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Abstract. In this paper, we propose an algorithm to solve multiobjective optimization prob-
lems (either constrained or unconstrained) using the clonal selection principle. Our approach
is compared with respect to three other algorithms that are representative of the state-of-the-
art in evolutionary multiobjective optimization. For our comparative study, three metrics are
adopted and graphical comparisons with respect to the true Pareto front of each problem are
also included. Results indicate that the proposed approach is a viable alternative to solve
multiobjective optimization problems.
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1. Introduction

Given that our own life depends on our immune system, it should be obvious
why it is considered as one of the most important biological mechanisms
than humans possess. In recent years, several researchers have developed
computational models of the immune system that attempt to capture some
of their most remarkable features such as its self-organizing capability (Hunt
and Cooke, 1995; Forrest and Hofmeyr, 2000).

From the information processing perspective, the immune system can be
seen as a parallel and distributed adaptive system (Frank, 1996; Dasgupta,
1999). It is capable of learning, it uses memory and is able of associative
retrieval of information in recognition and classification tasks. Particularly, it
learns to recognize patterns, it remembers patterns that it has been shown in
the past and its global behavior is an emergent property of many local inter-
actions (Dasgupta, 1999). All these features of the immune system provide,
in consequence, great robustness, fault tolerance, dynamism and adaptability
(Forrest and Hofmeyr, 2000). These are the properties of the immune system
that mainly attract researchers to try to emulate it in a computer.

c
�

2002 Kluwer Academic Publishers. Printed in the Netherlands.

evocinv-05-2002.tex; 4/12/2002; 15:49; p.1



2 Carlos A. Coello Coello and Nareli Cruz Cortés

Most optimization problems naturally have several objectives to be achieved
(normally conflicting with each other), but in order to simplify their solution,
they are treated as if they had only one (the remaining objectives are nor-
mally handled as constraints). These problems with several objectives, are
called “multiobjective” or “vector” optimization problems, and were origi-
nally studied in the context of economics. However, scientists and engineers
soon realized that such problems naturally arise in all areas of knowledge.

Over the years, the work of a considerable amount of operational re-
searchers has produced an important number of techniques to deal with mul-
tiobjective optimization problems (Miettinen, 1998). However, it was until
relatively recently that researchers realized of the potential of evolutionary
algorithms (EAs) and other population-based heuristics in this area.

The first implementation of a multi-objective evolutionary algorithm (MOEA)
dates back to the mid-1980s (Schaffer, 1984; Schaffer, 1985). Since then,
a considerable amount of research has been done in this area, now known
as evolutionary multi-objective optimization (EMO for short). The growing
importance of this field is reflected by a significant increment (mainly during
the last eight years) of technical papers in international conferences and peer-
reviewed journals, books, special sessions at international conferences and
interest groups on the Internet (Coello Coello et al., 2002).1

The main motivation for using EAs (or any other population-based heuris-
tics) in solving multiobjective optimization problems is because EAs deal
simultaneously with a set of possible solutions (the so-called population)
which allows us to find several members of the Pareto optimal set in a single
run of the algorithm, instead of having to perform a series of separate runs as
in the case of the traditional mathematical programming techniques (Mietti-
nen, 1998). Additionally, EAs are less susceptible to the shape or continuity
of the Pareto front (e.g., they can easily deal with discontinuous and concave
Pareto fronts), whereas these two issues are a real concern for mathematical
programming techniques (Coello Coello, 1999).

Despite the considerable amount of EMO research in the last few years,
there have been very few attempts to extend certain population-based heuris-
tics (e.g., cultural algorithms and particle swarm optimization). Particularly,
the efforts to extend an artificial immune system to deal with multiobjective
optimization problems have been practically inexistent until very recently. In
this paper, we precisely provide one of the first proposals to extend an arti-
ficial immune system to solve multiobjective optimization problems (either
with or without constraints). Our proposal is based on the clonal selection
principle and is validated using several test functions and metrics, following

1 The first author maintains an EMO repository which currently contains over 1000
bibliographical entries at: http://delta.cs.cinvestav.mx/˜ccoello/EMOO,
with mirrors at http://www.lania.mx/˜ccoello/EMOO/ and
http://www.jeo.org/emo/
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the standard methodology adopted in the EMO community (Coello Coello et
al., 2002).

2. Basic Definitions

Definition 1 (Global Minimum): Given a function ���������
	�� � ,
��
��� , for ���� � the value ������������ ��� �"!�# is called a global minimum
if and only if $

��%� �&�'������ � ��()���*�� �,+ (1)

Then, �� � is the global minimum solution(s), � is the objective function, and
the set � is the feasible region ( � �.- ), where - represents the whole search
space. /
Definition 2 (General Multiobjective Optimization Problem (MOP)):
Find the vector �� � �10 � � 2�3 � �4 3�+�+�+53 � �	

687
which will satisfy the 9 inequality

constraints:

:<; �*�� �>=�? @ ��A 3CBD3�+�+�+E3F9 (2)

the G equality constraints

H ; ���� � � ? @ ��A 3CBD3�+�+�+E3IG (3)

and will optimize the vector function

��J���� � �"0 � 2 �*�� �K3C� 4 ���� �K3�+�+�+53C�<LD���� � 6 7 (4)

where �� ��0 � 2 3 � 4 3�+�+�+�3 � 	
6 7

is the vector of decision variables. /
Having several objective functions, the notion of “optimum” changes, be-

cause in MOPs, the aim is to find good compromises (or “trade-offs”) rather
than a single solution as in global optimization. The notion of “optimum”
that is most commonly adopted is that originally proposed by Francis Ysidro
Edgeworth (1881) and later generalized by Vilfredo Pareto (1896). Although
some authors call Edgeworth-Pareto optimum to this notion (see for example
(Stadler, 1988)), it is normally preferred to use the most commonly accepted
term: Pareto optimum. The formal definition is provided next.

Definition 3 (Pareto Optimality:): A point �� � � � is Pareto optimal if for
every ��%� � and M �'NOA 3CBD3�+�+�+53CPRQ either,

$ ;TSEU �V� ; �*�� � � � ; ���� � �F� (5)

or, there is at least one @ � M such that
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� ; ���� ��� � ; ���� � � (6)

/
In words, this definition says that �� � is Pareto optimal if there exists

no feasible vector �� which would decrease some criterion without causing
a simultaneous increase in at least one other criterion. The phrase “Pareto
optimal” is considered to mean with respect to the entire decision variable
space unless otherwise specified.

Other important definitions associated with Pareto optimality are the fol-
lowing:

Definition 4 (Pareto Dominance): A vector �� � � � 2 3�+�+�+53 � L � is said to
dominate �� � � � 2 3�+�+�+�3 � L � (denoted by ���� �� ) if and only if u is partially
less than v, i.e.,

$
@ � NOA 3�+�+�+53CPRQ 3 � ; ( � ;���� @ � NOA 3�+�+�+53CPRQ � � ;
	 � ; . /

Definition 5 (Pareto Optimal Set): For a given MOP ���� � � , the Pareto
optimal set ( � � ) is defined as:

� � � ��N � � �
��� � ��� � � ���� ��� � � ��J� � �CQ + (7)

/
Definition 6 (Pareto Front:): For a given MOP ��J� � � and Pareto optimal
set � � , the Pareto front ( ��� � ) is defined as:

��� � � �'N �� � �� � �V� 2 � � �K3�+�+�+�3C�<L � � �F��� �%� � � Q + (8)

/
In general, it is not easy to find an analytical expression of the line or sur-

face that contains these points and in most cases, it turns out to be impossible
to do it. The normal procedure to generate the Pareto front is to compute the
points � and their corresponding ���V� � . When there is a sufficient number of
these, it is then possible to determine the nondominated points and to produce
the Pareto front.

Pareto optimal solutions are also termed non-inferior, admissible, or effi-
cient solutions (Horn, 1997); their corresponding vectors are termed nondom-
inated.

3. The Immune System

The main goal of the immune system is to protect the human body from the
attack of foreign (harmful) organisms. The immune system is capable of dis-
tinguishing between the normal components of our organism and the foreign
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material that can cause us harm (e.g., bacteria). These foreign organisms are
called antigens.

The molecules called antibodies play the main role on the immune sys-
tem response. The immune response is specific to a certain foreign organism
(antigen). When an antigen is detected, those antibodies that best recognize
an antigen will proliferate by cloning. This proccess is called clonal selection
principle (Nunes de Castro and Von Zuben, 1999).

The new cloned cells undergo high rate mutations or hypermutation in or-
der to increase their receptor population (called repertoire). These mutations
experienced by the clones are proportional to their affinity to the antigen.

The highest affinity antibodies experiment the lowest mutation rates, whereas
the lowest affinity antibodies have high mutation rates. After this mutation
process ends, some clones could be dangerous for the body and should there-
fore be eliminated.

After these clonation and hypermutation processes finish, the immune
system has improved the antibodies’ affinity, which results on the antigen
neutralization and elimination.

At this point, the immune system must return to its normal conditions,
eliminating the excedent cells. However, some cells remain circulating through-
out the body as memory cells. When the immune system is later attacked by
the same type of antigen (or a similar one), these memory cells are activated,
presenting a better and more efficient response. This second encounter with
the same antigen is called secondary response.

The algorithm proposed in this paper is based on the clonal selection
principle previously described.

Repeat 1. Select an antigen � from ���
( ��� = Population of Antigens)

2. Take (randomly) � antibodies from ���
( ��� = Population of Antibodies)

3. For each antibody 	 � � , match it against
the selected antigen �
Compute its match score (e.g., using Hamming distance)

4. Find the antibody with the highest match score
Break ties at random

5. Add match score of winning antibody to its fitness
Until maximum number of cycles is reached

Figure 1. Immune system model (fitness scoring) pseudocode
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4. Previous Work

One of the applications in which the emulations of the immune system has
been found useful is to maintain diversity in the population of a genetic al-
gorithm (GA) used to solve multimodal optimization problems (Forrest and
Perelson, 1991; Smith et al., 1992; Smith et al., 1993). The proposal in this
case has been to use binary strings to model both antibodies and antigens.
Then, matching of an antibody and an antigen is determined if their bit strings
are complementary (i.e., maximally different). The algorithm proposed in
this case to compute fitness is shown in Figure 1 (this algorithm, assumes a
population that includes antigens and antibodies both represented with binary
strings) (Smith et al., 1993). The main idea of this approach is to construct
a population of antigens and a population of antibodies. Antibodies are then
matched against antigens and a fitness value is assigned to each antibody
based on this matching (i.e., maximize matching between antigens and an-
tibodies). Finally, a conventional genetic algorithm is used to replicate the
antibodies that better match the antigens present.

Smith et al. (1993) show that fitness sharing emerges when their emu-
lation of the immune system is used. Furthermore, this approach is more
efficient (computationally speaking) than traditional fitness sharing (Deb and
Goldberg, 1989), and it does not require additional information regarding the
number of niches to be formed.

This same approach has been used to handle constraints in evolutionary
optimization (Hajela and Lee, 1995; Hajela and Lee, 1996) and has also
been hybridized with a multi-objective evolutionary algorithm (Kurpati and
Azarm, 2000; Cui et al., 2001). However, the first direct use of the immune
system to solve multiobjective optimization problems reported in the liter-
ature is the work of Yoo and Hajela (1999). This approach uses a linear
aggregating function to combine objective function and constraint informa-
tion into a scalar value that is used as the fitness function of a GA. Then, the
best designs according to this value are defined as antigens and the rest of the
population as a pool of antibodies. The simulation of the immune system is
then done as in the previous work of the authors where the technique is used
to handle constraints (Hajela and Lee, 1996). The algorithm is the following

1. Select randomly a single antigen from the antigens population.

2. From the population of antibodies, take a sample (randomly selected)
without replacement (Yoo and Hajela (1999) suggest three times the num-
ber of antigens).

3. Each antibody in the sample is matched against the selected antigen, and a
match score (based on the Hamming distance measured on the genotype)
is computed.
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4. The antibody with the highest score is identified, and ties are broken at
random.

5. The matching score of the winning antibody is added to its fitness value
(i.e., it is “rewarded”).

6. The process is repeated a certain number of times (typically three times
the number of antibodies).

This approach is applied to some structural optimization problems with
two objectives (a two-bar truss structure, a simply supported I-beam, and a
10-bar truss structure). The use of different weights allows the authors to
converge to a certain (pre-specified) number of points of the Pareto front,
since they make no attempt to use any specific technique to preserve diversity.
In this study, the approach is not compared to any other technique.

More recently, Anchor et al. (2002) used both lexicographic ordering and
Pareto-based selection in an evolutionary programming algorithm used to de-
tect attacks with an artificial immune system for virus and computer intrusion
detection. In this work, however, emphasis is placed on the application rather
than on the multiobjective aspects of the algorithm, since that is the main aim
of this work. Therefore, the algorithm is not compared to other multiobjective
optimization approaches.

The approach introduced in this paper can then be considered as the first
attempt to use an artificial immune system to solve the general multiobjec-
tive optimization problem. To validate our proposal, we adopt the conven-
tional methodology of the evolutionary multiobjective optimization commu-
nity, which includes a comparison with respect to other algorithms using
several test functions and metrics.

5. The Proposed Approach

As indicated before, our algorithm is based on the clonal selection principle,
modeling the fact that only the highest affinity antibodies to the antigens will
proliferate. Our algorithm uses the concept of Pareto dominance to generate
nondominated vectors. Also, an external (or secondary) memory is used to
store nondominated vectors found along the evolutionary process, in order
to move towards the true Pareto front over time (this can be seen as a form
of elitism in evolutionary multiobjective optimization (Coello Coello et al.,
2002)). Note that despite the fact that the algorithm presented next is based
on our proposal reported in (Coello Coello and Cruz Cortés, 2002), several
aspects of such algorithm have been modified, including the elimination of
certain parameters required in our previous version.
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5.1. THE ALGORITHM

Our algorithm is the following:

1. The initial population is created by dividing decision variable space into
a certain number of segments with respect to the desired population size.
Thus, we generate an initial population with a uniform distribution of
solutions such that every segment in which the decision variable space is
divided has solutions. This is done to improve the search capabilities of
our algorithm instead of just relying on the use of a mutation operator.
Note however, that the solutions generated for the initial population are
still random, since we are only contraining their boundaries to make sure
that their distribution is uniform along the available range of the decision
variables.

2. Initialize the secondary memory so that it is empty.

3. Determine for each individual in the population, if it is (Pareto) dom-
inated or not. For constrained problems, determine if an individual is
feasible or not.

4. Determine which are the best antibodies, since we will clone them adopt-
ing the following criterion:

! If the problem is unconstrained, then all the nondominated individ-
uals are cloned.

! If the problem is constrained, then we have two further cases: a)
there are feasible individuals in the population, and b) there are no
feasible individuals in the population. For case b), all the nondom-
inated individuals are cloned. For case a), only the nondominated
individuals that are feasible are cloned (nondominance is measured
only with respect to other feasible individuals in this case).

5. Copy the best antibodies (obtained from the previous step) into the sec-
ondary memory.

6. We determine for each of the “best” antobodies the number of clones that
we wish to create. This is done such that the total number of clones cre-
ated is equal to the 60% of the total population used. When the secondary
memory is full, then we do the following:

! If the individual to be inserted into the secondary memory is not
allowed access either because it was repeated or because it belongs
to the most crowded region of objective function space, then the
number of clones created is zero.
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! When we have an individual that belongs to a cell whose number of
solutions contained is below average (with respect to all the occu-
pied cells in the secondary memory), then the number of clones to
be generated is duplicated.

! When we have an individual that belongs to a cell whose number
of solutions contained is above average (with respect to all the oc-
cupied cells in the adaptive grid), then the number of clones to be
generated is reduced by half.

7. We perform the clonation of the best antibodies based on the information
from the previous step.

8. A mutation operator is applied to the clones in such a way that the number
of mutated genes in each chromosomic string is equal to the number of
decision variables of the problem. This is done to make sure that at least
one mutation occurs per string, since otherwise we would have duplicates
(the original and the cloned string would be exactly the same)

9. We apply a non-uniform mutation operator to the “best” antibodies found
without guaranteeing that duplicates will not be generated (unlike the
mutation operator of the previous step). The initial mutation rate adopted
is high and it is decreased over time (from 0.9 to 0.3).

10. If the secondary memory is full, we apply crossover to a fraction of
its contents. The new individuals generated that are nondominated with
respect to the secondary memory will then be added to it.

11. We repeat this process from step 3 during a certain (predetermined) num-
ber of times.

Note that in the previous algorithm there is no distinction between antigen
and antibody as in some of our previous work (e.g., (Coello Coello and Cruz
Cortés, 2002)). In contrast, in this case all the individuals are considered as
antibodies, and we only distinguish between “better” antibodies and “not so
good” antibodies.

The reason for using an initial population with a uniform distribution of
solutions over the allowable range of the decision variables is to sample the
search space uniformly. This helps the mutation operator to explore the search
space more efficiently.

We apply crossover to the individuals in the secondary memory once
this is full so that we can reach intermediate points between them. Such
information is used to improve the performance of our algorithm.
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Figure 2. An adaptive grid to hadle the secondary memory

5.2. SECONDARY MEMORY

We use a secondary or external memory as an elitist mechanism in order to
maintain the best solutions found along the process. The individuals stored
in this memory are all nondominated not only with respect to each other but
also with respect to all of the previous individuals who attempted to enter the
external memory. Therefore, the external memory stores our approximation
to the true Pareto front of the problem.

In order to enforce a uniform distribution of nondominated solutions that
cover the entire Pareto front of a problem, we use the adaptive grid proposed
by Knowles and Corne (2000) (see Figure 2).

Ideally, the size of the external memory should be infinite. However, since
this is not possible in practice, we must set a limit to the number of nondomi-
nated solutions that we want to store in this secondary memory. By enforcing
this limit, our external memory will get full at some point even if there are
more nondominated individuals wishing to enter. When this happens, we
use an additional criterion to allow a nondominated individual to enter the
external memory: region density (i.e., individuals belonging to less densely
populated regions are given preference).

The algorithm for the implementation of the adaptive grid is the following:

1. Divide objective function space according to the number of subdivisions
set by the user.

2. For each individual in the external memory, determine the cell to which
it belongs.
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3. If the external memory is full, then determine which is the most crowded
cell.

4. To determine if a certain antigen is allowed to enter the external memory,
do the following:

! If it belongs to the most crowded cell, then it is not allowed to enter.

! Otherwise, the individual is allowed to enter. For that sake, we
eliminate a (randomly chosen) individual that belongs to the most
crowded cell in order to have an available slot for the antigen.

6. Experiments

In order to validate our approach, we used several test functions reported in
the standard evolutionary multiobjective optimization literature (Deb, 1999;
Van Veldhuizen and Lamont, 1999; Coello Coello et al., 2002). In each case,
we generated the true Pareto front of the problem (i.e., the solution that
we wished to achieve) by enumeration using parallel processing techniques.
Then, we plotted the Pareto front generated by our algorithm, which we call
the multiobjective immune system algorithm (MISA).

The results indicated below were found using the following parameters for
MISA: Population size = 100, number of grid subdivisions = 25, size of the
external memory = 100 (we have eliminated several parameters adopted in
our previous work (Coello Coello and Cruz Cortés, 2002)). These parameters
produce a total of 12,000 fitness function evaluations, which is a much lower
number than the 138,000 fitness function evaluations reported in our previous
work (Coello Coello and Cruz Cortés, 2002).

MISA was compared against the micro-genetic algorithm for multiob-
jective optimization (Coello Coello and Toscano Pulido, 2001), against the
NSGA-II (Deb et al., 2000; Deb et al., 2002) and against PAES (Knowles and
Corne, 2000). These three algorithms were chosen because they are represen-
tative of the state-of-the-art in evolutionary multiobjective optimization and
their codes are in the public domain.

To allow a fair comparison, all the approaches performed the same number
of fitness function evaluations as MISA and they all adopted the same size for
their external memories.

In the following examples, the NSGA II was run using a population size
of 100, a crossover rate of 0.75, tournament selection, and a mutation rate
of 1/vars, where vars = number of decision variables of the problem. PAES
was run using a mutation rate of A���� , where � refers to the length of the
chromosomic string that encodes the decision variables. For the microGA
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12 Carlos A. Coello Coello and Nareli Cruz Cortés

we used an internal population size (for the microGA) of 4 individuals, 15
subdivisions of the adaptive grid, a maximum number of generations of 750,
a crossover rate of 0.8 and a mutation rate of A���� as in the NSGA-II and
PAES.

Despite the graphical comparisons performed, the three following metrics
were adopted to compare our results:

! Two Set Coverage (SC): This metric was proposed in (Zitzler et al.,
2000), and it can be termed relative coverage comparison of two sets.
Consider � � 3�� � � ��� � as two sets of phenotype decision vectors. SC is
defined as the mapping of the order pair ��� � 3�� � � � to the interval 0 ? 3 A 6 .

��� ��� � 3�� � � � � � N�� � �	� � � ��
 � � ��� � � � � ��
 � � � Q �
� � � � � (9)

If all points in � � dominate or are equal to all points in � � � , then by def-
inition ��� � A . ��� � ? implies the opposite. In general, ��� ��� � 3�� � � �
and ��� ��� � � 3�� � � both have to be considered due to set intersections not
being empty. Of course, this metric can be used for both spaces (objec-
tive function or decision variable space), but in this case we applied it in
objective function space. The advantage of this metric is that it is easy
to calculate and provides a relative comparison based upon dominance
numbers between generations or algorithms.

! Spacing (S): This metric was proposed by Schott (1995) as a way of
measuring the range (distance) variance of neighboring vectors in the
Pareto front known. This metric is defined as:

� �
���� A� ! A 	�

;	� 2 � � !�� ; � 4 3 (10)

where � ; �����	��� � � � ;2*���� ��! � �2 ���� � ��� �<� ;4 �*�� ��! � �4 ���� � � � , @ 3! ��A 3�+�+�+�3 � ,� is the mean of all � ; , and � is the number of vectors in the Pareto front
found by the algorithm being evaluated. A value of zero for this metric
indicates all the nondominated solutions found are equidistantly spaced.

! Generational Distance (GD): The concept of generational distance was
introduced by Van Veldhuizen & Lamont (Van Veldhuizen and Lamont,
1998; Van Veldhuizen and Lamont, 2000) as a way of estimating how
far are the elements in the Pareto front produced by our algorithm from
those in the true Pareto front of the problem. This metric is defined as:

"$# �&% ' 	;	� 2 � 4;� (11)

evocinv-05-2002.tex; 4/12/2002; 15:49; p.12



Solving Multiobjective Optimization Problems using an Artificial Immune System 13

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f2

f1

PF true
MISA

Figure 3. Pareto front obtained by MISA in the first example. The true Pareto front is shown
as a continuous line (note that the horizontal segments are NOT part of the Pareto front and
are shown only to facilitate drawing the front) and the Pareto front found by MISA is shown
as crosses.

where � is the number of nondominated vectors found by the algorithm
being analyzed and � ; is the Euclidean distance (measured in objective
space) between each of these and the nearest member of the true Pareto
front. It should be clear that a value of

"$# � ? indicates that all the
elements generated are in the true Pareto front of the problem. There-
fore, any other value will indicate how “far” we are from the global
Pareto front of our problem. Similar metrics were proposed by Rudolph
(Rudolph, 1998), Schott (1995), and Zitzler et al. (Zitzler et al., 2000).

EXAMPLE 1

Minimize: � � �V� 2 � � 3�� �K3C� 4 � � 3�� �F� , where

� 2 � � 3�� � � � 3
� 4 � � 3�� � � � A � A ?�� ���

0 A !)� �
A � A ?�� ��� ! �

A � A ?�� � �	� �VB�	�
 � � 6
and ? ( � 3�� ( A , 
 �
� , � � B .
The comparison of results between the true Pareto front of this example

and the Pareto front produced by MISA, the microGA, the NSGA-II and
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Figure 4. Pareto front obtained by the microGA in the first example.
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Figure 5. Pareto front obtained by the NSGA-II in the first example.
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Figure 6. Pareto front obtained by PAES in the first example.

Table I. Spacing for example 1

MISA MicroGA NSGA-II PAES

Average 0.008296750 0.186035000 0.007596200 0.032293900

Best 0.007123000 0.035300000 0.006569000 0.012456000

Worst 0.009568000 0.507064000 0.009198000 0.251791000

Std. Dev. 0.000690148 0.144612383 0.000646588 0.052402532

PAES are shown in Figures 3, 4, 5 and 6, respectively. Note that the Pareto
front is disconnected (it consists of four Pareto curves). The graphs previously
indicated show the average behavior of each algorithm with respect to the
generational distance metric.

The values of the three metrics for each algorithm are presented in Ta-
bles I, II, and III, respectively. In this case, the four algorithms compared
have a similar average value for the generational distance, PAES being the
best (MISA placed third with respect to this metric). Note, however that the
differences are minor and all the algorithms performed well with respect to
this metric.

Regarding coverage, MISA performed better with respect to the microGA
and with respect to PAES. With respect to the NSGA-II, MISA showed a very
similar behavior regarding coverage.
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Table II. Coverage for example 1

MISA & � GA � GA & MISA MISA & NSGA-II

Average 0.6865 0.3790 0.3565

Lowest 0.2700 0.2500 0.3000

Highest 1.0000 0.5800 0.4200

Std. Dev. 0.3557 0.0932 0.0338

NSGA-II & MISA MISA & PAES PAES & MISA

Average 0.3280 0.3265 0.2490

Lowest 0.3000 0.2800 0.1400

Highest 0.3700 0.3900 0.4400

Std. Dev. 0.0221 0.0327 0.0944

Table III. Generational Distance for example 1

MISA MicroGA NSGA-II PAES

Average 0.00028705 0.0003192 0.0002532 0.000178

Best 0.00023 0.000229 0.000233 0.000117

Worst 0.000376 0.000655 0.000275 0.000237

Std. Dev. 0.000033 0.0001450 0.0000109 0.0000329

Regarding spacing, MISA and the NSGA-II both found the best results
with very similar values. The microGA and PAES ranked second and third,
respectively.

Since metrics can sometimes be misleading in multiobjective optimiza-
tion, it is always important to rely on graphical comparisons (whenever pos-
sible). In this case, we can see that the NSGA-II and MISA show a similar
behavior regarding closeness to the true Pareto front and spread. In contrast,
the microGA produces a few solutions that do not belong to the true Pareto
front of the problem and that the selection mechanism of the algorithm could
not eliminate. PAES does not have an appropriate spread of solutions and also
has solutions that do not belong to the true Pareto front.
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Figure 7. Pareto front obtained by MISA in the second example. The true Pareto front of the
problem is shown as a continuous line (note that the vertical segment is NOT part of the Pareto
front and is shown only to facilitate drawing the front) and the Pareto front found by MISA is
shown as crosses.

Then, in conclusion, for the first example, we can say that MISA and the
NSGA-II tied in the first place regarding best overall performance, with PAES
and the microGA in second and third place, respectively.

EXAMPLE 2

Our second example is a two-objective optimization problem proposed by
Schaffer (1984) that has been used by several researchers (Srinivas and Deb,
1994):

Minimize � 2 � � � �
���� ���
! � if � ( A
! B � � if A 	 � (��
� ! � if � 	 � ( �
! � � � if � � �

(12)

Minimize � 4 � � � � � � !�� � 4 (13)

and !�� ( � ( A ? .
The comparison of results between the true Pareto front of this example

and the Pareto front produced by MISA, the microGA, the NSGA-II and
PAES are shown in Figures 7, 8, 9 and 10, respectively. The values of the three
metrics for each algorithm are presented in Tables IV, V, and VI, respectively.
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Figure 8. Pareto front obtained by the microGA in the second example.
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Figure 9. Pareto front obtained by the NSGA-II in the second example.
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Table IV. Spacing for example 2

MISA MicroGA NSGA-II PAES

Average 0.227902850 0.065564200 0.146915350 0.243692100

Best 0.205998000 0.050730000 0.044937000 0.010033000

Worst 0.248307000 0.160646000 0.207402000 1.599812000

Std. Dev. 0.013566168 0.024662209 0.065184527 0.346439517

Table V. Coverage for example 2

MISA & � GA � GA & MISA MISA & NSGA-II

Average 0.5965 0.5915 0.7175

Lowest 0.5700 0.5800 0.5800

Highest 0.6300 0.6100 1.0000

Std. Dev. 0.0232 0.0123 0.1904

NSGA-II & MISA MISA & PAES PAES & MISA

Average 0.7900 0.5980 0.3565

Lowest 0.7500 0.5700 0.0000

Highest 0.8200 0.6300 0.7900

Std. Dev. 0.0238 0.0228 0.2740

Table VI. Generational Distance for example 2

MISA MicroGA NSGA-II PAES

Average 0.00023 0.00024 0.00028 0.00018

Best 0.00020 0.00021 0.00025 0.00005

Worst 0.00026 0.00026 0.00030 0.00027

Std. Dev. 0.00002 0.00003 0.00001 0.00008
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Figure 11. Pareto front produced by MISA in the third test function. The true Pareto front of
the problem is shown as dots and the Pareto front found by MISA is shown as crosses.

where:

� 2 � � 3�� � � � � !�B � 4
B � � � � A � 4A � � �D3

� 4 � � 3�� � � � � � � !�� � 4A�� � � �VB � ! � � 4A�� ! A �D3
� � � � 3�� � � � � � !�B � � � � 4

� � � � ! � � A � 4
B �� A �

and: ! � ( � 3��.( � , � 	 ! � � � � , � � ! A , �.� � !�B .
The comparison of results between the true Pareto front of this example

and the Pareto front produced by MISA, the microGA, the NSGA-II and
PAES are shown in Figures 11, 12, 13 and 14, respectively. The values of
the three metrics for each algorithm are presented in Tables VII, VIII, and
IX, respectively.

In this example, both PAES and MISA had the best performance regard-
ing generational distance, followed by the NSGA-II. The microGA had the
poorest performance with respect to this metric.

Regarding coverage, MISA outperformed the microGA, but it was outper-
formed both by PAES and by the NSGA-II.

With respect to spacing, the microGA had the best performance, fo