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Chapter 1

Introduction

1.1 Abstract

This text is about building a distributed computer immune system. It is a
master thesis project at the Department of Informatics, University of Oslo,
in collaboration with Oslo University College.

Computer Immunology is about the detection and reaction to changes
in the state of the computer system. The goal is to maintain system integrity
by detecting and protecting against attacks and failures. Its methods and
models are inspired from the biological immune system of living organ-
isms. In this project, the aim is to approach such a system by combining two
existing immunological approaches: pH a kernel patch for the GNU/Linux
kernel and cfengine a high-level policy-based con�guration engine. These
two systems are independent of each other. By combining them we mean
to enable a way for them to bene�t from each other by sharing information
or communicating events. We hope in that way to learn about the feasibil-
ity of distributed computer immune systems and what requirements they
have.

The project is divided into three phases. First we try to determine the
effect of running pH on a computer system. Second we will explore how
these two systems can be combined and if this would lead to a better com-
puter immune system than the two systems working in isolation. Third we
will try to de�ne a more general model for the components of a distributed
computer immune system based on our experience.

1.2 Plan for the remaining chapters

In Chapter 2 we will describe the background and motivation for this project
and de�ne the problems and how we wish to approach them. Chapter 3
contains the theoretical background for our project. In Chapter 4 we de-
scribe the methods we wish to use to deduce characteristics of the system
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components empirically. In Chapter 5 we present the results of the experi-
ments and give a preliminary discussion of our observations.

Chapter 6 and 7 constitute the second part of the project. Here we in-
vestigate how to combine the two systems and what the bene�ts of their
collaboration would be. In Chapter 7 we implement some of our sugges-
tions.

In Chapter 8 we apply our experience so far to de�ne what require-
ments have to be met by two security tools to be compatible to our idea of
a distributed immune system.

Chapter 9 holds a �nal discussion on how the project has satis�ed our
initial problems.
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Chapter 2

Thesis Plan

2.1 Introduction

The focus in this master thesis is the concept of a computer immune system
[1, 2, 3]. In such a system the de�nition of system normality is important
[4]. This concept is often referred to as de�ning a sense of �self� and of an
autonomous system. How can a normal state for a system be de�ned, and
how can that system keep that state by itself? Normality is interesting be-
cause we want systems to be predictable [5]. These questions require much
research to be answered fully. A beginning is to build a system which can
gather as much information from the OS as possible. Further, this system
must then be able to analyse the information, identify a state and �nally
react in a way that will either keep the state or change it.

We will try to approach Computer Immunology from the perspective
of a distributed security and integrity system. There have been several
projects which try to build systems that specialise in detecting intrusions
and anomalies. All have different algorithms and de�nitions of normality
and many succeed in their domain. This resembles a biological immune
system, where we �nd tiny components who are all experts in their do-
main. System administrators often install several security tools on their
system.

What remains in computer immunology, is the collaboration of these
tools. Is it possible to have an immune system for computers that works
like a distributed set of small software components that interact, even if
they where not designed to do so initially, to secure the integrity of the sys-
tem?

This question cannot be answered without many more fundamental
questions being answered �rst. Can this distributed model actually ensure
the integrity any better then these components by themselves? What are
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the bene�ts of this collaboration and how does it take place? How can we
at all evaluate whether two or more tools are compatible and useful in such
an immune system? We will approach these questions with two security
tools, pH and cfengine, both developed in the spirit of computer immunol-
ogy.

PH (Process Homeostasis) is a patch for the 2.2.x GNU/Linux kernel
[6], that enables the kernel to track system calls generated by all processes
and analyse these traces using a pattern matching algorithm. It also gener-
ates a pro�le of every binary that is being executed. A binary, often called
program or application, is the set of instructions that the process can ex-
ecute. When we choose to run a program, we execute the binary and get
a running process. Many of these instructions are so-called system calls -
methods made available by the operating system, like opening and reading
�les. The possible sequences of these calls for every binary can change from
execution to execution, but by logging them, we can establish a pro�le for
each binary based on system-call pairs. [7]

If a process should generate system call patterns that do not correspond
to the pro�le, the process will be delayed using a time-delay algorithm.
This is meant to sabotage intrusion attacks which are based on executing
alien code (buffer over�ow). Using a special system call, pH’s reaction sen-
sitivity can be adjusted in runtime.

PH is a process based anomaly detection system (ADS) with the ability
to react. It uses machine learning techniques to build it’s pro�le. The same
method, only on a different scale, is used by Cfengine - An autonomous
agent and a middle to high level policy language for building expert sys-
tems which administrate and con�gure large computer networks. [8] Cfengine
has a module for detecting anomalies based on system variables and the
ability to de�ne a reaction pattern to a given anomaly event.

First we want to analyse the pH-system. Not in the sense of it’s ability
of stopping attacks, but a rather different angle: How will using a system
like this affect the operating system? Why is this important? This brings
us back to the network of smaller �immune systems�. We want to incorpo-
rate pH into the anomaly-detection framework of cfengine. Also, being in
kernel-space, pH offers a opportunity to monitor processes closely, and we
want to make cfengine able to use this functionality. Before that, we need
to �nd out if it is at all feasible. Cfengines anomaly-detection model relies
on analysis of time-series data. Should pH introduce too much noise or un-
predictability into this analysis, the two systems would not help each other
at all. The �rst phase of this project can be viewed as an control experiment.

After sorting out which variables are usable for our analysis, we can fo-
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cus on how to best combine these two systems from a design perspective.
This is the other half of the project. PH offers information about the imme-
diate state of a process, both in respect to used system call sequences and
system call count. This information can be accessed and logged from an-
other system to enable precise tracking of process activity within the com-
puter system. Many of today’s intrusion-detection algorithms that use data
analysis focus on other variables, like frequencies of network traf�c or net-
work protocols [9, 10, 11, 12] and are often called network intrusion detec-
tion systems. Different statistical analysis methods are used in intrusion
detection [13]. Our aim is not to test these, but to investigate if there are
new variables available which can be incorporated into cfengines statisti-
cal component.

The project requires programming and modi�cations to both pH and
cfengine. It does not aim towards a optimal development solution as in a
bug-free and stable system. This would not be practical at the current time
since pH is only available for Linux 2.2 and further testing is required to
evaluate the usefulness of this idea. That may be developed in future work.
Another important goal for this project is to suggest what is required of two
ADSs in order to to make them part of an computer immune system. These
requirements can then be used as an analytical base for evaluating the com-
patibility of other ADS in the future. The model will be strongly in�uenced
by the types of systems we evaluate, but it may serve as a template which
can be expanded as we investigate other ADS systems in future projects.

The resulting questions are therefore as follows:

Central Questions

1. How does a system with pH running differ from a pH-free system
on an overall system perspective? (control experiment)

(a) How can we �nd a basis on which to compare two apparently
similar computer systems with regard to system variables and
low uncertainty in measurements?

(b) What can we say from this about how much any system differs
under different conditions and what is tolerable? (Anomaly de-
tection)

(c) Would the difference between two computer systems increase if
one of the systems ran a pH-patched kernel?

(d) Can any of the information from the previous problem be used
to detect anything useful in the behaviour of computers? If so,
what can we use the information for?
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2. How could a process based anomaly detection system be incorpo-
rated into a more generic con�guration engine like cfengine?

(a) In what way does cfengine offer an interface for communicating
with pH and vice versa?

(b) What bene�ts would a higher level system con�guration-tool
have on pH and vice versa?

(c) How could a pH-based event-handling approach �t into cfengines
policy-based anomaly detection framework?

3. What are the requirements for the development of a computer im-
mune system?

(a) What makes two or more ADS compatible to this model?

(b) Can pH and cfengine be used as two components in a computer
immune system?

2.2 Problem Specification

Here consider how to approach the problems and what kind of results we
regard as suf�cient for the project.

2.2.1 Phase One: System Similarity/Difference

The uncertainty between two similar machines is important from a com-
puter immunology perspective. How does adding pH to one machine alter
its baseline �normal� behaviour? Is pH intrusive and does it affect perfor-
mance? Our �rst phase is a control experiment where we will try to answer
these questions.

The difference between two systems can only be measured by consid-
ering a set of speci�c variables. We de�ne difference and similarity as a
statistical correlation between a selection of system-wide variables of two
computer systems given a time-series sample of those. Further, we don’t
want to see how big differences (low correlation) we can achieve. What’s
interesting in this problem is how small differences are between twin sys-
tems.

The variables of choice will be standard system variables describing re-
source utilisation (See [14] for instance). These variables are on the OS-
level, like memory usage, CPU load and disc activity. There are other vari-
ables we could take into account, like the number of processes and number
of users. Cfengine uses some of these already. Since the test-environment is
controlled in that aspect we will not focus on them. We could also monitor
network traf�c, but that has no importance in our setting, since pH is not
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engaged in any network communication. The data-gathering is separated
from the analysis. This way we can expand our data-model more easily
with new variables, should we not be satis�ed with our initial selection.

Our main analysis method of choice will be Spearman’s rho, a correla-
tion coef�cient for two independent variables which are not normally dis-
tributed. It shows the linear dependency between two variables.

The data will come from two appointed machines with an identical
setup. By �different conditions� we mean small additions to the two ma-
chines, like running pH on one machine and not on the other, which will
result in less similar con�guration. This will affect both �le-system and per-
formance, but not the number of processes or users being active. A time-
series measurement will be done after each of these changes. We want to
measure the noise-level so it can be taken into account. We don’t want the
machines to do very much initially. In the end we want both machines to
run a service that we can stress from the network and one of them to run a
pH-patched kernel.

We then analyse the data from these tests, and look at how the corre-
lation coef�cient changes as we introduce more differences. A satisfying
result would be to see if we have a statistical way of detecting if the sys-
tems are in fact using system resources differently. A limitation is that we
only investigate the relationship between each variable in isolation. The
variables describing the computer system are often inter-dependent.

There are different ways of de�ning a multivariate statistical pro�le for
a dataset [13], but these methods are used for anomaly detection and not
for comparing two datasets. One application of such methods in this con-
text would be to build a multivariate pro�le of one of the sets, and use it on
the other dataset to see if it would be accepted. A simpler approach could
be to do a multivariate test for each set on the relationship of the variables
in it. The result for the two sets could then be compared. We choose the
novel approach of analysing the dependency of each variable in isolation
because a multivariate test cannot show what variables in the set differs the
most. We are interested in following the evolution of each variable during
the different tests.

The tests can be continued for every system-variable, aspect of usage
and each service. But given the time constraints we will keep to only this
set of variables. The design should nonetheless be good enough for others
to repeat them in different contexts.
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2.2.2 Part Two: Combining pH and cfengine

Once we have measured the uncertainties in the experimental procedure,
the focus shifts towards the variables that come from pH. We need to �nd
out how to best preserve and analyse these variables. An important goal,
is to see if pH introduces new variables that are at all useful for statisti-
cal anomaly detection and if they are compliant with cfengines framework.
Hopefully it will give a better perspective on the use of system resources.
We will concentrate on the machine running pH. If we introduce a load to a
service running on that computer, will the new variables give us a accurate
account of what happened? We hope so.

As said earlier, the interest lies not in making one system out of both,
but merely opening a couple of doors so that the two systems can take
advantage of this through more interrelated teamwork. One of the advan-
tages will lie in the sharing of data.

Several questions need to be answered for this to happen. First of all, do
they have a compatible data-model? What kind of data is important? And
how should the two systems communicate or affect each other? The main
goal for this part is to establish a usable speci�cation for the changes that
need to be implemented in both systems. We will use code inspection and
more experiments to learn more about the new data which can be gathered
and analysed in a way that is already implemented in cfengine. A system
has to be designed for collecting and analysing these data, before we en-
able cfengine to do it. If time allows, then some prototype programming
on cfengine and pH will �nish this part.

This part is the actual step towards a Computer Immunology System.
The �rst part was the groundwork and the last part will be to discuss how
our results can be used for other projects.

2.2.3 Part Three: Building a Computer Immunology System

If we succeed in combining the two systems, how could this be useful for
other similar projects in the future? There are many useful tools available
today for detecting anomalies and intrusions. We will try to formulate a
requirement speci�cation which can be used to evaluate the compatibility
of other systems involved in building a computer immune system.

Now that we have described the goals of the project, it is important
to ask why we choose to design the project like this. The answer lies in
the philosophy of system normality and computer immunology. Our aim
is to explore idea of combining different anomaly detection systems and
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making them work like an interrelated immune system. The �rst part of the
project can seem a bit unrelated to the later problems, but it constitutes an
important groundwork for the project as a whole. Cfengine detects changes
in the state of the system. PH operates in kernel-space and can therefore
in�uence the performance of the OS considerably. If pH introduces to much
noise in cfengines data, then the two systems are incompatible.

The larger aim of this project is to apply an empirical method to the
evaluation of collaborating systems. What results can we �nd to determine
whether such collaboration is bene�cial or not? Our experience from this
project will hopefully give us more insight into the complexity of anomaly
detection systems which try to monitor and react on all aspects of the com-
puter system, and how to build them.

This project does not cover the software engineering aspects of build-
ing a computer immune system. There are many interesting questions re-
garding maintainability, development process, version control and quality
assurance. We will make a few notes about them in the �nal discussion at
the end of this text.
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Chapter 3

Theoretical Background

3.1 Intrusion Detection

We often divide Intrusion detection into two categories: misuse (or rule-
based) intrusion detection and anomaly intrusion detection [15]. In mis-
use intrusion detection we have an already de�ned set of so-called sig-
natures that depict an attack. This approach is sometimes referred to as
signature based intrusion detection. An example of this type of system
is portsentry, a package for detecting ports-cans [16]. Another famous
open source intrusion detection system is SNORT, which tries to detect net-
work attacks by monitoring network traf�c in real-time [17].

In anomaly intrusion detection, we �rst have to de�ne or learn what
behaviour is to be regarded normal or benign for the individual system.
Any future deviations from the norm will then be regarded as an anomaly.
Behaviour in this context can mean different things: usage patterns of ser-
vices, user behaviour or a combination of system variables are all valuable
sources. An anomaly intrusion detection system is often viewed on as a
learning system. Data are gathered and analysed constantly in order to de-
�ne what is normal using a statistical approach. The two anomaly detection
systems in this project, pH [18] and cfengine [19] fall under the category
of learning systems. They both build pro�les and compare new data to a
dynamic norm.

Statistical techniques can be used to build a pro�le of a subject’s long-
term normal behaviour, and detect signi�cant deviations of the subject’s
short-term behaviour from the long-term statistical pro�le [13]. A subject
can be a process, program, user, OS or anything else that can be measured.
The pro�le can have been built in advance from audit trails or updated con-
stantly as more data is available.
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In ref. [9], the authors describe an approach to anomaly detection based
on transactional properties, where network traf�c is considered normal if
it coheres to the known ACID1 properties of transactions. Every network
protocol is described using a deterministic �nite state machine, DFSM. A mon-
itoring system could check the connections consistency using the appropri-
ate DFSM. Some network attacks, like Ping of Death violate the ACID prop-
erties and could be detected if monitored this way.

When speaking of anomaly detection, it is not always certain if this
term only covers anomaly intrusion detection or has a more broader view,
where anomalies can come from miscon�gurations, faults or other devia-
tions which do not have anything to to with any intrusion attempt [5].

Both approaches have their advances and limitations [20, 21]. Misuse
intrusion detection systems have to be updated when new signatures be-
come known. On the other hand, they are more ef�cient and accurate.
Anomaly intrusion systems can generate false alarms or ignore actual at-
tacks. Many systems try to use a combination of both approaches. NIDES
is an intrusion detection system which uses both signature-based methods
and statistical pro�les [22, 21]. It monitors network traf�c as well as indi-
vidual user behaviour.

3.1.1 Related Research

Ref. [23] describes an immune system to protect against new versions of
different types of viruses. The motivation is the increasing frequency of
new computer viruses and that one needs a faster and automatic way of
creating �xes against them. Their system is part of IBM’s AntiVirus (as of
1997). This system could create �xes for viruses and spread them to other
machines, thus creating an immune system for cyberspace.

In [24], the authors approached intrusion detection by de�ning unac-
ceptable events for processes in advance. These events where sequences of
system calls and their parameters. When executed, they where monitored
in real-time. A speci�cation language was developed to both describe de-
tection criteria and reactions to the violations.

Ref. [15] describes a similar approach to pH in that it is a learning sys-
tem. Their approach is to divide the softwares functionality into modules
and to generate a behavioural pro�le from the softwares transitions be-
tween these pro�les when executing. This system does not have any reac-
tion capabilities, though.

1ACID stands for atomicity, consistency, isolation and durability
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3.2 Computer Immunology

Todays computer systems are fragile and unreliable. Operating systems
may be called stable or secure, but they all depend on the human to con-
�gure, monitor and repair them. Computer systems pervade almost every
aspect of our daily life. The more computers, the higher the probability of
one of them breaking down and demanding a repair. The task of system
administration grows not just in the technical requirements needed to keep
a large system healthy, but also in the risk involved should something go
wrong. Biological systems have a greater complexity and are also fragile
and vulnerable, but they possess the ability to detect errors and heal them-
selves.

Every computer system, regardless of how small, needs time-consuming
administration. Systems that fail can have an impact on our lives, like
sensitive information available for all, open bank accounts and computer
hang-ups. Despite this we just get more and more systems to do important
tasks on our behalf, like banking. How could we apply the the idea of an
autonomous system to our computer systems, minimising the need for hu-
man interaction? Then, perhaps, we could use the computers only for the
tasks and services they where intended for instead.

Computer Immunology is an approach to integrity management. In the
hart of the Computer Immunology philosophy is the autonomous system.
One of the smallest autonomous systems we know today is the procary-
otic cell. Bacteria without a cell nuclei. Seemingly primitive, these cells
have complex mechanisms for transcription of DNA into RNA dictating
the construction of complex proteins from amino acids. Other proteins de-
tect errors in the DNA and order the cell to commit suicide. These systems
can detect, react and adapt to conditions which could be lethal otherwise.

Another example is the managing of our defence-cells, lymphocytes, or
generally white blood-cells. They attack intrusions of non-self substances
and foreign cells. The lymphatic system can be �trained� for detecting spe-
ci�c bodies not previously known to the immune system before. The pro-
duction of speci�c lymphocytes varies with the demand for them.

A key concept here is that of homeostasis - or regulative feedback [1, 3].
When a change occurs in a system, there are two general ways that it can
respond. With negative feedback, the system responds in such a way as
to reverse the direction of change; this tends to keep things constant and
allows us to maintain a regular state. On the other hand, positive feedback
would tend to amplify the change. This has a de-stabilising effect, so it does
not result in homeostasis. While it can be useful for rapid responses, it is a
dangerous strategy, since the change will tend to dominate and eventually
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consume a system.

Regulation or homeostasis is thus a built-in, automated property of a
system that executes and monitors events essential to the existence of the
system. It is a self-regulating mechanism that allows a system to avoid
paying detailed attention to its most basic functions thereby helping keep
it in a steady state.

This state of �self� is the foundation of anomaly detection. It is an
acquired sense, meaning the system has to de�ne this state based on its
own behaviour and adjust it accordingly [1]. We are speaking of a ma-
chine learning system or learning-system. The problem with such systems
is that they can be inaccurate and oversee dangers (false negatives) or react
to normal situations (false positives). The Computer Immune System needs
a reliable framework and data sources so that the de�nition of normality
can be as accurate as possible.

Our immune system consists of small and primitive participants. We
have white blood cells tagging and destroying illegal cells. Our perspira-
tion adapts body temperature and we even have a system for the collection
and removal of toxic chemicals. The point is that this immune system is a
collaboration of subsystems, most of them transparent and simple. It is be-
cause we have such a subsystem for almost every anomaly (or illness) that
we survive. These subsystems work together unknowingly. They interact
in the sense that one’s reaction pattern sets off others alarm bells. Could
the same be possible for a computer system?

Computer Immunology is thus about normality, a de�nition of a state
for the system. Without the sense of what is allowed or expected values
for i.e system variables, we could not detect an anomaly. These values are
of course subject to variations within acceptable limits and the mean will
have to be adjusted after time of day and weekday. If the system has the
tools for measuring and adjusting these values by itself, we have a learning
system. In such a system a statistical framework suitable for the different
types of data is needed. Doing statistical analysis in runtime can be too
time-consuming and would probably be done periodically instead. See also
the real-time approach by Burgess in ref. [25]

Another aspect of normality is the de�nition of a policy. Every event
that violates this policy is an anomaly. An example of such a policy could
be what permissions should be set on system �les. Policy is also combined
with statistical measurements. One could de�ne what relative deviation
from the established pro�le should be perceived as an anomaly event or the
frequency of a certain error to occur. Policies also appoint when and how
often statistical measurements are to take place, affecting the granularity of
the learning system. Normality is thus about both policies and learning.
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Policy

Normal

Stat. Learning

Figure 3.1: The de�nition of system normality consists both of a set of rules (pol-
icy) and learning capabilities (statistical measurements).

The idea of the reasoning computer or the emotional robot is known
to all readers of science �ction literature. It is an old concept not only for-
behold computers. Frankenstein’s monster and clay golems have had their
share too. Today we call it arti�cial intelligence. Immune system also has in-
telligence. It exhibits learning, selection, state and responsiveness. It solves
a complex search-problem. However intriguing and romantic the thought
may be, this is not Computer Immunology. We try to keep the focus on
security systems, not �ction. Learning techniques, although prone to false
alarms are needed to make computer systems adaptive to new threats. Sig-
nature based detection techniques can be used to give computers a priori
knowledge of existing vulnerabilities.

3.2.1 Computer Immunology and System Administration

Today there are few software components with the task of detecting, react-
ing and perhaps even adapting to conditions in the computer system. One
example of such a mechanism is a kernel thread which checks for deadlocks
between other threads and processes. A more sophisticated example would
be a program that records the load on the OS continuously and adjusts the
time of periodic tasks to times when the system usually experiences low
workload. It could also run optimisation algorithms, like prefetching im-
portant �les in advance to reduce expected peaks of user interactions.

Introducing extra functionality into a operating system has always been
a subject of debate. Arguments usually concern simplicity, predictability
and performance. A too complex and unpredictable system can be a secu-
rity risk in it self. [26]

Using the idea of an autonomous system consisting of several inde-
pendent but interacting components, we could imagine a computer system
having many processes or threads each doing a highly speci�ed and simple
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task most likely related to detecting some sort of anomaly. These compo-
nents could trigger each others alertness by sending messages or leaving
hints.

We have many types of anomaly detection systems [27]. Most of them
are aimed towards security, like detecting network intrusion [22, 17, 16] or
�ltering out viruses from incoming mail [28, 29]. None of them are espe-
cially aware of each other. These applications are developed by different
programmers and companies. This could look like an ideal starting point
for building an immune system.

3.2.2 Thoughts on Computer Immunology

Using terms like anomaly, immune and virus it’s easy to get a too per-
sonalised view of the machine. We could de�ne sickness or health for a
computer, but would that bring us further towards better system adminis-
tration? Computer Immunology is not about making the machine resem-
ble an organism. It’s about using techniques derived from one of nature’s
oldest instincts: To stay alive. One of these techniques is load-balancing.
Another one is running away from danger. We could make a server stop
unimportant services when the load gets too high. We could also make the
system shut down it’s network-services if someone should try to exploit it.

Shutting down services can be perceived as hiding from danger just
like organisms do, but resembling a life-form is not the goal in itself. It’s
about programming certain patterns of reactions and responses. But right
now we have no other place to look for reactions that we can understand
and apply than in nature. Where else in the universe do we �nd decision-
making and policy if not in living organisms?

Although subtle, there is a difference in making a huge and expensive
Tamagotchi, a household pet if you like, and programming the computer
to react to values of prede�ned variables. The difference lies in our percep-
tion and the system and its purpose. Both the server and the Tamagotchi
react in a pattern that we recognise from nature, but while the later tries
to mimic an organism through well crafted rules, the former is just apply-
ing a set of reactions that we know will make the system more stable and
self-maintainable, an �emergent� property.

Ref. [1] has an interesting thorough description of the fundamental
properties of a computer immune system.

3.2.3 Related Research

Different projects have often different views on what event constitutes as a
anomaly, but they are similar on on the notion that computer systems are
healthy when their behaviour is free of anomalous occurrences[1, 3]. It falls
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on researchers to de�ne what ‘anomaly free’ means, or conversely what is
normal for a system. This can be done in several ways.

Commonly one supposes that systems are normal when they exhibit
medium term stability, i.e. stability on a time scale at which users expe-
rience the system[5]. Health or stability is thus related to ones idea of
policy. Long term changes, such as policy revisions, can occur and short
term changes are occurring all the time. Normality is clearly a statistical
concept, which accrues over time, and computer immunology is a form of
computer learning[4, 30]. Unlike many other methods of arti�cial intel-
ligence, computer immunology is about purely mechanical regulation of
behaviour, rather devoid of ‘intelligence’ in the normal sense of the word.

Two approaches have emerged for addressing these issues at different
scales.

� At the University of New Mexico, the Computer Immunology group
has examined strategies for detecting signatures of abnormal com-
puter behaviour at kernel level. Their pH system[31, 6] learns new
signatures over time, but is resistant to doing so. The primary mo-
tivation here has been in de�ecting network intrusions, though the
method is equally effective in detecting abnormal local usage, such
as attempts to exploit buffer over�ows. The response provoked by
anomalies has been in the form of scheduling delays in processes with
unknown call sequences, in order to urge attackers to lose interest.

� At Oslo University College we have focused on the con�guration
management aspect of policy, using a system of agents (cfengine) that
detect and use their environmental conditions and current con�gu-
ration to detect anomalous changes[32]. Again, the policy is partly
speci�ed and partly learned from patterns of usage, and the response
to different events is speci�ed itself as a matter of policy, and the
agents ensure that the system tends to maintain the same state over
time.

3.3 Introduction to pH

PH (Process Homeostasis) is a patch for the Linux 2.2.X kernel developed
by Anil Somayaji. It addresses the automated response problem. A lot of
security software today is designed to detect attacks (i.e IDSs) or to �nd
vulnerabilities in the system. Many of them can even try to stop attacks as
they occur. Other can delete viruses and even repair damaged �les.

By analysing the pattern of system-calls made by each process using
pattern-matching algorithms, pH gains knowledge about what it perceives
as normal behaviour. It also maintains a pro�le of each binary as to see
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if each process produces the expected patterns of system-calls. While the
the process keeps it’s number of strange patterns under a certain level, it
is considered normal. If the number rises too high (�high� is an adjustable
value ), pH starts to sabotage the process by delaying all the system-calls
made by it.

An important point, is that the pro�le is for each binary, but the reac-
tions are for individual processes. Every process has its sequence of system
calls, which we call a trace. The pro�les of each binary is updated and ad-
justed to the behaviour of the processes. This means that instances of a spe-
ci�c behaviour will in time be considered as normal. Not all anomalies are
real threats to the system. Earlier research by Somayaji suggests that �To
date, all of the intrusions we have studied produce anomalous sequences
in temporally local clusters.� pH is therefore designed to react regarding
the density of anomalous system call patterns.

3.3.1 Algorithm

The algorithm used by pH is called �time-delay embedding�, which looks
at the trace of each process’ system calls. For each system call, pH notes the
calls preceding this one within a window. This gives a number of system
call pairs for each position in the window.

Suppose we have the following trace of an imagined process:

getpriority, open, write, write, close, open,
pipe, close, exit

We read the trace from the left. While reading, we note which calls come
behind the current one. Just like sliding a window over the trace.

Starting with the �rst call, getpriority, we see that it is followed by
no other calls (the rest of the window is empty). The system call open
however, is followed by getpriority and ,later on, by close. We now
have two pairs: (open,getpriority) and (open,close). Should pH ever
encounter a new open in the trace of this process that is not proceeded by
neither getpriority or close, then pH would call it an anomaly.

This is a highly simpli�ed model of pH. First of all, we only considered
pairs of system calls coming directly after each other. This gives a win-
dow of size 2. The default window-size for pH is 6. This gives even more
pairs generated by each trace. Table 3.3.1 on page 22 shows the pairs of
this trace given a window-size of 4. Second, pH does not consider each
pair it encounters as part of the processes pro�le right away. There is a dis-
tinction between the current pro�le (called test) for a given binary and the
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temporary pro�le of the running process (called train). The train-array is
continuously updated with new pairs. Should a pair occur, that is not part
of the test-array, then it is considered an anomaly. The test-array can only
be updated by replacing it with the current train-array. This replacement
occurs under one of three conditions (from the documentation):

1. The user explicitly signals via special system call (sys_pH) that a pro-
�le’s training data is valid.

2. The pro�le anomaly count exceeds the parameter anomaly_limit.

3. The training formula is satis�ed.

The training formula is actually a set for constraints that the training
array has to comply with. These constraints are the length of the training
array, how long (in system calls) the training array has been left unchanged
and the difference of these two. Should the training array ful�l the mini-
mum requirements set by pH, then the training array will be copied to the
test array automatically.

The formula consists of three variables [6]:

train_count: # calls since array initialization
last_mod_count: # calls since array was last modified
normal_count = train_count - last_mod_count

The conditions for the automatic training to test copy is as follows:

last_mod_count > mod_minimum
normal_count > normal_minimum
(train_count / normal_count) > normal_ratio

Should a anomaly occur, then a number of the following system-calls
will be delayed. The amount of time they will be delayed is dependent
on the number of anomalies in the last 128 system-calls. The word time
here means jif�es - processor ticks. The delay is calculated using this simple
exponential formula:

���������
	
delay_factor �
�

�����

The default delay_factor is 2. LFC (Locality Frame Count) is the
number of anomalies in the last 128 system calls. A anomaly, will therefore
effect the next 127 system calls, because that is how long it is going to effect
the LFC. Let us consider the following example:

A process generates two anomalies coming directly after each other.
The �rst anomaly sets the delay for the next 127 system calls to 4. The
second anomaly increases the delay to 8 for the next 126 system calls before
it goes down to 4 again for a single call.
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Current Position 1 Position 2 Position 3
getpriority
open getpriority, close write write
write open, write getpriority, open getpriority
close write, pipe open, write close, open
pipe open close write
exit close pipe open

Table 3.1: System call pairs given the following trace getpriority, open,
write, write, close, open, pipe, close, exit and a window-size of
4

After a certain amount of anomalies, the train-pro�le will switch to the
test-pro�le. This is called tolerization, meaning the pro�le adapts to the
behaviour of the process. Default value is 30 anomalies. But should the
anomalies occur too close to each other, then pH will react in the opposite
manner and reset the train-pro�le. Default limit is 12 anomalies within the
LFC.

Also, should a process reach a higher LFC then 10, then every execve
call will be delayed2 for two days (by default).

3.3.2 Implementation

When a new process starts, the pro�le for the binary is loaded from disk.
This pro�le contains both the test and training array. If a pro�le does not ex-
ist, it will be created. When the process terminates, the pro�le gets written
to disk. Several simultaneously running processes from the same binary
share the same pro�le, and it will be written do disk when the last process
terminates.

Before each system call, a function (pH_process_syscall) in the ker-
nel is called. This is where monitoring, response and training logic takes
place.

It is also possible to control pH at runtime with its own system call:
sys_pH. Together with the patch comes a tool which is called pH-admin.
This is basically a front-end to the system call. This tool can, among other
things:

� Turn the monitoring on/off

� Write pro�les to disk

� Adjust pH-variables (i.e delay_factor)

2This is a new feature in pH-0.18. Earlier versions aborted the execve call instead.
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� Force the train pro�le to be copied to the test pro�le.

pH gathers it’s information about each running process from the /proc
directory. Each folder belonging to a process has a �le called pH, which
contains information about delay, system call count, if the pro�le is consid-
ered normal and if the process is currently frozen.

All the messages created by pH are logged in the log �le /var/log/syslog.
The pro�les for all the binaries are located in the folder /var/lib/pH/profiles
where they are sorted in a hierarchy which mirrors the actual �le-system.
Each binary is therefore identi�able by it’s path. As an example:

The program less, which has the path /usr/bin/less, will have it’s
pro�le at /var/lib/pH/profiles/usr/bin/less.

3.4 Short introduction to cfengine

Cfengine is a con�guration management system written at Oslo Univer-
sity College[32], which is comprised of a number of components (see �g
3.2). An agent component is responsible for enforcing speci�ed policy by
comparing a description of the permissible states of a host’s con�guration
with the host’s actual state. There are also �le-server and scheduler com-
ponents for deploying cooperative management schemes. The cfenvd en-
vironment daemon is a component that measures system resource usage,
independently of the other parts and records it in a database[25], which
becomes the de�nition of ‘normal’. This tool is intended both for regula-
tive feedback and for gathering research data. It classi�es the current state
of resource usage in relation to what has been learned previously, in units
of the tolerance de�ned by the statistical uncertainty (standard deviation)
for each time of week. It then publishes its results for other programs to
use, notably cfagent. Cfagent receives the classi�ed data as a ‘class event’
which can be used to predicate countermeasures or follow-up responses
for the state concerned.

Some examples of classes which can become active in the cfagent:

RootProcs_low_dev2
netbiosssn_in_low_dev2
smtp_out_high_anomalous
www_in_high_dev3

The �rst of these tells us that the number of root processes is two stan-
dard deviations below the average for past behaviour. This might be fortu-
itous, or might signify a problem, such as a crashed server; we do not know
the reason, only that an anomaly has occurred. The WWW item tells us that
the number of incoming connections is three standard deviations above av-
erage. The smtp item tells us that the number of outgoing smtp connections
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Figure 3.3: Cfengine measures patterns of resource usage over the working week.
This example shows how measurements of Samba (Windows �le sharing) service
requests lead to an average picture of behaviour at different times of the week.
The solid line is the average value over many weeks and error bars indicate the
standard deviation.
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Chapter 4

Experimental methodology

This experiment is the �rst phase of the project and addresses the �rst
part of the problem. We want to establish a measurement for how simi-
lar two computer systems are. Here it will actually be the comparison of
two datasets, one from each system. We will gather the data from two ma-
chines during four trials. In each trial, the systems will differ a little more.
The results gathered from this experiment will allow us to determine the
error-margins for two twin systems. If the two systems should differ even
if they are almost identical con�guration-wise, then this would in�uence
our expectancy of what would be a signi�cant difference later on during
the project.

Both hosts in the sample are running the Debian GNU/Linux operating
system with identical con�guration.

Each host was equipped with a single process in addition to the nor-
mal process list which used vmstat to collect data about system variables
every 30 seconds. These data were written to a �at text�le which was time-
stamped both in the beginning and the end of each trial. During the �rst
trial, we used the standard kernel (2.2.19pre17) that was default in the
Linux-distribution and without pH installed. The goal was to get some
data on how different the systems are on identical installations. In the later
trials we used a different kernel, 2.2.19, on both machines. These were also
identical except that one of them had a pH-patched version. The reason we
switched the kernel was because this version was being used by the devel-
opers of pH. Now we wanted to collect some new data on their behaviour.
First with pH deactivated and then activated. During all of these tests, the
machines where doing "nothing". In this context �Nothing� means that no
users were logged in during the test period save for starting and stopping
the monitoring. They both ran a ssh service for remote access.

This is the result of the command ps aux on one of the machines. It
shows the processes running at the moment.
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USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 1.5 1020 464 ? S 2002 0:06 init [2]
root 2 0.0 0.0 0 0 ? SW 2002 0:00 [kflushd]
root 3 0.0 0.0 0 0 ? SW 2002 0:01 [kupdate]
root 4 0.0 0.0 0 0 ? SW 2002 0:00 [kswapd]
root 5 0.0 0.0 0 0 ? SW 2002 0:00 [keventd]
daemon 79 0.0 1.6 1140 500 ? S 2002 0:00 /sbin/portmap
root 139 0.0 2.0 1352 620 ? S 2002 0:02 /sbin/syslogd
root 142 0.0 2.9 1484 892 ? S 2002 0:00 /sbin/klogd
root 153 0.0 1.9 1312 572 ? S 2002 0:00 /usr/sbin/inetd
root 164 0.0 3.1 2240 944 ? S 2002 2:15 /usr/sbin/sshd
daemon 168 0.0 1.8 1140 548 ? S 2002 0:00 /usr/sbin/atd
root 171 0.0 2.0 1168 620 ? S 2002 0:00 /usr/sbin/cron
root 176 0.0 4.3 2520 1284 ? S 2002 0:01 /usr/sbin/apache
root 179 0.0 1.4 1004 444 tty1 S 2002 0:00 /sbin/getty 38400
root 180 0.0 1.4 1004 444 tty2 S 2002 0:00 /sbin/getty 38400
root 181 0.0 1.4 1004 444 tty3 S 2002 0:00 /sbin/getty 38400
root 182 0.0 1.4 1004 444 tty4 S 2002 0:00 /sbin/getty 38400
root 183 0.0 1.4 1004 444 tty5 S 2002 0:00 /sbin/getty 38400
root 184 0.0 1.4 1004 444 tty6 S 2002 0:00 /sbin/getty 38400
root 21029 5.6 4.9 2856 1480 ? R 14:13 0:00 /usr/sbin/sshd
kyrre 21030 2.5 3.8 1968 1160 pts/0 S 14:13 0:00 -bash
kyrre 21031 0.0 4.0 2916 1200 pts/0 R 14:13 0:00 ps aux

Each test was run simultaneously on both machines. We place special
care in having the two systems as much in the same state as possible just be-
fore a experiment starts. One way to achieve this, is to reboot the machines
before each trial. This gives us two similar systems with regard to running
processes and memory-usage. This is just as important when the goal is to
test the machines under stress. The load has to come from the same pro-
cesses. �Load� itself can be divided into different variables: Memory, CPU,
IO. Running one process that only uses a lot of memory and waits for user-
input would not stress the CPU in the same way as running a lot of small
processes who all run in the background.

During the �rst three trials, we have hopefully already got an impres-
sion on how the system variables vary as long as the machines have no
particular tasks they have to attend. Next we want to do a similar test, but
this time we introduce a load to a process during the testing period. We use
the same measuring and analysis and hope to see a clearer deviation then
before.

In this experiment we monitored the evolution of a pH-pro�le belong-
ing to a speci�c application over time (one week). This application will run
on both machines and they have the same random user input. The overall
system variables on both machines will be monitored on both machines in
the same way as before.

The application to be monitored was the apache web-server. Apache is
a well-known web-server for many operating systems. It it widely used
together with Linux. Before the experiment starts, the pro�le of this pro-
gram will be deleted so that pH will have to start on a blank one. Every
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�ve minutes a snapshot will be taken from this pro�le and put in a log-�le.
The system itself will be monitored with vmstat every 30 seconds.

A remote process will download webpages from both machines and
sleep a random amount of time. Several such processes and short sleeping
intervals will strain the system somewhat. The script is shown below:

#!/usr/bin/perl
# A simple script for downloading a webpage from
# romulus and remus and prints the event
# The script sleeps a random amount of time.
# $max holds maximum sleep time

$max = $ARGV[0];
srand;

while(true)
{
$return1 = system ("lynx -dump http://romulus.iu.hio.no >> /dev/null");
$return2 = system ("lynx -dump http://remus.iu.hio.no >> /dev/null");
$time = localtime;

system ("echo $time >> surf.log");

$tall = int (rand($max)) +1 ;

print "Surfed at $time, sleeping for $tall seconds...\n";
sleep $tall;
}

We will in the end have three log-�les:

vmstat.log.romulus
vmstat.log.remus
apache.log.pH.romulus

These will dowloaded from the systems and analysed off-line. The two
vmstat-�les will be compared in the same way as before, and should there
be any differences in them we hope to �nd an indication in the pH-log-�le
that pH’s treatment of apache has some connection to it.

The log-�le apache.log.pH.romulus is updated every �ve minutes,
and we use cron for the execution of a perl script that parses the pro�le
and put it in a data�le.

It’s important to note, that there will be one new difference between the
two systems. The script for gathering pH-related data on romulus does not
exist on remus. The script forces pH to write pro�les to disk, reads from
a pro�le and writes to the data�le. This repeats every 5 minutes. This can
very much in�uence the data. One possible compensation could be to run
a script on remus every 5 minutes as well. This bogus script could then do
some writing an reading on it’s own, just to compensate. We chose not to
implement this.

Another approach is to measure the systems during user interaction.
This can be tricky to implement, since the systems need the same type of
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Con�guration / Trial Description
Default Both machines run the same

installation-default kernel
pH-Passive 2.2.19 on remus and 2.2.19-ph

on romulus. PH is disabled.
pH-Active Same as pH-passive, but pH is

enabled on romulus
pH-Load Same as pH-Active, but the

machines are running apache
with instances of high load.

Table 4.1: Every trial had a different con�guration. This table shows the four
trials and each corresponding con�guration.

Trial Machine Con�guration Samples collected
1 romulus Default 179229
1 remus Default 179282
2 romulus pH-Passive 51173
2 remus pH-Passive 51189
3 romulus pH-Active 51091
3 remus pH-active 51106
4 romulus pH-Load 40269
4 remus pH-Load 40293

Table 4.2: Different trials

interaction. Simulation of user activity seems to be the solution, but this
isn’t easy. First of all, its hard to simulate user activity (like mouse-clicks
and doodling) in the X window-system. As a result we tend to run scripts
on the machines that simulate a user typing commands. But what type
of user? An experienced user with a UNIX background would use a dif-
ferent set of commands and possibly fewer misspellings than a �rst-year
student with no former knowledge of command-line interaction. What
type of editor would they use? What type of commands? One solution
to this would be to use transcripts from different students history-�le (i.e
.bash_history ) and generate shell-scripts that encompass all the different
ways of command-line usage. We do not follow this approach. The data
collected in this project would be an interesting comparison to data from
systems with user interaction. Future projects may address this issue.

An interesting point will be if the variables described earlier will be able
to show the effects of pH. In other words: can we conclude that the system
in fact is unaffected just because we don’t �nd any signi�cant changes in
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Installing Apache.

Activating pH on romulus

Changing to kernel 2.2.19 on remus
and 2.2.19−pH on romulus.

New Debian installastion

Modification:Trial:

4. pH−Load

3. pH−active

2. pH−Passive

1. Default

Figure 4.1: This diagram shows the four trials and the modi�cations between
each trial. For simplicity, each trial is depicted as having the same length.

system behaviour using these variables? Here we have to remember why
we conduct these experiments. If we do not �nd any signi�cant changes
using these variables, then other anomaly detection systems using the same
variables won’t be too affected of pH.

4.1 Data analysis

The data for each experiment were analysed the same way by an applica-
tion we developed for this purpose. A program written in the program-
ming language Perl takes the two data-�les as it’s arguments and reads
them. The result is a LATEX document containing all the plots and tables of
all the calculations. The plots are generated by xmgr, which has an option
for batch-mode processing, and our script serves as a front-end for it.

This way we have a standarized way of looking at the data and the
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calculations both i electronic form and in a printable format using the shell-
command dvips.

4.1.1 Descriptive data analysis

The data from the two systems is analysed individually before they are
being compared with each other.

For each individual measurement of the scalar variable � 	�� �������	�
�����
��
�
�
�������� ,
we calculate the following attributes:

� Mean: � 	�� ���� � � ��
� Standard deviation:

� 	 ���� ���� �
� ��� �"! �

� � �$# �

4.1.2 Comparative data analysis

For us, the similarity of two systems is de�ned by the similarity of their
time-series data concerning system-performance and load. We use two
types of analysis, inspection and the linear relationship between the two
variables.

The correlation (r) measures the direction and strength of the linear re-
lationship between two quantitative variables x and y for n samples. With
their respective standard deviation S and mean the formula for r is given
as follows (Pearson-Bravai):

r
	 ���� �

� ��� � !
� � � �%'& # !

� � � �%	( #
Like the mean and standard deviation, r is strongly affected by a few

outlying observations. This poses two problems for our experiments: First
comes the rather strong assumption that the data is under a normal distri-
bution. We cannot predict that the variables will have that property and
should therefore expect them not to be. Second, we cannot rule out out-
lying observations. Our experiment is not designed to keep all the noise
out. Since the two machines are connected to the Internet all the time, we
cannot guarantee that all interference will be identical on both hosts.

If our calculation of their relationship should prove to be to weak com-
pared to the level of noise under these circumstances, then it would be
unfeasible to try the same under the later tests. We need another way to
describe their relationship.
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Ranks may also be employed to determine the degree of association
between two random variables.

The correlation coef�cient of choice is therefore the Spearman’s rho co-
ef�cient (r). Serving as a descriptive statistic r provides a numerical value
for the amount of linear dependence between two random variables. How-
ever, using a standard correlation coef�cient, like Pearson’s product mo-
ment correlation coef�cient, the sampling distribution for r holds only un-
der the assumption that the joint distribution for X and Y is normal.

Since the data given to us is assumed to be non-normally distributed,
Spearman’s rho solves this problem. Rank correlation methods surmount
the limitation of a normal distribution and demonstrate a stronger attribute
of measuring certain relationships that are not linear. The word �rank�
means the position of a sample relative to the value of the other samples.
The lowest rank (1) is given to the lowest value and the second lowest rank
(2) to the second lowest value and so on. The samples 2,10,7 would be
ranked 1,3,2. The Rank Correlation test is a distribution free test that deter-
mines whether there is a monotonic relation between two variables ( x , y ).
A monotonic relation exists when any increase in one variable is invariably
associated with either an increase or a decrease in the other variable. The
monotonic relation is expressed using rank-order numbers instead of the
values. This also makes the Rank Correlation a test distribution free test.

The two independent variables are converted into rank-values among
themselves, meaning that each value will be interchanged with it’s corre-
sponding rank value. Let’s illustrate this with an example.

Given two variables:
X = 3, 4, 7, 5, 4
Y = 4, 5, 8, 6, 5

The rank-values alway start from 1. Sorting the values from X, we get
the following chain: 3, 4, 4, 5, 7. Since we have two identical values at
position 2 and 3, they have to get the same rank value. Their value will cor-
respond to the mean of their occupied positions: 2 + 3 / 2 = 2.5 . The other
values will get the value corresponding to their position in the sorted chain:

� &
= 1, 2.5, 5, 4, 2.5

Using the same method on Y, we actually get the same results:
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� (
= 1, 2.5, 5, 4, 2.5

Using the two transformed variables, we can apply the formula:

����� 	 � ���� � !
� & � ��� �� # !

� ( � ��� �� #�	� ��
��$��
� �
The rank correlation shares the properties of r that � � � � ��� � � and

that values near +1 indicate a tendency for the larger values of X to be
paired with the larger values of Y. However the rank correlation is more
meaningful, because its interpretation does not require the relationship to
be linear.

Two variables, describing time-series measurements, will now have the
opportunity to get a higher correlation even if they have completely differ-
ent values as long as the �trace� is similar i.e the peaks coming at the same
time but with different value. For our experiments this is an important
point.

Further, the transformation of the values to rank-values smoothes the
data with regard to outlying values. Thus we have a way to measure the
relationship between the two variables in spite of the problems mentioned
before. [33, 34, 35, 36]

4.2 External conditions

4.2.1 Machines

Both machines had the same Hardware:

CPU: Pentium 133MHz
RAM: 32MB SDRAM
HDD: WDC AC2850F 850MB

PCI-bridge (from lspci):
00:00.0 Host bridge:
Intel Corporation 430HX - 82439HX TXC [Triton II] (rev 01)
00:07.0 ISA bridge:
Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II] (rev 01)
00:07.1 IDE interface:
Intel Corporation 82371SB PIIX3 IDE [Natoma/Triton II]
00:0e.0 VGA compatible controller:
ATI Technologies Inc 215CT [Mach64 CT] (rev 09)
00:0f.0 Ethernet controller:
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3Com Corporation 3c905 100BaseTX [Boomerang]

Debian version:
Debian GNU/Linux 2.2 r3 _Potato_
- Official i386 Binary-1 (20010427)

4.2.2 Network

The two machines are connected to The Oslo University College computer
network. They share a hub, which connects them to the rest of the network.
This network consists of between 50 and 100 hosts running different Win-
dows �avours (95/98/Me/2000/XP) as well as Linux and Sun Solaris. In
addition to the occasional noise from the rest of the Internet, there is also an
amount of packets coming from the local network. This is mostly broadcast
messages from routers and other hosts. We choose not to hide the machines
behind a �rewall, since broadcast traf�c will affect both hosts the same way.

4.3 The variables

A large number of variables could be used to characterise the state of a
host. In this experiment, we are narrowing it down to the information given
to us by the GNU/Linux program called vmstat because we are mainly
interested in the comparison of operating system behaviour, with respect to
resource handling. This program prints 16 variables, all describing overall
system performance. Among these are: CPU load, memory usage, number
of interrupts and disc activity. Table 4.3 on the next page shows a list of the
available variables and their meaning.

Using this program to print periodically and wait a given interval on
both machines, produces a dataset for each system. The data we are given
here constitutes a snapshot of the system state. The data is also discrete and
all samples have positive values.

We expect some uncertainty in the timing of the two machines. We
suspect both clock-drift and vmstat not waiting exactly 30 seconds. The
clocks were synchronised before each trial. We did no measurement of
clock-drift beforehand.

4.4 Description of analysis methodology

We measure the systems in four different trials, where we alter the systems
kernel con�guration between each trial. During each trial, we measure
both systems and analyse the data using the statistical methods described
above.
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Variable Description
r The number of processes waiting for run time.
b The number of processes in uninterruptable sleep.
w The number of processes swapped out but otherwise

runnable. This field is calculated, but Linux
never desperation swaps.

swpd The amount of virtual memory used (kB).
free The amount of idle memory (kB).
buff The amount of memory used as buffers (kB).
cache The amount of memory used as cache (kB).
si Amount of memory swapped in from disk (kB/s).
so Amount of memory swapped to disk (kB/s).
bi Blocks sent to a block device (blocks/s).
bo Blocks received from a block device (blocks/s).
in The number of interrupts per second, including the

clock.
cs The number of context switches per second.
us user time
sy system time
id idle time

Table 4.3: The available variables in vmstat (from the man-page ).
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4.4.1 Trial layout

Each trial on a machine is started remotely by running a local shell-script,
that generates a data-�le and starts the logging to that �le. All remote ac-
cess is done via ssh. It waits for the vmstat-command to �nish (it has to be
killed explicitly), and then copies the �nished data-�le to another machine
for backup and analysis. A started trial could also be �nished remotely, by
running a script on both machines that ended the logging process.

Each output �le consists of a header containing the output from the
following commands: uname -a, uptime and date. It also contains two
lines, describing the interval which vmstat is going to use to log, and a
string describing the current con�guration.

When the vmstat-process gets killed, the script writes the output of a
new date-command to the bottom of the �le. It then renames it, so that the
�le-name consists of the following: machine-name, starting date, ending
date. The �le is then copied with scp to another machine for analysis.

The script itself is started with screen, a utility for running processes
in the background. When started, screen can detach from the terminal, and
waits for the process to �nish. The use of this utility improved the stability
of the trials.

The main reason for starting the trials with a script, was the need for
standardisation and additional information about the system state before
each trial. We also wanted a possibility to start and stop the trials remotely
from other machines. In addition, we saw the need for doing similar mea-
surements on other machines in exactly the same way and ending up with
�les in the same format. This also eased the later analysis and the use of au-
tomated solutions that parsed the �les and generated both plots and statis-
tics.

The format of the log-�les and the use of a start-up script developed
during the �rst trials. First we only had a time-stamp in the data-�le, so
it was impossible to other than guess the uptime of the machine. After a
few trials the number of data-�les grew, and so did the need for a accu-
rate naming-convention that both covered the time span of the trial and
on which machine this data�le was generated. Thus, with a script, we can
both automate the starting trials, and the later analysis of the data-sets.

Example data�le header:

Linux romulus 2.2.19-ph #1 SMP Thu Nov 29 15:54:07 CET 2001 i586 unknown
configuration: apache
interval: 30
uptime: 12:19pm up 91 days, 20:15, 2 users, load average: 0.00, 0.00, 0.00
Fri_May_10_12-19-44_CEST_2002
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procs memory swap io system cpu
r b w swpd free buff cache si so bi bo in cs us sy id
3 0 0 16 820 14040 5868 0 0 0 0 0 4 0 0 2
1 0 0 16 2380 14448 5620 0 0 1 33 378 204 1 1 98
1 0 0 16 2380 14448 5620 0 0 0 0 105 202 0 0 100

4.4.2 Data analysis

The results where analysed with regard on how well the two machines cor-
related with each other. For each variable we calculated a correlation coef-
�cient between the systems. For that we used Spearman’s rho coef�cient
which does not make any assumptions on the distribution of the dataset.

See the appendixes for the detailed results from the four trials.

4.4.3 Developed applications

A few programs where written in this project. For reasons concerning
space, they where omitted from this text. They can be downloaded from
this address:

www.iu.hio.no/~kyrre

4.5 Calibration of data

When it comes to the expected data, we anticipate the amount of memory
used to reach maximum pretty fast since it’s only 32MB. On a more mod-
ern machine, the data could have wider ranges in terms of memory usage.
Other variables could be �attened because of a fast processor and memory
throughput. There is certainly a trade-off between a new or old machine.
On an old machine, every little task is more apparent in the data. We will
only focus on our two old machines, but only because we don’t have the
time for setting up and repeating the tests on other machines.
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Chapter 5

Phase one: System Similarity

5.1 Introduction

In this chapter we will present the results of our �rst experiments. This
part of the project is what we described as �phase one� in the problem
description.

1. How does a system with pH running differ from a pH-free system
on an overall system perspective? (control experiment)

(a) How can we �nd a basis on which to compare two apparently
similar computer systems with regard to system variables and
low uncertainty in measurements?

(b) What can we say from this about how much any system differs
under different conditions and what is tolerable? (Anomaly de-
tection)

(c) Would the difference between two computer systems increase if
one of the systems ran a pH-patched kernel?

(d) Can any of the information from the previous problem be used
to detect anything useful in the behaviour of computers? If so,
what can we use the information for?

In the previous chapter, we said that we wanted to carry out four trials
with small modi�cations between each of them. Let us now take a look at
the results from those trials and their results.

First we present the four trials in more detail and the resulting observa-
tions. We then take a look at the statistical analysis of the data and discuss
them in short. The question if our method answers our initial problem will
be discussed at the end of this report.
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5.1.1 The first trial - Default

Samples of around 170,000 points were collected, initially, over several weeks.
The two systems where now running a standard Debian GNU/Linux Potato
2.2r3 installation (see appendix for complete list of installed packages) with
a 2.2.19-kernel. When the trial started, the systems had already been up for
a couple of weeks.

The data-�les where then copied and analysed on a different machine.
By looking at the plots, we found a periodic behaviour on both machines
in the variables concerning memory usage (buff, free, cache). These cycles
went over a week and where most likely caused by scheduled jobs. We
have no audit to support this assumption, though. Other variables (in and
bo) produced much more jagged plots. Some variables (w, swpd, si, so)
had a the value 0 throughout the dataset and had therefore a correlation of
1 (max) during this time. The application used for the automatic generation
of the plots did not produce any plots for these four variables.

5.1.2 The Second Trial - PH-passive

For the �rst time there was a distinguished difference between the two ma-
chines. Remus used a 2.2.19 kernel while Romulus used a 2.2.19-ph kernel
which contained the pH-0.18 patch. Even though pH was installed on the
machine, it was deactivated. (it was deactivated in that sense that it never
started during boot. pH is started by a special system-call and which is
called by a script in /etc/init.d/. So all the lines from the rc?.d/ catalogues
concerning PH where removed. ). Another difference to the �rst trial, was
that both systems had just been rebooted before the trial. This was only
noticeable in the plots describing memory usage.

5.1.3 The Third Trial - PH-active

In this trial, we wanted to know if the data deviated more with pH acti-
vated then before. Right before the monitoring started, the machines where
booted. The links to the startup-scripts concerning pH where recreated
prior to the reboot.

5.1.4 The Fourth Trial - pH-Load

We installed apache after the third trial. Two packages were installed,
apache and apache-common, as shown by the listing of this output:

ii apache 1.3.9-14 Versatile, high-performance HTTP server
ii apache-common 1.3.9-14 Support files for all Apache webservers
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Figure 5.1: Amount of memory used as buffers (kB). This plot shows a greater
spread between the two systems. The dark spots come from when the webserver
is under load. pH-load. Correlation: 0.426

Note that we stressed the system three times during this trial. The web-
server only had the standard GNU/Apache welcome page and no under-
lying server-side scripts.

The data concerning memory usage was much more spread, and showed
even a negative correlation on one variable. Only one of the memory-
related variables (cache) had a coef�cient higher than .5. See 5.1, 5.2 on
the next page and 5.8 on page 47 for more detail.

The amount of CPU-time spent in system mode (sy) varied also a bit,
but if this is due to more network traf�c or simply more kernel-code is
unclear. The difference is largest at the number of context switches (cs)
with a difference of -0.505.

5.2 Observations

During all trials, the plots seemed to be quite similar. A frequency distribu-
tion diagram on the variables also showed, that there is no apparent normal
distribution. The plots layout was similar with regard to maximum values,
periodicy and mean. On most plots both machines showed similar use of
resources and �rhythm�.All results are found at the end of this text as an
appendix.

Some of the variables (si, so) where constant zero and hence corre-
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Figure 5.2: Amount of memory used as cache (kB). pH-load. Correlation: 0.527

lated perfectly but could not be plotted.
Both �gure 5.3 on the next page and 5.4 on page 43 show the frequency

distribution for two variables: cs and free. Note that these plots do not
resemble a normal distribution at all.

One of the variables, in, showed an increasingly bad correlation dur-
ing the four trials. This variable describes interrupts, and is dependent on
factors like disk activity. During the third trial, when pH was activated, the
pro�le of the process had to be read from memory together with the binary
itself. This would only happen on romulus, and that would explain the bad
correlation in the third trial.

The third trial is the one with the lowest correlation average. For the
experiment, the differences between the second and third trial are most im-
portant. As the plots and correlation show, the greatest difference is found
regarding memory usage (free, buff) and interrupts (in). These vari-
ables can be related directly to pH: The memory gets �lled up faster on
romulus because of the pro�le-handling.

Table 5.1 on page 43 shows the calculated linear dependency between
the two systems for the �rst three trials. Table 5.2 on page 44 shows the
third and fourth trial and the difference between each variable.

The �gures 5.5 on page 45, 5.6 on page 46, 5.7 on page 46 and 5.8 on
page 47 show the memory usage over time during all four experiments.
Note how the linear dependency of free drops from the �rst experiment
(0.931) to the last (-0.147). This shows us that memory usage is highly
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Figure 5.3: Frequency plot. The number of times a value appears in a variable.
If this was a normal distribution, we would have seen a curve resembling a bell.
We would not expect to see a normal distribution in a non-redundant process.
Con�guration: pH-Passive. Variable: cs
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Figure 5.4: Frequency plot. The number of times a value appears in a variable.
If this was a normal distribution, we would have seen a curve resembling a bell -
Con�guration: Default. Variable: free

Variable Default pH-Passive pH-Active pH-Load
r 0.999 0.998 0.998 0.550
b 1.000 1.000 1.000 0.816
w 1.000 1.000 1.000 1.000

swpd 1.000 1.000 1.000 1.000
free 0.931 0.808 0.323 -0.147
buff 0.462 0.844 0.410 0.426
cache 0.899 0.722 0.889 0.527
si 1.000 1.000 1.000 1.000
so 1.000 1.000 1.000 1.000
bi 0.997 0.997 0.996 0.995
bo 0.949 0.948 0.947 0.812
in 0.735 0.673 0.435 0.424
cs 0.996 0.995 0.971 0.466
us 0.997 0.996 0.996 0.921
sy 0.998 0.998 0.997 0.846
id 0.997 0.996 0.996 0.833

Average: 0.935 0.936 0.872 0.719

Table 5.1: Spearman’s rho ����� for the four trials. This table shows the linear
dependence between the two machines for all four trials.
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variable pH-active pH-Load Difference
r 0.998 0.550 -0.448
b 1.000 0.816 -0.184
w 1.000 1.000 0

swpd 1.000 1.000 0
free 0.323 -0.147 -0.470
buff 0.410 0.426 0.016
cache 0.889 0.527 -0.362
si 1.000 1.000 0
so 1.000 1.000 0
bi 0.996 0.995 -0.001
bo 0.947 0.812 -0.135
in 0.435 0.424 -0.011
cs 0.971 0.466 -0.505
us 0.996 0.921 -0.075
sy 0.997 0.846 -0.151
id 0.996 0.833 -0.163

Table 5.2: Spearman’s rho � ��� for the third and fourth trial

affected by the changes we introduced.
Although many plots seemed to be chaotic and noisy, they proved to

have a high correlation nonetheless. As we can see from �gure 5.9, the plot
is full of sharp peaks from both machines, but the peaks appear at the same
interval. The difference in the peak value would normally throw off our
�rst correlation analysis, returning a low correlation coef�cient (no linear
dependence), while our second calculation, the Spearman’s rho, �attened
those peaks and the result was a measurement of 0.997 (high correlation).
Figure 5.10 on page 49, 5.11 on page 49, and 5.12 on page 50 show how this
dependency between those two variables continues to exist through all ex-
periments. The correlation decreases a bit in the last experiment. As a com-
parison, the standard correlation coef�cient for this variable was 0.000 for
all four experiments.

In �gure 5.13 on page 51, and 5.12 on page 50, we clearly see the effect
of the stress-tests. Each test lasted for about one hour and caused the plots
to have peaks or scrambles in during the tests. What is worth noting, is that
the these marks seem similar on both systems.

During the fourth trial we also monitored the pro�le for apache on the
machine running pH. Taking a look at this dataset we found that the vari-
able describing system call count for the apache-process clearly showed
when and how much this process was under stress. Figure 5.14, and 5.15
show this in detail.
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Figure 5.5: Free Memory during the �rst trial. The pattern shows the cyclic be-
haviour of the systems through each week. This pattern comes from scheduled
jobs in the system. Con�guration: Default. Correlation: 0.931
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Figure 5.8: Free Memory during the fourth trial. The difference is now even
greater then in the previous trials. The dark spots are from when the apache web-
server was under high load. Con�guration: pH-Load. Correlation: -0.147

It is the aim of this projects next phase to examine how this information
can be bene�cial for other tools, like cfengine.

5.3 Discussion

One has to keep in mind, that the only tasks done by the system are OS-
speci�c processes and scheduled tasks. We still have to compare these plots
to a situation where the systems run more services.

Another point is how much deviation between the two systems is un-
avoidable? We can see from our four trials that the difference increases for
each trial. But many variables are affected by the weekly cycle of sched-
uled tasks. These variables show a different type of similarity other than
just e.g same amount of memory used. What shows, is the coincidence of
peaks and trends. If they weren’t synchronised, then the correlation would
be harder to detect since the peaks and curves would not coincide. Two
systems can react similar but it would only make sense to compare it in a
plot if they would do it at exactly the same time. This argues for a better
data-representation. One approach is to generate a weekly pro�le, built
from all proceeding weeks by adding a new week to the average. A pro�le
like this from each system can then be compared off-line. Cfengine uses a
similar method for building a pro�le on resource usage, but uses it for local
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Figure 5.9: CPU user-time during the �rst trial. The plot indicates a vague pattern
of peaks, which seem to �t with the weekly cycle found in other variables. This
comes from the execution of scheduled jobs. Con�guration: Default. Correla-
tion: 0.997

48



0 100 200 300 400 500
Time (hours)

0

27

54

81

108
C

P
U

 in
 u

se
r 

tim
e 

(u
s)

CPU in user time (us)
Interval on file: 30 seconds

romulus 
remus 

Figure 5.10: CPU user-time during the second trial. Con�guration: pH-passive.
Also here we can recognise the same waves as in the previous plots. Correlation:
0.996
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Figure 5.11: CPU user-time during the third trial. The waves are still recognis-
able. - Con�guration: pH-active. Correlation: 0.996
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Figure 5.13: Number of context switches per second during the fourth trial. Here
we see a clear difference between the two systems. The three small bursts indicate
when the scripts downloaded pages from the two systems. The peaks coincide
also here. Con�guration: phase-apache. Correlation: 0.921
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Figure 5.14: The system call count for the apache processes. We see that the
count rises more rapidly three times and falls back to a steady linear rise. These
rises coincide with the times we stress apache, meaning that the apache processes
execute more system calls during the stress-periods.

52



0 100 200 300 400
Time (Hours)

0

5000

10000

15000

20000

N
um

be
r 

of
 s

ys
te

m
 c

al
ls

Apache activity
Based on executed system calls over time

Figure 5.15: This plot shows how the amount of executed system calls for the
apache processes rises signi�cantly every time we stress the webserver. Can this
information be useful in a time-series context?

already give a jagged plot (i.e context switches and variables concerning
CPU usage).

By smoothing the data-sets to longer time-intervals consisting of the
average of the measurements in that interval, we could make up for some of
the time-deviation problems. Should we use a classical correlation method
(i.e Pearson-Bravai), then the correlation coef�cient would be in�uenced by
this smoothing (see 5.3 on the following page), but Spearman’s Rho does,
interestingly enough, not seem to be much in�uenced by it. The reason lies
in the transformation of the data to rank values. There we have already
taken care of most spikes and bursts in the plot. Table 5.4 on page 55, show
the correlation coef�cients for the smoothed data compared to the original.
We averaged for 5, 10, 30 and 60 minutes.

The most jagged plots look unusable at this time-interval. Local averag-
ing make a few variables appear more attractive for further study, but that
will probably show better when the system is more active.

Figure 5.16 on page 55 shows an example of what the data looks like if
recorded every 30 seconds. In �gure 5.16 on page 55 the data are smoothed
using a local average over every 30 minutes instead of the original data.
Note how the �ow in system usage becomes more visible and also how the
different correlation coef�cients react to the transformation of the data.
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variable Original Smoothed
r -0.0002899 0.2975995
b -0.0000122 -0.0007340
w 0.0000000 0.0000000

swpd 0.0000000 0.0000000
free 0.9488736 0.9558609
buff 0.7191931 0.7199619
cache 0.8523288 0.8594925
si 0.0000000 0.0000000
so 0.0000000 0.0000000
bi 0.0072123 0.6123918
bo 0.0016221 0.5233057
in 0.1640182 0.9164983
cs 0.0056725 0.4691590
us 0.0024800 0.4940068
sy 0.0018850 0.5262725
id 0.0000000 0.0000000

Table 5.3: Comparison of Pearson-Bravai correlation coef�cient for the �rst trial
(Default) using original (30 seconds) and smoothed (30 minutes local average)
data. Note how the coef�cient changes drastically in some variables. This argues
that this type of calculated linear dependency is much more sensitive to time-
intervals than Spearman’s rho � ��� in 5.4 on the next page.
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5.3.2 How can these results help to define system normality and
state?

How could a system de�ne normality based on these results?
A system could generate a dataset for a selected subset of variables for

each week. It could then merge this set into an existing average of all sets
generated so far. It could generate a correlation coef�cient for this week
against the average week. By storing both the average dataset and each
correlation coef�cient, it could determine how normal the past week was
in terms of how well it correlated with the average. A time-series of the
correlation coef�cients could be stored to determine the long-time effect of
certain cases which the system experiences.

By calculating the average correlation we could also look at how sim-
ilar the weeks actually are, and how much difference from the average
one could expect for this particular system. This last value would be very
interesting to compare with many different computer systems just to test
whether it is possible to even de�ne both a metric and a value for system
normality throughout different systems.

The method just described is a so-called best-of-�t method. It uses a
statistical method to test whether the new data �ts the established pro�le.
There are many different statistical tests, both multi and single-variable,
that could be used here. Some are discussed in [13]. Cfengine uses this type
of anomaly detection in its framework. We have not done any such tests in
these experiments. If the project was primarily on the statistical analysis of
this type of data, then a further inspection of our collected results would be
the next step.

Another metric would be time and resources used for a speci�ed task.
This task could either be one big job, or a series of small jobs, all with dif-
ferent contents. One could then compare the results with an average from
all subsequent results. The problem with this, is that this test, if designed
to stress the system, would have an impact on the dataset described above.

Important variables in this context are how much CPU and memory the
task consumes, and how long it takes to �nish. Especially the amount of
time the CPU is in kernel-mode. These numbers can vary between each
trial on a single system, so several tests regarding each task are necessary.
These tests need to be done at every different machine con�guration, and
the results may vary because of other factors then just pH itself. Kernel-
con�guration and effectiveness is expected to in�uence CPU-usage and the
time used to execute a given binary.

We have seen, that pH affects system variables, but how visible this ef-
fect is under higher load is dif�cult to say. Our data indicate (see 5.8 on
page 47), that higher load will have a greater impact on the data then pH,
but this needs to be examined further. Now that we have analysed the ef-
fect of pH on system variables, it is time to turn towards our main goal in
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this project. How can cfengine pro�t from pH? Cfengine has a component
for analysing time-series data. Can pH offer new insight into the �life� of
a computer system? How can we answer this question? This is the goal
of our next phase. We will now take a closer look at pH’s data and inner
workings. One approach is to create a similar logging system for pH’s vari-
ables over time to see if they are usable for cfengines anomaly-detection
component. We also recognise the need for further data-gathering. The
next phase will therefore also concentrate on building a better tool for both
data-harvesting and analysis.
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Chapter 6

Phase Two: A scaled,
immunological approach to
anomaly countermeasures
(Combining pH with cfengine)

6.1 Introduction

This chapter describes the process of combining cfengine, a high level con-
�guration engine with pH, a kernel patch which enables anomaly detection
and reaction on a per process basis. This part of our project has two inde-
pendent goals:

1. To provide a better anomaly detection capability for cfengine, and a
better response engine for pH, thus going a �rst step towards a dis-
tributed computer immune system.

2. To create a versatile framework for the collection of system related
data for further research into anomaly detection.

There is thus a security motivation and a research motivation. The ‘sci-
ence’ of anomaly detection is still in its infancy, thus the latter should not be
neglected for the sake of building a quick �x. We want to give our computer
immune system data-gathering capabilities for future research because we
believe there is still much testing to do in the �eld of system normality.

We will begin this chapter by discussing the requirements for compat-
ibility between pH and cfengine, as well as what we hope to achieve by
combining them. In sections 3.3 and 3.4 we provided some details about
these two systems. Let us now take a look at their compatibility and how
we want them to function together. Second we will look at what modi�-
cations are necessary in order to implement the wanted functionalities. In
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the next chapter we will try to actually implement some of the proposed
modi�cations.

6.2 Compatibility

On the surface, it would seem that pH and cfengine are two very different
systems, with somewhat different goals. How then are they to be meaning-
fully combined?

The common thread between the systems is their long term goal: that of
system regulation or homeostasis (steady state)[37, 3, 6, 4]. As a short re-cap:

The University of New Mexico’s pH kernel modi�cation stands for pro-
cess homeostasis. Its goal is to seek a steady state in the tasks that are un-
dertaken by a computer system. It detects new tasks, as unknown events,
and offers resistance to their execution. If the new tasks persist, they are
eventually tolerated by the system.

Cfengine, on the other hand, seeks to maintain a steady state con�g-
uration of a system, where con�guration means the state of the �le sys-
tem, process table and service ports. It detects and opposes changes by
two strategies: i) by referring to a descriptive policy about what is con-
sidered acceptable, and ii) by monitoring key system resource usage over
days and weeks, and responding to statistical irregularities. Thus, both pH
and cfengine have a policy of maintaining a ‘normal’ or ‘regular’ state, and
both are able to learn about long term changes by adapting their reference
state. Their key difference is the scale at which they operate: pH works at
the microscopic, short-term level of system calls, while cfengine works at
medium term user time-scales.

How can these be combined? As we have already stated, an adaptive,
learning system is necessarily a statistical system; we should therefore ask:

� Do they have compatible data models?

� What are the tolerances of the systems? i.e. with what accuracy can
they make claims about system normality; hence, when is it appro-
priate to seek reparation?

� Resource utilisation is known to be a strongly social phenomenon,
with a marked variation over the working week. Cfengine uses the
working week as a model for measuring its medium-term state. Is the
same time reference appropriate for pH, which deals with short term
events?

Combining these seemly disparate mechanisms is thus a scaled approach
to system regulation. PH detects events on short time scale, responds sim-
ply and propagates the data forward as medium term statistics which it
uses privately for future reference. Cfengine measures medium term events
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and activates medium to long term response strategies. Our aim here is
to see whether medium term data from pH can be read and utilised by
cfengine in order to bring the knowledge of short term behaviour to bear
on longer term strategy.

The idea is sharing of information, or data. Cfengine can pro�t from the
information made available by pH. If we succeed, we have gained more
functionality by combining the two systems then by having them work in-
dependently. Let us now detail a model where the systems have the possi-
bility to interact.

6.3 A closer look at cfengines anomaly detection com-
ponent: cfenvd

In cfengine 2.x, additional classes are automatically evaluated based on the
state of the host, in relation to earlier times. This is accomplished by the
additional cfenvd daemon, which continually updates a database of system
averages, which characterise "normal" behaviour. The state of the system is
examined and compared to the database, and the state is classi�ed in terms
of the current level of activity, as compared to an average of equivalent
earlier times. e.g.

RootProcs_low_dev2
netbiosssn_in_low_dev2
smtp_out_high_anomalous
www_in_high_dev3

The �rst of these tells us that the number of root processes is two stan-
dard deviations below the average of past behaviour, which might be for-
tuitous, or might signify a problem, such as a crashed server. The WWW
item tells us that the number of incoming connections is three standard
deviations above average. The smtp item tells us that outgoing smtp con-
nections are more than three standard deviations above average, perhaps
signifying a mail �ood. The setting of these classes is transparent to the
user, but the additional information is only visible to the privileged owner
of the cfengine work-directory, where the data are cached.

The current long-term data recorded by the daemon are: number of
users, number of root processes, number of non-root processes, percent-
age disk full for root disk, number of incoming and outgoing sockets for
netbiosns, netbiosdgm, netbiosssn, irc, cfengine, nfsd, smtp, www, ftp, ssh
and telnet. These data have been studied previously, and their behaviour
is relatively well understood.

Cfenvd sets a number of classes in cfengine which describe the cur-
rent state of the host in relation to its recent history. The classes describe
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whether a parameter is above or below its average value, and how far
from the average the current value is, in units of the standard-deviation
(see above). This information could be utilised to arrange for particularly
resource-intensive maintenance to be delayed until the expected activity
was low.

For more information, see [38].

6.4 A cooperative model

A combined system has to be both reliable and secure if it is to be used on
systems that do actual work. Creating a isolated system for testing makes
sense for keeping the system clear from uncontrollable noise (users, net-
work traf�c and so on). But if noise is normal, and normal is what you’re
looking for, then the only way to test it, will be real-life.

Various models might be used for establishing a connection between
cfengine and pH. The �rst alternative is a plug-in architecture, where pH
is considered to be a cfengine plug-in module. This would facilitate a close
working relationship, but it requires permanent structural modi�cations to
both. This model would be preferred if we wanted a centralised computer
immune system where everything goes out from one controlling unit. This
approach, however, does not comply with our initial de�nition of a com-
puter immune system. By making pH a plug-in for cfengine, we loose the
independence between them, making pH only work optimal if cfengine
should function. The most important argument against this model, is that
pH is in kernel-space. Operating system design focuses on layering of the
system to achieve transparency, security and ease of development [26]. Us-
ing pH as a plug-in is therefore a weak design.

A second alternative, would be a model where a higher level system in-
vokes and controls smaller components. The process monitoring would be
done by a detached participant. The higher level system would act on the
information delivered by the component. This information could be gath-
ered via a special interface or by parsing log �les. This can be viewed as
opening communication channels between them. The systems could also
interact passively by either leaving hints as in log-�les or sending mes-
sages directly, or actively by using commands and already de�ned user-
interfaces. Both passive and active channels can be used between the sys-
tems. This approach is more in line with our idea of a computer immune
system. Passive communication channels are an advantage, since the re-
ceiving part can choose when to read new information and is thereby more
independent.

The model we have chosen is a feedback model that preserves the do-
main of each software system, but allows a passive communications chan-
nel between them (see �g. 6.2), using �les and databases. Thus pH will be
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able to adjust it’s monitoring level depending on instruction from cfengine,
and cfengine can adjust its behaviour based on results from pH. pH has it’s
own engine for data-analysis and cfengine analyses the data further.

pH already has an interface that cfengine can use to control it in the
form of shell commands. We could also go directly to the system call
sys_pH instead of going via the pH-admin command. pH stores its infor-
mation in several places: /proc,/var/log/syslogand /var/lib/pH/profiles.
The pro�les are in a self-de�ned binary format and will be printed to the
terminal by the command pH-print-profile. The same holds for the
sequence �les, with the corresponding command pH-print-sequences.

In order to collect the data from pH, we use cfengines cfenvd daemon
and database, which in turn provides information to the agent when it ac-
tivates.

In �g. 6.1, a number of identical trials was performed in order to simu-
late a long term variation of the form measured by cfenvd (see �g. ??). An
apache web server was used as the pH monitored process. It was loaded
by a number of clients in an identical pattern of variation. Repeating the
same changing load �ve times, a pH process counted the total number of
system calls. The average of the �ve identical trials with standard devia-
tion shown as error-bars is plotted in the �gure. Each trial measured 120
values, recorded each 30 seconds over the space of an hour. This �gure is
suf�cient to make two points:

� The statistical model of average behaviour with certain tolerance is
compatible with that currently used by cfenvd.

� The error bars are not zero, thus there is a natural uncertainty in the
results, even with close to identical trials.

The latter point is interesting, since these additional system calls cannot be
explained by other processes. Ph measures only system calls related to a
speci�c binary. No other binaries could be responsible for this error.

The fact that there is a statistical uncertainty is very important. It means
that the purely digital approach to anomaly detection is not suf�cient to
yield exact repeatability. Thus if one is looking for repeat-ably identi�able
signatures, one must allow a margin for error. This is clearly signi�cant for
intrusion detection systems, which normally recognise only exactly learned
patterns. The source of the uncertainty could lie both on the side of the
server, or on the side of the clients loading the server. It could be a result of
scheduling differences, since measurements are cumulative values over a
30 second period. Differences due to network traf�c load can be ruled out,
since the trials were performed in isolation.

Using pH to measure process load shows us one other thing, that is
interesting for future work: the simple measurements show a clear pattern,
i.e. the input pattern is re�ected linearly, up to a standard error, in the
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Figure 6.1: Repeated trials on a simulated load, showing how the average number
of system calls varies in proportion to applied load, within measured tolerances.
The separation of signal and noise shows that the basic cfengine statistical model
applies to pH also.

output graph. Monitoring the number of system calls for a process over
time, we can determine when it has been used, and how much. We could
also build up a statistic here to gather a trend of how much a program is
used, and how much we can expect it to be used. By measuring individual
sequences separately, it would be possible to perform a code analysis of
software, indicating how much users used different parts of the software.
This is very interesting for future research.

We can conclude, that pH and cfengine have compatible data-models.
Data extracted from pH can be used in cfengines statistical approach to sys-
tem normality de�nition. The relationship between system-call frequency
and process-load was unintended, but as our experiment shows, it gives
a useful and new addition to our data-gathering capabilities and increases
the functionality of our computer immune system.

6.4.1 Modifications to pH

Let us now take a closer look at what parts of pH need to be modi�ed in
order to communicate with cfenvd and why.

The most important modi�cation to pH, is having the ability to specify
what processes to delay. The monitoring will still be done on all pro�les,
but a variable describing if this process is subject to delaying must exist for
every binary. In addition, we must be able to choose if this variable should
be set to delay or ignore by default on the creation of a new pro�le. If the
default value is delay, then pH will work as before. The administration of
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Figure 6.2: Information Flow Diagram: cfengine and pH.

these variables can be handled from cfengine. This enables us to achieve
the following:

� Delay all but these binaries (Default on)

� Ignore all but these binaries (Default off)

Note, that the default value could be changed in runtime too.

6.4.2 Data storage

The new pH-related data need to be stored, e.g. the number of abnormal
processes, number of system calls for selected processes. The size of the
database will vary depending on the number of pro�les we wish to monitor
and how long we wish to keep the data. Cfenvd stores only one week’s
worth of data, and merges the data together with a average from all other
preceding weeks, by a geometric series. This approach would also be useful
for data like the number of system calls for a process. It would give us
enough to generate the expected usage throughout the week for a given
application.

For other data, like the sum of anomalies at any given moment, this
variable is a bit more tricky. This variable will be in�uenced by the use of
new applications and has to be monitored over a longer period. Clearly,
not all anomalies are genuine and the system must learn to tolerate those
that are not dangerous. A one-week local average can be useful as soon
as the variable is stable or else the �rst encounter with all applications will
in�uence the average and deviation so much that small and potentially
interesting deviations later on will be unrecognisable.

Cfengine is designed to work independently. An anomaly in the data
will trigger an event in cfengine, but we are not always interested in anoma-
lies. We need an option for getting the datasets so that we can view them
in plots or analyse them statistically (see �g 6.3).
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6.5 Example regulation strategy

We envisage automated responses to anomalous behaviour. Such responses
have been considered before in other contexts (see refs [39, 40]). A simple
example of a cfagent response helps in visualising the interplay between
the two anomaly systems. A special cfagent class is made to activate on the
presence of a recent anomaly. This class persists until it has been expedited
by an agent.

Note that pH does not try to start cfagent immediately. For one thing,
pH is in kernel space, and the agent must run in user space. However, it
leaves a semaphore to the cfengine scheduler to activate the agent with a
special class, on its next scheduled run.

If the agent were started immediately as a direct result of the anomaly,
it would be trivial to use this in a denial of service attack. Our strategy
here is a scaled approach: using cfengine with its normal ‘policy’ level of
statistical uncertainty, and leave pH itself to deter potential attacks with its
delaying tactics.

Two classes can become active: a sequence anomaly semaphore, indi-
cating that a potentially dangerous sequence of system calls was identi�ed,
and a load anomaly, indicating that cfenvd has found the total load being
processed by pH is anomalous. We therefore cover qualitative and quanti-
tative anomalies.

It not necessary that a ph_sequence_anomaly-eventhas to correspond
to a single sequence-pair. We could use an anomalies-count within a frame
instead. To differentiate even more, we could de�ne different classes for
binaries, giving them stronger or weaker limits for accepted amount of
anomalies. We have to remember, that pH will have reacted to that pro-
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cess in particular already.

control:

actionsequence = ( files processes )

files: // ph_sequence_anomaly::

bin_bash_sequence_anomaly::

# Do MD5 integrity check on system files, in case of intrusion
/usr owner=root,bin checksum=md5 recurse=inf action=warnall

processes: // ph_load_anomaly::

bin_bash_high_dev1::

# Kill the processes causing anomalous load, if it still exists
‘‘*’’ signal=kill filter=ph_load_filter

pH communicates its variables (the list of offending processes) to cfa-
gent using one of cfengines �lter interfaces for selecting processes. pH has
no functionality for killing a process itself, so this is a natural task for cfa-
gent to perform, assuming the offending process is persistent over the cfa-
gent scheduling interval.

6.6 Computer Immune System Functionality

What would a higher level system environment daemon like cfengine want
to know from pH? What information is useful? We can see several bene-
�ts from creating a computer immune system from these two components.
Some of them give us better reaction capabilities as in the ability to change
system state. Others help gaining a better and more accurate view of the
system state, enhancing the learning and adaption capabilities.

One important point, is that the proposed functions of this computer
immune system exist only because of the teamwork of these components.

6.6.1 Reaction Capabilities
� Discontinue a service with a high anomaly count

pH has no functionality for killing a process. Second, the variable for
determining how much anomaly is tolerable is set globally. We could
have the need to specify this more accurately per pro�le, say a high
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tolerance on unimportant pro�les, and a tighter watch on some core
services.

� Notify other machines of the behaviour of a process. Interchange or compare
pro�les with other systems.

Should a host experience a high anomaly on one process it could
warn other machines on the network about it. In addition, differ-
ent hosts could interchange pro�les. This, off course, implies a secure
channel and a protocol for the communication. Today, cfengine offers
a framework for the communication, and there is research going on to
de�ne a standard format for intrusion detection (Intrusion Detection
Message Exchange Format - IDMEF).

Additionally, should a host experience a high anomaly on a service,
it could �ask� another machine to take over the service. This would
be an algorithm for replication management based on anomaly detec-
tion instead of common variables such as load.

� Dynamic Invocation of Other Components.

Cfengine and pH alone are perhaps not able to detect intrusions on
all fronts of the system. They should therefore be able to spawn other
intrusion detection systems on demand if they are present. With a
higher level engine on top, we could gather information from sev-
eral other monitoring tools to create a substantial data on the system
state. This could be time and resource consuming, so we might have
to have the opportunity to adjust the monitoring to our needs. Say
we suddenly get a high anomaly count from a process running a net-
work service. We could then spawn other network related tools to
monitor the network more closely. We could also start the monitor-
ing on other hosts in case this one has to take counter measures, like
shutting down the network.

6.6.2 Learning and Adaption Capabilities
� How many processes have anomalies? When a system is using pH for

the �rst time, most processes will have a high anomaly count. Over
time, however, the processes will be used mostly the same way and
reliable pro�les will be generated. The number of processes with a
anomaly will decrease. Should we experience a high number again,
while expecting routine behaviour, this could mean two things: (1)
The host is using a lot of new software that misses suf�cient pro�les.
(2) The host is running processes that behave in a different manner as
usual.

This number would also be a indicator to the stability and predictabil-
ity of a host. Logging this variable over time could give an indicator
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on how the host adapts to it’s work. A machine acting as a stand
alone web-server, would have a relatively low count with a low de-
viation. A desktop computer standing in a student computer room
will have higher sum with higher deviation, since it probably would
be running many different applications and even programs designed
by the students. Given a time perspective, we could also build an ex-
pectancy regarding the time of day. During the night, we don’t expect
any new applications to be run. During of�ce hours, this would be
more likely.

� Analysing the behaviour of a binary over time. A comparison of pro�les
across different hosts could also indicate how similar the different
applications are being used on the different hosts. This has Human-
Computer-Interaction rami�cations, and is especially interesting for
complex programs, such as computer games or of�ce applications,
where perhaps only a small part of the program is actually ever used.
The relevance here is thus not only system administration, but also
software engineering.

We could also use these data in a work-routine experiment. When are
certain applications being used? Do people i.e use more complex pro-
grams at the end of their work-day? The bene�t of having the mon-
itoring system separated from the application, is that we can gather
these data for every program on the host. Eventually such data can
also lead to better management policies.

From a learning perspective we could use these data to determine
how user skill affects the way software is used. We could ask if a
pro�le generated by a novice user would be different from that of a
thought user.

� Does this special process experience any anomalies?

We could also monitor only one process, say a web-server or DNS
service. This would imply that we trust all other applications on the
system. Still, it would mean that pH would not affect anything else
then this program. As said earlier. On a system where students write
programs, we would not want pH to generate a pro�le for every new
binary and delay the students new program. Therefore a selective
approach could be more useful by simply choosing the binaries you
would like pH to monitor.

6.7 Conclusions

As we can see, there are a lot of enticing features and enhances to our secu-
rity model by creating this computer immune system. We have of yet not
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discussed how feasible and comprehensive the changes have to be in order
to make this work properly. We have not showed how we wish to test these
functionalities and to show that they contribute to higher system integrity.

Note, that all this comes from only two independent anomaly detection
systems. Imagine what a third participant could add to our computer im-
mune system. Would it at all be possible? This discussion will be continued
at the end of this document.

We will now turn towards realizing some of these functionalities. Alas,
time does not allow us to try to implement them all. We have therefore
chosen a some speci�c capabilities and discuss how they may be best im-
plemented with regard to existing code in the following chapter.
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Chapter 7

Implementing functionalities

This chapter describes the functionality we are searching for in the result
of a cooperative, interactive and computer immunology based approach
of combining cfengine with pH. We have earlier described the possibilities
and bene�ts of combining these systems. Let’s take a closer look at how
this interaction can be implemented. We have chosen three speci�c cases
where we foresee a possible bene�t of information-sharing. At the end of
this chapter, we will take a look at an actual implementation of one of these
functionalities.

7.1 Introduction

There are two types of anomalies that have to be detected. The �rst is
dubbed real-time-anomalies which means anomalies that emerge because
a process has executed an unknown system-call pair and is being reacted
to. The detection of these anomalies is done by pH, and we want cfengine
to be able to react to them too.

The second type of anomaly is our time-series based anomaly detection
algorithm currently implemented by cfengine. An anomaly here means
time-series data that does not comply to an expected value based on al-
ready gathered information. In this case, pH delivers new additional types
of data, which must be communicated to cfengine in a performance-friendly
way.

The three functionalities we want to implement are as follows:

1. Sharing triggers. PH noti�es cfengine when reacting to anomalies, giv-
ing cfengine a chance to participate.

2. Sharing Pro�les. cfengine can analyse process behaviour on it’s own
based on the data in pH’s pro�les. How can they be made accessible?
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3. Time-series analysis. As shown earlier, there is a clear connection be-
tween number of system calls per unit of time and the load of the
process. pH has this information, but does not incorporate it into
it’s own anomaly-model. Cfengine could easily add this data to it’s
model. How can it access the data?

7.2 Real-time Anomalies

7.2.1 Case 1: Sharing Anomalies

We want cfengine to process the same information that we usually see in
syslog regarding detected anomalies. One obstacle is to solve the time-
dependency problem between the two components. Cfengine does not run
all the time, and must therefore process a batch of messages every time it
runs. This batch should not be on disc, because this would force pH to
write to disk every time it would write to syslog additionally.

The way to solve this, is to make pH write to a pipe every time it writes
to syslog. Every time cfengine runs, it can process all the messages in the
pipe according to it’s own policies. This is probably the highest real-time
we can achieve between the two systems. We cannot predict when cfagent
will run or how often, but we can predict when cfenvd will run. But this is
not entirely bad. It gives us a comfortable independence between the two
systems, and besides, pH has already functionality for reacting to these
types of anomalies.

All these messages in the pipe should have a speci�c format. The sim-
ples way of doing this, would be to write the same information to the pipe
as to syslog. Cfengine could then parse the information.

Implementation

pH’s method to get messages to syslog is to call the method KERN_DEBUG
which is a pointer to a method that sends a message to the syslog-daemon
(is this true?). Every time there is some message to be delivered, the method
action(‘‘message’’) is used. For the sake of transparency in the code,
we have several options:

1. We make a new method, i.e pH_push_message_2pipe(char *string)
which writes the message to a pipe. We could then call this method
prior to or after each action() call where we �nd it appropriate.

2. Another approach would be to rede�ne the action() method to
write both to syslog and to pipe. This would give nicer code, but
instead we could �ll up the pipe with uninteresting information.

72



Suggestion 1 is a bit more elegant, because we get the possibility to
chose the type of information we wish to communicate more selectively.

#define action(format, arg...) \
{ \

if (pH_loglevel >= PH_LOG_ACTION) { \
printk(KERN_DEBUG "pH: " format "\n" , ## arg); \

} \
}

7.3 Time-series Anomalies

7.3.1 Case 2: Sharing Profiles

The information we want cfengine to process can be found in the pro�les
of some previously selected applications. The pro�les are read from disc
when the application starts, but are not written to disc until the last in-
stance of the process exits. We want to read updated data from a selected
application at any time, regardless if the current pro�le is in memory or
stored on disc.

Currently we can only ask pH to write all pro�les to disk, not print one
selected pro�le. We need functionality for cfengine to get a speci�c pro�le
directly from pH or at least not through disc �rst. Secondly it would be
quite expensive if pH should write down all pro�les if we are only inter-
ested in, say, 10% of them.

The data given from pH is in a raw format and has to be parsed before
it is stored in the database. This parsing can be done by cfengine. All pH
needs to know is to write this speci�c pro�le to this �le (which could be a
pipe).

If cfengine has a list of processes it wants to monitor, it can then get the
pro�le for each of these using a loop that iterates the list.

Implementation

Currently, pH has a function called void pH_write_all_profiles(void)
:

void pH_write_all_profiles(void)
{

pH_profile *profile;
state("Writing all profiles to disk.");

down(&pH_profile_list_sem);

profile = pH_profile_list;
while (profile != NULL) {

pH_write_profile(profile);
profile = profile->next;

}
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up(&pH_profile_list_sem);
}

It iterates a list of pro�les currently in memory and calls the method
pH_write_profile(profile) for each of them. This method is called
when the system-call sys_ph gets the parameter PH_WRITE_PROFILES,
which stands for the number 16. The system call itself is done through
three lines of x86 assembly code.

Since the pro�les are held in a list, a request to write a single one would
force us to iterate the list anyway and test for the right pro�le. The identi-
�er could be the absolute path of the binary we want to monitor. We then
have to write a new method, i.e pH_write_profile_2pipe(profile)
which would resemble pH_write_profile(profile) in most ways ex-
cept that the information is written to a pipe instead of to a �le. This does
not have to be a pipe. The method could just update the single pro�les �le
on disc instead.

A drawback to the pipe-approach, is that the two systems get a bit too
closely woven. What if we have to restart cfengine? What if other programs
would be interested in this information as well? Should pH not write to the
pipe, if cfengine is not installed on the system? Besides, a pipe could �ll up
if someone constantly asked pH to write to it.

7.3.2 Case 3: Time-series analysis

PH has already a good deal information in the /proc directory. It has a
folder for global information and a status-�le in each process-folder. This
status �le contains the information about each process, but we are mainly
interested in information about the pro�le of the binary. A typical status-
�le looks like this:

romulus:~# cat /proc/161/pH
normal : 0
frozen : 0
delay : 0
count : 8023
LFC : 0
maxLFC : 3
profile : /var/lib/pH/profiles/usr/sbin/cron

There are different ways to solve this. From cfengine’s point of view,
this means that to get access to pro�le-related information, it �rst has to
�nd a process of that binary, and then read the �le in the /proc directory.
This is possible, because all processes of a given binary share the same pro-
�le.

The bene�ts of this approach would be true independence between the
two systems in this regard. To make the information available in this way,
means that other systems could read the data too. In addition, no commu-
nication channel has to be initialised.
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Another advantage for this alternative, is that it is performance-friendly.
Files in th /proc directory are not stored on disc. When reading such a �le,
one is actually causing the kernel to run a method for that �le, which re-
turns the contents. Thus we will never have to read from disc, since this
information won’t be swapped either.

Implementation

The modi�cation of the code is rather simple. This is the method that is
responsible for returning what any user would read from a pH �le located
in a process-folder:

/* called by get_process_array() in fs/proc/array.c */
int get_pH_taskinfo(int pid, char *buffer)
{

struct task_struct *tsk;
int len, fn_len;

read_lock(&tasklist_lock);
tsk = find_task_by_pid(pid);

/* FIXME!! This should be done after the last use */
read_unlock(&tasklist_lock);

if (!tsk)
return 0;

if (tsk->pH_state.profile) {
len = sprintf(buffer,

"normal : %d\n"
"frozen : %d\n"
"delay : %d\n"
"count : %lu\n"
"LFC : %d\n"
"maxLFC : %d\n"
"profile : ",
(tsk->pH_state.profile)->normal,
(tsk->pH_state.profile)->frozen,
tsk->pH_state.delay,
tsk->pH_state.count,
tsk->pH_state.alf.total,
tsk->pH_state.alf.max);

fn_len = strlen((tsk->pH_state.profile)->filename);
if (fn_len > (PAGE_SIZE - len - 2))

fn_len = PAGE_SIZE - len - 2;
strncpy(buffer + len, (tsk->pH_state.profile)->filename,

fn_len);
len += fn_len;
buffer[len] = ’\n’;
buffer[len + 1] = ’\0’;
len += 2;
return len;

} else {
return sprintf(buffer, "No profile.\n");

}
}

As we can see from the code, the data comes from a task_struct and
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this struct has a pointer to the pro�le. Currently only one variable from the
pro�le is written, the name of the pro�le. This could be extended to include
more variables, like the global system-call count of that binary.

In the next section, we will try this alternative and implement the de-
scribed changes into the kernel.

7.4 Implementing Case 3

One of the data we want cfenvd to collect, is the global system-call count for
that variable. Currently, we have to ask pH to write to disk, and then read
the information from a �le. This approach is cumbersome and is not suited
for long term data-collection. The preferred solution is to make this data
available without going via the disc. To implement the changes described
in alternative 2, is very simple. We just expand the sprintf call to include
more variables. The solution would then look like this:

len = sprintf(buffer,
"normal : %d\n"
"frozen : %d\n"
"delay : %d\n"
"count : %lu\n"
"LFC : %d\n"
"maxLFC : %d\n"
"profile-count : %lu\n"
"profile : ",
(tsk->pH_state.profile)->normal,
(tsk->pH_state.profile)->frozen,
tsk->pH_state.delay,
tsk->pH_state.count,
tsk->pH_state.alf.total,
tsk->pH_state.alf.max,
(tsk->pH_state.profile)->count);

Note that the printed string now includes the count-variable belonging
to the pro�le ((tsk->pH_state.profile)->count).

We did this modi�cation and made a debian-package of the new kernel,
which we installed on one of the test machines. The result was this:

romulus:~# cat /proc/161/pH
normal : 0
frozen : 0
delay : 0
count : 10483
LFC : 0
maxLFC : 3
profile-count : 3669385
profile : /var/lib/pH/profiles/usr/sbin/cron
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As we can see, the pro�le-count is added to the output. Now, the vari-
able is easily accessible for all, and can be stored in a log �le with i.e a little
command like this:

cat /proc/161/pH | sed -n ’s/profile-count : //p’ >> logfile

7.5 Discrete anomaly countermeasures

The need to tell pH which processes to react to arises when we want to use
pH i a production environment. To illustrate, imagine a user who compiles
and runs his �rst program ever. As soon as he starts executing, pH blocks
the process. The user won’t realize why his program doesn’t work.

The functionality we want, is the ability to set a variable for each pro-
�le which says if processes from this binary are to be blocked or not. In
addition, we want to be able to de�ne a global variable describing the de-
fault value for all new pro�les. The list of processes and the global variable
could be managed by i.e cfengine.

This is a functionality which requires a considerable modi�cation to the
source code.

7.5.1 Alternative I: Utilising the file-system

As noted earlier, all binaries are stored on disc. The easiest way to imple-
ment this requirement is to add a �le in the same directory as the pro�le
with the same name save for a suf�x. As an example: The program less,
which is located in /usr/bin/less, has its pro�le in /var/lib/pH/profiles/usr/bin/less.
By creating the empty �le /var/lib/pH/profiles/usr/bin/less.no_delay,
pH could stop delaying that program.

The upside to this alternative, is the ease of implementation. A suitable
place for pH to look for the �le, would be in the methodpH_delay_task(pH_task_state *s, int delay_exp).
If the �le should exist, then a different message would appear in the log and
the process would be saved.

The downside is performance and spreading information about one
pro�le to more than one place.

inline void pH_delay_task(pH_task_state *s, int delay_exp)
{

if ((pH_delay_factor > 0) && (delay_exp > 0)) {
unsigned long delay, eff_delay;
const int max_delay_exp = sizeof(delay) * 8 - 2;

if (delay_exp > max_delay_exp)
delay_exp = max_delay_exp;

delay = 1 << delay_exp;
eff_delay = delay * pH_delay_factor;
action("Delaying %d at %lu for %lu jiffies",

current->pid, s->count, eff_delay);
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pH_do_delay(delay);
}

}

7.5.2 Alternative II: Modifying the profiles

A second alternative is to modify the pro�le-struct to contain a new vari-
able called trusted. A program will not be delayed if its trusted-variable
should be set to 1. The test on the variable will happen in the same method
mentioned above.

7.5.3 Implementation

This functionality requires substantial modi�cations to the code compared
to the �rst alternative. We have to change the struct, the methods for ini-
tialising pro�les, the methods for reading and writing them to an from disc
and the method for displaying them in the /proc directory.

The bene�ts would be a better design. Distributing attributes over sev-
eral �les is never a good solution. Also, bringing this variable into the struct
has the additional bene�t as to simplifying future changes in the code.

Although this is the most elegant solution, the �rst alternative has the
advantage of ease and will therefore be a suf�cient choice for prototyping.
In terms of design, the latter alternative wins.
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Chapter 8

Phase Three: Requirements for
a Distributed Immune System

Let us now turn towards a more higher level view on building a computer
immune system. What have we learned from this project and how will our
experiences help us in our future projects?

One point we noticed, is that there is often no clear interface between
two ADS, especially if they are both complex to some degree. In essence
this is what we try to de�ne, though. The process can be viewed from
a distributed systems angle: how to make single and independent com-
ponents work together like a distributed system? Distributed systems are
information-sharing systems. What information is important?

Second, the thing about ADS, is that they monitor the the same com-
puter system they use as an arena for communication. The accuracy of
the computer immune system would decrease should interaction between
components introduce noise into the monitoring processes.

We now present the requirement model we found comprehensive enough
to encompass all the obstacles that we encountered. If we had used two
different systems, then these requirements would perhaps have a different
focus, but essentially the same.

8.1 Defining requirements

There currently no standarized method to test whether two systems affect
each other. There is also no standarized way of describing the requirements
needed for two anomaly detection systems to be able to share data or at all
to pro�t from it. We will now de�ne our requirements.
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These requirements should be viewed as base for two or more systems.
By adding more systems, the complexity increases exponential, since the
new system has to be compatible with every other participant.

8.1.1 Definitions

Channel A communication channel between two or more ADS, where one or
more ADS writes information and one or more ADS read and inter-
prets the information. This channel can exist without any ADS actu-
ally setting it up or knowing who’s reading and writing. syslog can
be viewed as a channel if one ADS writes that it found an anomaly,
and another ADS reads this and takes counter-measures of it’s own.

Trigger The indicator of an anomaly. An ADS keeps track of variables de-
scribing some aspect of the system. Should one or more of these vari-
ables violate any de�ned constraints, then this would trigger the ADS
to an reaction.

Reaction The behaviour of an ADS in response to a detected anomaly. This
could be anything from just logging the event to system integrity
checks to actively killing processes.

8.1.2 Compatible abstraction level

Different ADSs have different views of the system. PH has a per-process
view. It considers a process of only a sequence of system calls. Other ADSs,
like cfengine, view the system as consisting of among other things, check-
sums, permissions on �le-systems and other remote machines which it has
to interact with. If the two systems would have no mutual perspective,
they would not be able to help each other.

We solved this by adding a new perspective in cfengine, the ability to
view processes as a sequence of system calls with possible deviations in the
pattern. This is the same as in pH.

We also modi�ed pH to offer a data-variable which matches an already
existing system perspective in cfengine: a process is a time-series variable
which can be monitored and analysed. The modi�cation in pH enabled
cfengine to monitor even more processes.

8.1.3 Increased overall functionality

Another requirement is that there should be an actual (or at least possible)
gain in functionality. In psychology, the gestalt-theory states that an entity
is perceived as more than the sum of its components. This is also applicable
here. How we de�ne functionality depends on the initial tasks the different
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systems have. It can be immediate gains, like better performance, higher
accuracy (fewer false positives), new detection methods or better and more
accurate reaction capacity.

These mentioned improvements will then lead to more control over the
system, higher security and a more stable system.

But let’s not forget the possible bene�t of redundancy. Two systems
to monitor the same trigger can be an advantage if one of them would go
down. This gives higher fault tolerance, which can be interpreted as better
functionality. It could also lead to higher accuracy if the two systems could
compare the detected anomaly.

8.1.4 Compatible and predictable data representation

This is only a point for the systems which actually share data (knowing
or unknowing) between each other. As an example: say cfengine polls a
variable from pH residing in the /proc directory regularly. It expects it
to be an integer which should denote the global count of system calls for
a certain pro�le. What if this variable suddenly contains -1? Or perhaps
the string �two thousand�. Although this example seems a bit far fetched,
its still an important point: Can the systems rely on the data? Is the data
always describing what they think it is? If not, then the risk is high for
so-called false-positives or errors in general.

This brings us to another important point: could evil intentions render
data-�les or con�guration �les and make the immune system react against
itself? What if pH would start to delay cfengine? This is an classic problem
in system administration: When placing more trust on a system, you have
to place the same amount of trust on all its dependencies. In this case �le-
and user permissions.

This is a requirement also to the environment in which the computer
immune system is meant to function. A predictable data representation
means that we can trust the the systems ability to offer �le-protection.

8.1.5 Zero interference / No trigger loop

This requirement concerns the reaction-patterns of a ADS. What if one sys-
tem detects a anomaly, reacts to it and thereby causes the alarm-bells to
go off in another ADS, witch itself sets to work with considerable system-
checks causing even more anomalies in the �rst ADS? These trigger loops
could bring the whole system down in no-time and saving it would mean
shutting down security-services and making the system vulnerable attacks
and dependent on a system administrator to help, the direct opposite of
our intention.

This could to some extend happen in the case of pH an cfengine. If pH
should delay a process really hard, then this would trigger an anomaly in
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the part of cfengine that logs the load of the process, �nding it to have a
much lower load than expected.

A solution is to make enough information as possible about reactions
available to the other systems. If cfengine knew that pH was delaying the
process it could ignore its own trigger.

Another problem, which is more subtle, is the interference that ADS
could cause on each other. This is important for systems who rely on
data inspection with a low noise tolerance. Should an ADS prove to in-
troduce more noise than tolerable we would loose accuracy and function-
ality. This is harder to detect by code inspection and has to be tested. There
is no standard way for measuring the effect of one system on the others
dataset, which imposes an even greater dif�culty for detection of future
noise sources.

We approached this with our model for comparing two initially similar
systems and test the divergence when the new ADS was set to work on
only one of them.

8.1.6 Independence

An important requirement regards to keep the independence of the differ-
ent ADSs. If one should go down, the others should be able to continue
their work with as much loss in security or functionality as possible. This,
of course, depends on how tight they are woven together. Also, should a
ADS have to be stopped it should be able to resume its interaction with the
other systems without having to restart them as well.

This requirement holds regardless if you have a system to monitor and
restart eventual failing services. This would lead to an weak point, where
an attacker or failure only had to target the �mother� process or the moni-
tor and by that rendering the immune system vulnerable or even useless.

Independence complicates the system since it can introduce unpredictabil-
ity. In addition, how will turning one system on or off affect the data of
others? How could this affect learning systems? As we learned in our ex-
periments, the degree of in�uence varies with the type of data.

8.1.7 Openness / Availability

The process of making a ADS work interact with others requires close in-
spection of the systems design and inner workings and reprogramming.
This is mostly to be able to ful�l all the requirements mentioned above.
Surely, if every developer would keep its designs and code for himself,
one could make a solution based on only meetings and testing. But our
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experience is that the best ideas that lead to the discovery of a new func-
tionality came through inspection of the source-code and internal data-
representation. Available source code and a transparent view of the op-
erating system is crucial for the design and development of an computer
Immune system.

This topic is probably worth a longer discussion, but unfortunately that
is not in the scope of this research. As a last note, it is worth pointing out,
that many different projects try to establish open standards in the �eld of in-
trusion detection. One of these project is The Intrusion Detection Working
Group, who develop a XML-standard for detected intrusion events [41].
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Chapter 9

Discussion and Conclusions

9.1 Phase one

How does a system using pH differ from a normal one on a overall sys-
tem perspective?

To answer this question, we conducted four experiments on two initially
identical computer systems. The two systems where modi�ed between
each experiment, resulting, in the end, in one system running pH and the
other not. In the last experiment the systems ran a webserver which was
stressed periodically.

A system was created to generate a statistical summary of each experi-
ment together with plots.

Our experiment showed us, that the different variables react differently
to the changes. Memory usage showed a clear drop in similarity between
the two systems. This is most likely caused by the extra �le-handling by

Con�guration Description
Default Both machines run the same

installation-default kernel
pH-Passive 2.2.19 on remus and 2.2.19-ph

on romulus. PH is disabled.
pH-Active Same as pH-passive, but pH is

enabled on romulus
pH-Load Same as pH-Active, but the

machines are running apache
with instances of high load.

Table 9.1: Explaining the different con�gurations
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the system running pH. Also, pH generates more messages to log-�les like
syslog.

Other variables, like bi and us had a much more stable value through
all tests.

The correlation coef�cient we used handled peaks and outliers better
than expected. This is due to the transformation of the data before the ac-
tual computation. Another point, is that the results seemed to be similar
when using smoothed data instead. This opens for longer intervals be-
tween measurements in similar experiments in the future.

Our analysis only took into account the linear dependency between
each variable in isolation. No multivariate tests where used and we can
have missed important hints because of that.

A limitation of our tests was that the systems where not tested under
more different conditions. Most of the data came from inactive systems.
In retrospect, we recognise that we would have a better foundation if we
used less time on each trial (especially the �rst one) and instead more tri-
als where we stressed different services and perhaps also simulated user-
interaction.

There is a clear difference between the two systems when one of them
uses pH. But this is only when the systems are doing almost nothing. Will
the difference still be noticeable when the systems are used under more
real-life conditions? Our data cannot answer that question.

9.2 Phase Two

How could a process based anomaly detection system be incorporated
into a more generic con�guration engine like cfengine?

Here we settled on two types of anomalies that cfenvd can detect based
on available data from pH:

1. A �symbolic� approach where a process generates an anomaly event
based on one or more alien system call pairs.

2. A quantitative approach where a process experiences a different load
compared to an established statistical pro�le.

The �rst type of anomaly has already a reaction pattern in pH - delays.
The second type was discovered a bit unexpected and offers a new per-
spective to cfengines statistical anomaly detection model. There are more
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scenarios where these two systems could gain even more functionality, de-
scribed both in the paper and in this report, but we consider them in need
of more research before we can conclude anything. Regrettably we did not
�nd enough time to design possible future experiments for these.

We found that simple modi�cations to both systems actually expanded
their capabilities. This holds especially for cfengine, since it could use the
same analysis on some variables from pH. Cfengine can now monitor pro-
cesses closely without modifying the binary or running it in a special en-
vironment. Some modi�cation was done to the systems, to accommodate
the new functionality. They proved the concept but have still to show how
well it will work under real attacks.

Analysing two systems to this extent is time-consuming. There is no
framework to be used for building a distributed anomaly detection system
and we stumbled over new questions and problems along the way. This
is also what motivated the next part of this project. Hopefully will the ex-
perience gained in this project speed up a similar analysis in future projects.

One other type of functionality we did not implement was the ability
for pH to set if a process belonging to a given binary shall be subject to
delays or not. Cfengine could manage the list of trusted/untrusted bina-
ries and perhaps adjust it in runtime. Time constraints only allowed for
the description of this functionality and not further. This will, however be
an important point in an already planned future project. This functionality
enables us to use cfengine an pH together in production environments and
that makes further data-collection from real-life systems possible.

The result of this phase of the project culminated to a paper which got
accepted at The Eighth IFIP/IEEE International Symposium on Integrated
Network Management (IM 2003), which is gratifying.

9.3 Phase Three

What requirements exist for the development of a computer immune sys-
tem?

Our requirement speci�cation is strongly in�uenced by the types of sys-
tem we analysed. A new analysis using two different systems would prob-
ably bring a different and healthy light to distributed anomaly detection.

In a distributed computer immune system every component needs avail-
able interfaces and clear de�ned communication channels. We focused on
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combining two existing systems, not designing a distributed system from
the ground up. Our project showed that two anomaly detection systems
can indeed bene�t from each other if we modify them a little. We formu-
lated the following requirements that we mean must be met by all systems
in a distributed computer immune system:

� Compatible abstraction level

� Increased overall functionality

� Compatible and predictable data representation

� Zero interference / No trigger loop

� Independability

� Openness / Availability

An interesting question, is whether this approach to a distributed im-
mune system is preferable from a software engineering point of view. One
bene�t is that one can incorporate systems that are developed by others.
There are many excellent intrusion detection systems out there, why build
a completely new system that does the same?

Another point is how well this approach can be handled from the mid-
dleware? Why not build a distributed immune system using, say CORBA
or perhaps even JVM, as foundation for communication? This would at
least simplify design by standardising the interfaces, but it violates the re-
quirement of independability. The strength of our approach is that both
systems still function perfectly well without each other. Further, pH would
be dif�cult to implement using middleware, since it is in kernel-space.

Building a Computer Immune System and Software Engineering

Now that we have discussed the bene�ts and workings of a distributed
immune system, let us take a look at the development process. As stated
before, the approach chosen in this project was to take existing anomaly
detection tools and make them interact to gain higher control and integrity.
This approach raises some questions. First of all is the question of main-
tainability.

Let’s say security tool A 1.0 is being modi�ed to act as a component
in a immune system. The resulting component is called Ac 1.0. Now the
developers of A release a new version it, 1.1, which �xes some important
software bugs in the program. Who will modify this new version to be-
come Ac 1.1? What if they release a much better version, called A 2.0. This
version does not at all offer the same functionality than A 1.1, and so other
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immune system components lose the ability to cooperate. This type of ver-
sion control problems arises when one group develops the tools and an-
other develops the distributed immune system.

One is tempted to think in terms of evolution when discussing an com-
puter immune system. The system can be developed in a way similar to an
evolutionary process: If components help keeping the organism alive, then
the organism is more likely to reproduce. As in computers: If a security
con�guration proves to be optimal for a speci�c type of system, then it will
�reproduce� to other systems with the help of other consumers installing
the product or reading the documentation of how it is done. The question
is if this approach is any good for the system administrator. Who would
like to install and rely on a not-yet-optimal security system?

A more likely approach is to let the immune system mature in a research
environment, but then the danger of using outdated and legacy tools when
matured is bigger since such a research project often would not get maxi-
mum of attention. In addition, how can one guarantee the usefulness of a
system that is �bred in captivity�? This is especially important for a learn-
ing systems ability to cope with real-life noise-levels. The best development
process for this type of system is not part of this project, but it is central to
the applicability of an immune system. As is the best way of maintaining,
�xing and updating of all its components.

9.4 Future Projects

In the beginning of this text, we pointed out that this project is part of
achieving a higher goal: A computer immune system. At The University
College of Oslo we plan to follow up this project in several ways. One
project is to fully implement all the functionality we have described and to
test them under real attacks and simulations. Second, we hope to integrate
other intrusion-detection systems and to apply our requirements models
on them to test its applicability. Third, we want to expand our system for
collecting and analysing system variables to encompass more variables and
perhaps offer different statistical analysis methods. This system could then
be used when we test pH and cfengine in different contexts.
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Appendix A

Statistical summary for
Default

This appendix contains the results from the �rst trial in the �rst phase of
this project. Some of the variables where zero throughout the trial, and
produced therefore no plot. These empty plots have been removed from
this appendix.
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Figure A.1: This plot shows the number of precesses waiting.
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Figure A.2: This plot shows the number of processes in uninteruptable
sleep. As we can see, there is not much activity in this variable.
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Figure A.4: This plot shows the amount of memory used as buffers. The
same waves as in the previous plot are recognisable here.
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Figure A.5: In this plot we see the same pattern as in the other plots regard-
ing memory usage.
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Figure A.6: This plot shows the amount of blocks sent to a block device.
The plot may seem unorganised, but it shows a pattern similar to the plots
regarding memory usage.
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Figure A.7: In this plot we recognise a weekly pattern, although distorted.
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Figure A.10: CPU in user time. Note how both machines show similar
behaviour. The peaks coincide here also.
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Figure A.11: CPU in system time. This plot is in many ways similar to the
previous one in that it shows a different perspective on the same resource -
CPU usage. A wavy pattern is recognisable on both machines.
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Figure A.12: This plot, as with the two previous ones, shows a periodic an
constant behaviour on both machines.
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variable n sum max average stdDev
r 179229 76 2 0.000 0.023
b 179229 3 1 0.000 0.004
w 179229 0 0 0.000 0.000

swpd 179229 0 0 0.000 0.000
free 179229 656077548 6636 3660.555 1121.153
buff 179229 2600673264 18664 14510.337 882.285
cache 179229 1018055512 8668 5680.194 1165.853
si 179229 0 0 0.000 0.000
so 179229 0 0 0.000 0.000
bi 179229 1857 37 0.010 0.389
bo 179229 3947 14 0.022 0.262
in 179229 18710965 522 104.397 5.738
cs 179229 184294 171 1.028 1.404
us 179229 2441 56 0.014 0.578
sy 179229 2189 36 0.012 0.535
id 179229 17918272 100 99.974 1.095

Table A.1: vmstat_phase1.romulus

variable n sum max average stdDev
r 179282 61 3 0.000 0.022
b 179282 4 3 0.000 0.007
w 179282 0 0 0.000 0.000

swpd 179282 0 0 0.000 0.000
free 179282 665360252 6636 3711.250 1240.858
buff 179282 2516836280 19016 14038.421 1235.697
cache 179282 1091583352 10540 6088.639 1506.088
si 179282 0 0 0.000 0.000
so 179282 0 0 0.000 0.000
bi 179282 1848 46 0.010 0.399
bo 179282 3785 14 0.021 0.232
in 179282 18708735 535 104.354 5.576
cs 179282 184115 186 1.027 1.391
us 179282 1946 56 0.011 0.489
sy 179282 1810 36 0.010 0.453
id 179282 17924448 100 99.979 0.923

Table A.2: vmstat_phase1.remus
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variable average of both
r 0.000
b 0.000
w 0.000

swpd 0.000
free 3685.902
buff 14274.379
cache 5884.416
si 0.000
so 0.000
bi 0.010
bo 0.022
in 104.375
cs 1.028
us 0.012
sy 0.011
id 99.977

Table A.3: average

variable r
r -0.0002899
b -0.0000122
w 0.0000000

swpd 0.0000000
free 0.9488736
buff 0.7191931
cache 0.8523288
si 0.0000000
so 0.0000000
bi 0.0072123
bo 0.0016221
in 0.1640182
cs 0.0056725
us 0.0024800
sy 0.0018850
id 0.0000000

Table A.4: Pearson-Bravai Correlation
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variable Spearman’s rho
r 0.999
b 1.000
w 1.000

swpd 1.000
free 0.931
buff 0.462
cache 0.899
si 1.000
so 1.000
bi 0.997
bo 0.949
in 0.735
cs 0.996
us 0.997
sy 0.998
id 0.997

Table A.5: Spearman’s rho
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Appendix B

Statistical summary for
pH-Passive

This appendix contains the results from the second trial in the �rst phase
of this project. Some of the variables where zero throughout the trial, and
produced therefore no plot. These empty plots have been removed from
this appendix.
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Figure B.1: This plot shows the number of precesses waiting.
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Figure B.2: This plot shows the number of processes in uninteruptable
sleep. As we can see, there is not much activity in this variable.
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Figure B.3: Here we see the amount of idle memory in kB. The wavy pat-
tern shows the effect of scheduled jobs every week. The decrease of idle
memory is because the machines where rebooted right before this trial and
therefore had initially almost only idle memory.
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Figure B.4: This plot shows the amount of memory used as buffers. This
amount increases due to a system reboot right before the trial started.
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Figure B.5: In this plot we see the same pattern as in the other plots regard-
ing memory usage.
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Figure B.6: This plot shows the amount of blocks sent to a block device.
The plot may seem unorganised, but it shows a pattern similar to the plots
regarding memory usage.

