and 1996,
respectively. He was then employed as a senior embedded
system designer in several different companies. Since 1999,
he has been an associate professor at the Department of In-
formatics at the University of Oslo. Jim Torresen has been
a visiting researcher at Kyoto University, Japan for one year
(1993-1994) and four months at AIST (formerly Electrotech-
nical laboratory), Tsukuba, Japan (1997 and 2000). His main
research interests are evolvable hardware and real-world ap-
plications.

E-mail: jimtoer@ifi.uio.no

Web: http://www.ifi.uio.no/~jimtoer/

