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Abstract

Since the advent of fault tolerance in the 1960s, numer-
ous techniques have been developed to increase the relia-
bility of safety critical and space borne missions. In the
last decade novel approaches to this field have sought in-
spiration from nature in the form of evolutionary and de-
velopmental forms of fault tolerance. In nature an addi-
tional inspiration axis exists in the form of learning. The
body’s own immune system uses a form of learning to main-
tain reliable operation in the body even in the presence of
invaders. This has only recently been applied as a compu-
tational technique in the form of artificial immune systems
(AIS). This paper demonstrates a new application of AIS
with an immunologically inspired approach to fault toler-
ance. It is shown a finite state machine can be provided
with a hardware immune system to provide a novel form of
fault detection giving the ability to detect every faulty state
during a normal operating cycle. We call this immunotron-
ics.

1 Introduction

Nature demonstrates radically different approaches to
complex problem solving that are now being used within
computing and electronic fields to improve upon many of
the classical techniques. One such area - reliable system
design has experimented with both evolutionary methods
through evolvable hardware [1] and the multi-cellular de-
velopment in embryonics [2] [3]. Many different species
possess defence mechanisms that can be referred to as an
immune system. The zoologist Elie Metchnikoff first ob-
served the presence of an immune system in starfish, with
cells covering and engulfing a rose thorn that had pierced
the creature [4]. He again observed the effects after much
research with the Daphnia parasite [5]. Plants, fish, insects
have also developed immune systems. Vertebrates have
evolved a highly complex, multi-layered defense mecha-
nism in the form of the immune system to provide pro-

tection from potentially hazardous external influences such
as bacterial and viral infections (antigens). The process of
antigen detection and self tolerance is essentially one of
self/non-self differentiation performed with an almost lim-
itless accuracy. The similarities between the requirements
of fault tolerance and the operation of the body’s defence
mechanisms have highlighted the relevance of the immune
system as a conceptual model for the design of future re-
liable systems [6]. This paper demonstrates one such ap-
proach.

Section 2 introduces the human immune system, dis-
cussing feature that have inspired the development of a
hardware immune system (HIS). Section 3 reviews the field
of artificial immune systems and demonstrates some of the
many applications that this new area is already finding uses
in. Section 4 introduces the hardware immune system by
developing analogies between the immune system and hard-
ware fault tolerance into a framework for a hardware im-
mune system for finite state machine immunisation. Section
5 presents the results of a sample counter and its ability to
detect the presence of faults. This is followed in section 6
with an analysis discussing the future of the work and im-
proved fault detection capabilities. The paper is concluded
in section 7.

2 The reliable human body

The body relies on the human immune system as a multi-
layered defence mechanism. It is capable of preventing the
onset of infection from approximately 1016 different foreign
molecules [7]. Detection is implemented by several layers,
each differing in complexity and protection method [8]. Ta-
ble 1 compares the layers of biological reliability to those
in hardware fault tolerance.

The acquired immune system, or more specifically the
area of humoral immunity is the major source of inspiration
for this work as the detection methods, as will be shown,
are attractive for the task of hardware fault detection. In its
simplest form, the underlying process is one of self/non-self
differentiation, i.e. to determine what is a cell of the body (a



Defence mechanism Human immune system Hardware protection
Atomic barrier Skin (mechanical) Hardware enclosure

(physical) Mucous membranes (trap foreign organisms) (physical/EM protection)
Temperature (inhibit growth of pathogens) Environmental settingsPhysiological
Acidity (destroy ingested microorganisms) (temperature control)

Phagocytes (macrophages) N-modular redundancy [9]Innate immunity
(Kill and digest foreign cells) Embryonics [10]

Humoral immunity (bacterial infections)Acquired immunity
Cell mediated immunity (viral infections)

Immunotronics [11]

Table 1. Layers of protection in the human body and hardware

valid state in the hardware) and what is not (an invalid state
in the hardware). Humoral immunity, also known as anti-
body mediated immunity, protects the body from bacterial
infections using B cells to generate antibodies and helper T
cells to activate the production of antibodies. Centralised
learning occurs in the thymus - the initial destination of im-
mature helper T cells that have developed from stem cells
in the bone marrow. The learning process ensures that an
immune response can only be initiated against cells not be-
longing to the body. Self cells, or proteins circulate through
the thymus and are exposed to the immature helper T cells.
If any binding between receptors on a helper T cell and a
self cell occur then the immature helper T cell is destroyed
- a process known as programmed cell death. An estimated
1-5% of the immature helper T cells survive [8]. The pro-
cess is essentially one of negative selection. The matured
T cells are then distributed throughout the body into lymph
nodes by the lymphatic system to take part in a distributed
detection process (figure 1).
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Figure 1. The humoral immune response

The humoral immunity cycle of figure 1 begins with the
B cells which patrol the circulatory system and tissues for
complementary receptors to bind to. B cells (and any cell
they have become attached to) are picked up by the lym-
phatic system (which drains all the tissues of the body) and

passed to lymph nodes. Protein fragments are presented
to the helper T cells which determine if the collected cell
should be attacked. If a match occurs with a certain affinity,
estimated to be approximately 15 continuous receptors [12]
the B cells are signalled to begin manufacture and prolifera-
tion of antibodies. The invading antigen is then destroyed.

3 Artificial immune systems

Advancements in our understanding of the fundamental
elements of the human immune system over the last few
decades has given rise to the field of artificial immune sys-
tems and immunological computation [13]. Immunological
approaches are currently used for computer security [14],
virus protection [15] [16], anomaly detection [17], process
monitoring [18], robot control [19] and software fault toler-
ance [20]. Computer security, virus protection and anomaly
detection applications have developed from the negative se-
lection algorithm developed by Forrest and Perelson [15]
from theoretical analyses of the matching and binding prop-
erties of the immune system [21]. Figure 2, adopted from
[22] demonstrates the algorithm.
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Figure 2. The negative selection algorithm



The negative selection algorithm works by selecting a
set of strings R (the matured helper T cells), of length l,
from a randomly generated original set of data Ro (imma-
ture T cells), that fail to match any self string si 2 S (cells
in the body), also of length l, in at least c contiguous po-
sitions. The probability of a match between two strings is
given equation 1.

PM � m�c[(l � c)(m� 1)=m+ 1] (1)

where m�c � 1 and m is the number of alphabet sym-
bols (2 for a binary FSM). Any strings that match in at least
c contiguous positions are deleted. In order to create R,
referred to as the set of tolerance conditions, with a suf-
ficiently low failure probability, the number of valid self
strings Ns must be a lot less than the number of invalid
strings Ne. A detailed analysis of the matching probabili-
ties specific to this algorithm can be found in [15]. Using
a probabilistic detection method means that a trade off can
be made between the number of tolerance conditions, NR

and therefore memory requirements and the probability of
failing to detect a fault, Pf (detection probability, PM is
therefore 1�Pf ). For theoretical predictions this is defined
by equation 2.

Pft = (1� PM )NR (2)

During the operational stage of the process data is ex-
tracted from the protected system and compared against the
list of stored tolerance conditions R. If any match occurs
then the system is alerted to a potential anomaly/fault. The
operational stage is computationally much simpler, making
implementation for a hardware system viable.

4 The hardware immune system

From a classical perspective, three stages need to be ad-
dressed in order to create a fault tolerant system:

� The detection of an error or output deviating from the
norm. For the hardware immune system this dictates
the differentiation between self and non-self.

� The minimisation or eradication of the consequential
effects of the fault.

� Activation of a suitable recovery procedure.

This paper concentrates on the first of the three stages
for the hardware immune system. In mapping the immune
system over to a hardware representation, the analogies in
table 2 are used.

The hardware immune system uses a finite state machine
(FSM) representation of the system to be immunised. In

Immune system Hardware fault tolerance
Self Normal operation

Nonself (antigen) Faulty operation
System state/toleranceAntibody (B cell)
condition comparison

Set of storedMemory T cells
tolerance conditions

Learning during Generation of
gestation tolerance conditions

Inactivation of Return to
antigen normal operation

Operational lifetimeLifetime of organism
of the hardware

Table 2. Immune system to hardware fault tol-
erance mapping

principle, any hardware system can be represented by an in-
dividual or interconnected set of FSMs, furthermore this al-
lows both self and nonself to be explicitly defined, as shown
in figure 3.

Under normal conditions (self) only transitions tqx can
occur. The advent of a fault causing an undefined transi-
tion is shown by tex. Concentrating on the complete transi-
tion rather than specific states is ideal as it then permits an
undefined transition between two individually valid states
to be detected. Although the hardware is represented by a
state machine any representation is feasible for immunisa-
tion, given the condition that it permits extraction of a fixed
length representation of the state, output, or elements that
are to be protected at any point in time.

To permit fault detection, the immunisation cycle is split
into three stages:

� Collection of data that corresponds to self.

� Tolerance condition generation.

� Immune system configuration and operational fault de-
tection.

Data gathering is performed using the hardware/software
testbench of figure 4 using a Virtex XCV300 FPGA [23] as
the hardware. This currently operates by randomly gener-
ating input sequences to the FSM until all the valid transi-
tions, defined by the state diagram have been reached. The
alternative, if possible, is to use a set of predefined test
sequences designed to extract all data as quickly and effi-
ciently as possible. The data gathered is stored as the con-
catenation of user inputs, current state of the FSM and next
state of the FSM.

The next stage requires the generation of the tolerance
conditions to monitor for change in the self data. Two ap-
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proaches are shown, the first uses the random generation
of tolerance conditions from an initial repertoire Ro pre-
viously discussed. This approach - the most immunologi-
cally representative of the two approaches has several weak-
nesses for use within a hardware environment that can be
improved upon. The random generation of detectors can
result in many tolerance conditions matching many of the
same nonself strings which while this is perhaps beneficial
redundancy wise (a fault causing a bit to flip state in one tol-
erance condition still leaves other tolerance conditions de-
tecting the same faults) in very inefficient resource wise if
the number of tolerance conditions is to be limited. Sec-
tion 5 demonstrates this effect. D’haeseleer [24] developed
the greedy detector generating algorithm to provide opti-
mal coverage of the nonself search space with the minimum

number of strings, or tolerance conditions in this case. The
algorithm differs somewhat in operation to an immunolog-
ical approach but produces tolerance conditions distributed
as far apart as possible over the complete range of nonself
strings, furthermore, generation of tolerance conditions is
significantly quicker. Using the greedy detector algorithm
requires the match length c to be defined. Those tolerance
conditions matching the most nonself strings are ‘extracted’
first. Storage constraints can then be traded off against the
matching probability. The variation in these parameters are
shown for a 4-bit counter in the results in section 5.

With the tolerance conditions generated they must then
be downloaded to the host hardware immune system (figure
5). The hardware immune system possesses several analo-
gies to the natural immune system:
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� The hardware immune system is separate to the FSM,
i.e. self that is being protected, just like the natural
immune system. In hardware, this means that addi-
tional techniques for improving reliability can be in-
cluded with no detrimental effect to the hardware im-
mune system.

� The hardware immune system monitors the state of the
FSM and only intervenes as necessary. At present this
results in the injection of a ‘wait’ state and flagging the
presence of a fault.

To permit total searching of the tolerance condition
memory storage element in a single cycle prior to the next



cally derived theoretical probability of failure (for random
tolerance condition generation) then the plot shows that for
c < 7, Pfe(Ex) does not perform as well as theoretical
predictions, due to overlap in the nonself strings matched
by the tolerance conditions. At c = 4 a 40% difference is
observed as it is only possible to only generate a very small
number of tolerance conditions that fail to match the self
data. The greedy generator improves upon this significantly
and actually performs better than theoretical predictions for
c > 5. This is due to the greedy generator specifically
selecting optimal values rather than completely randomly
which the theoretical prediction relies upon.

If the number of tolerance conditions is extended from
10 � Nr � 100 as shown in figure 7, the optimal match
length can be determined for the required failure probabil-
ity and storage requirements. For a requirement of 10 or
20 tolerance conditions c = 5 provides the lowest failure
probability. For 30-60 c = 6 provides the lowest failure
probability. For 70-100 c = 7 is best suited. If the plot
of figure 7 is extended to include more tolerance conditions
the optimal match length progresses from 8 through to 10.

6 Analysis

The paper has demonstrated the immunisation of only
a small system, with the immunisation hardware appearing
more complex that the system under analysis itself. Fault
detection hardware is relatively simple - hardware to ex-
tract the data from the system under test, and a memory
device with simple control logic. The example system is
used to demonstrate that an immune inspired technique is
viable and we are currently in the process of applying the
hardware immune system to much larger systems.

The architecture permits a trade off between failure prob-
ability and storage requirements. The existing architecture
permits 100% fault detection if the match length c equals
the length of the self strings to be protected. This approach
can be significantly improved if a variable match length ap-
proach is considered, as originally suggested in [15]. Before
such a solution could be justified it would be necessary to
determine if the reduction in number of tolerance conditions
outweighed the increased complexity of the string matching
hardware.

The work has assumed that it is possible to gather all the
self data from the finite state machine to be immunised. In
reality with a state machine of increased size and complex-
ity this is likely not to be possible. The advantage with this
technique over monitoring and searching for self is that if
a complete repertoire of self strings is not obtained prior to
the immunisation process, then the resulting set of tolerance
conditions can still detect all faults. The side effect of this
is that it can result in incorrectly interpreting the unknown
self conditions as nonself.

The preceding sections have dealt with the detection of a
fault by the hardware immune system. The next challenge
is to determine the consequential action to be performed
to limit the propagation of an error. A form of forward or
backward error recovery could provide a solution or alter-
natively, a more novel solution would be to selectively cor-
rect the faulty state until a self condition is achieved again.
This could be either completely autonomously or with ini-
tial human intervention to determine the correct self condi-
tion given a specific fault. One proposal is to implement a
form of forward error recovery that first analyses the state
of the system and corrects the output and next state logic if
a previously encountered fault occurs again.

In nature, the process completes with destruction of the
foreign invader. The phenomenal cellular redundancy in the
body makes the death of a cell insignificant. In an hardware
system the same does not generally apply, at least with a
typical architecture. The deactivation of a complete subsys-
tem in an n-modular redundant configuration for a single
fault it effective, but not resource efficient. Unfortunately
technology does not allow new components to be regrown
on silicon (as yet) so replacing a defective item is not possi-
ble. However, implementation in an embryonic array does
go some way to providing such a solution. The addition
of a hardware immune system using similar techniques dis-
cussed has been considered for this [27].

7 Conclusion

This paper has demonstrated a immunologically inspired
approach to hardware fault detection and discussed the ar-
chitecture for a hardware immune system to detect faults
in systems. The work has used a finite state machine rep-
resentation of the system to be protected although there is
no reason why this approach could not be applied to any
number of techniques.

The hardware immune system, even in its current state
permits 100% detection of faults if storage requirements to
not impose any restrictions. The future of this work looks
towards improved matching capabilities and immunisation
of larger and more complex state machine based systems to
assess the detection abilities of the hardware immune sys-
tem.
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