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Abstract

This paper investigates the role of negative
selection in an artificial immune system (AIS)
for network intrusion detection. The work
focuses on the use of negative selection as a
network traffic anomaly detector. The results of
the negative selection algorithm experiments
show a severe scaling problem for handling real
network traffic data. The paper concludes by
suggesting that the most appropriate use of
negative selection in the AIS is as a filter for
invalid detectors, not the generation of
competent detectors.

1 INTRODUCTION

The biological immune system has been successful at
protecting the human body against a vast variety of
foreign pathogens (Tizard, 1995). A growing number of
computer scientists have carefull y studied the success of
this competent natural mechanism and proposed computer
immune models for solving various problems including
fault diagnosis, virus detection, and mortgage fraud
detection (Dasgupta, 1998; Kephart et al,1995).

Among these various areas, intrusion detection is a
vigorous research area where the employment of an
artificial immune system (AIS) has been examined
(Dasgupta, 1998; Kim and Bentley, 1999b; Hofmeyr,
1999; Hofmeyr and Forrest, 2000; Forrest and Hofmeyr,
2000). The main goal of intrusion detection is to detect
unauthorised use, misuse and abuse of computer systems
by both system insiders and external intruders. Currently
many network-based intrusion detection systems (IDS’s)
have been developed using diverse approaches (Mykerjee
et al, 1994). Nevertheless, there still remain unresolved
problems to build an effective network-based IDS (Kim
and Bentley, 1999a). As one approach of providing the
solutions of these problems, previous work (Kim and
Bentley, 1999a) identified a set of general requirements
for a successful network-based IDS and three design goals

to satisfy these requirements: being distributed, self-
organising and lightweight. In addition, Kim and Bentley
(1999a) introduced a number of remarkable features of
human immune systems that satisfy these three design
goals. It is anticipated that the adoption of these features
should help the construction of an effective network-
based IDS.

An overall artificial immune model for network
intrusion detection presented in (Kim and Bentley, 1999b)
consists of three different evolutionary stages: negative
selection, clonal selection, and gene library evolution.
This model is not the first attempt to develop an AIS for
network intrusion detection. Various approaches to build
an AIS have been attempted mainly by implementing only
a small subset of overall human immune mechanisms
(Dasgupta, 1998). This is because the nature of human
immune systems is very complicated and sophisticated
and thus it is very diff icult to implement perfect human
immune processes on a computer. However, as seen from
other immunology literature (Paul, 1993; Tizard, 1995),
an overall immune reaction is the carefully co-ordinated
result of numerous components such as cells, chemical
signals, enzyme, etc. Therefore, the omission of crucial
components in order to make the development of AIS
simpler and more applicable may detrimentally affect the
performance of an AIS. This implies that appropriate
artificial immune responses can be expected only if the
roles of crucial components of human immune systems
are correctly understood and they are implemented in the
right way.

In this paper, we continue our effort to understand the
roles of important components of artificial immune
systems especially for providing appropriate artificial
immune responses against network intrusions. Following
our previous work identifying three different evolutionary
stages: negative selection, clonal selection, and gene
library evolution, of AIS by extensive literature study
(Kim and Bentley, 1999a; 1999b), this paper focuses on
the investigation of the roles of first stage: negative
selection. With implementation details of this stage, this
work presents how and which aspects of negative



selection can contribute to the development of an
effective network-based IDS.

2 BACKGROUND

2.1 NEGATIVE SELECTION OF THE HUMAN
IMMUNE SYSTEM

An important feature of the human immune systems is its
ability to maintain diversity and generality. It is able to
detect a vast number of antigens with a smaller number of
antibodies. In order to make this possible, it is equipped
with several useful functions (Kim and Bentley, 1999a).
One such function is the development of mature
antibodies through the gene expression process. The
human immune system makes use of gene libraries in two
types of organs called the thymus and the bone marrow.
When a new antibody is generated, the gene segments of
different gene libraries are randomly selected and
concatenated in a random order, see figure 1. The main
idea of this gene expression mechanism is that a vast
number of new antibodies can be generated from new
combinations of gene segments in the gene libraries.
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Figure 1 Gene Expression Process

However, this mechanism introduces a critical problem.
The new antibody can bind not only to harmful antigens
but also to essential self cells. To help prevent such
serious damage, the human immune system employs
negative selection. This process eliminates immature
antibodies, which bind to self cells passing by the thymus
and the bone marrow. From newly generated antibodies,
only those which do not bind to any self cell are released
from the thymus and the bone marrow and distributed
throughout the whole human body to monitor other living
cells. Therefore, the negative selection stage of the human
immune system is important to assure that the generated
antibodies do not to attack self cells.

2.2 THE NEGATIVE SELECTION ALGORITHM

Forrest et al (1994; 1997) proposed and used a negative
selection algorithm for various anomaly detection
problems. This algorithm defines ‘self’ by building the
normal behaviour patterns of a monitored system. It
generates a number of random patterns that are compared

to each self pattern defined. If any randomly generated
pattern matches a self pattern, this pattern fails to become
a detector and thus it is removed. Otherwise, it becomes a
‘detector’ pattern and monitors subsequent profiled
patterns of the monitored system. During the monitoring
stage, if a ‘detector’ pattern matches any newly profiled
pattern, it is then considered that new anomaly must have
occurred in the monitored system.

This negative selection algorithm has been successfully
applied to detect computer viruses (Forrest et al., 1994),
tool breakage detection and time-series anomaly detection
(Dasgupta, 1998) and network intrusion detection
(Hofmeyr, 1999; Hofmeyr and Forrest, 2000; Forrest and
Hofmeyr, 2000). Besides these practical results,
D’haeseleer (1997) showed several advantages of
negative selection as a novel distributed anomaly
detection approach.

3 ALGORITHM OVERVIEW

This work used a negative selection algorithm to build an
anomaly detector. This was achieved by generating
detectors containing non-self patterns. The overview of
this algorithm is provided in figure 2 and 3. The negative
selection algorithm for network intrusion detection used
in this paper follows the algorithm of Forrest et al (1994,
1997), described in the previous section. ‘Self’ was built
by profili ng the activities of each single network
connection. The detail of self profili ng is described in the
next section.
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Figure 2 Detector Set Generation of
a Negative Selection Algorithm (Forrest et al, 1995)
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Figure 3 Non-Self Detection by a Detector Set

Even though this work follows the implementation details
of Forrest et al’s negative selection algorithm, there are
two implementation details different from Forrest et al
(1994, 1997). In the encoding of detectors, each gene of a
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detection rate. After taking into account practically
reasonable time to generate a whole data set, up to 1000
valid detectors were generated per run. All experiments
were run on a PC with AMD K6-2 400Mhz processor and
128M RAM.

Table 4 Time is an avarage time of single detector generation
and Trial is an average trial number to generate a single detector.

The average values are followed by the standard deviations in
parentheses.

System
Run

Time (Sec) Detector
Generation

Trial
1 58.71(26.85) 2.80(2.16)
2 67.29(28.88) 2.21(1.65)
3 73.75(33.72) 2.81(2.22)
4 78.48(39.86) 3.12(2.69)
5 69.64(26.62) 2.72(2.07)

Average 71.81(32.75) 2.63(2.14)

Table 3 shows the average time of single successful
detector generation and the average number of trials to
generate a valid detector. Compared to the result when the
matching threshold is four, which did not generate any
single detector after 24 hours, these results certainly look
more applicable. We monitored five different non-self
sets and one previously unseen self sets after every 100
detector generation and the monitor results of five
different runs are shown in table 4. The overall non-self
detection rate was very poor: less than 16%. In particular,
the non-self detection rate for the last intrusion set, which
was artificially generated by random strings, is extremely
low and its maximum average non-self detection rate
reaches only 2.28%. In addition, its average false positive
detection rate, which is self detection rate by a detector
set, shows 12.63% and this rate is not hugely different
from the other four average non-self detection rates

except intrusion 5. This implies that the collected self and
non-self sets perhaps have some overlapping patterns
because they showed quite similar detection rates. Thus
generated detector sets completely failed to distinguish
the hidden self and non-self patterns.

These poor results were anticipated. This is because the
matching threshold was set in order to obtain a reasonable
detector generation time. If, for example, we wanted a
more usable 80% non-self detection rate, 643775165
detectors would be required (this number is also obtained
from equation 3). The largest size of a generated detector
set, 1000, was much smaller than this number and this
caused such poor results. In addition, each run already
took about 20 hours2 to generate 1000 detectors. If we
wished to generate 643775165 detectors, it would require
12517850.4 hours, or about 1,429 years on the same
computer. According to Moore's Law, the processing
speed of computers doubles every 18 months. We would
have to wait around 35 years before the average
processing speed of computers became fast enough to
generate these detectors in an hour - and this is for just
15~20 minutes of a tiny subset of the network traff ic data.

8 ANALYSIS

In contrast to the promising results shown in Hofmeyr’s
negative selection algorithm for network intrusion
detection (Hofmeyr, 1999; Hofmeyr and Forrest, 2000),
the results of these experiments raise doubt whether this
algorithm should be used for network intrusion detection.
In order to answer this question, the negative selection
algorithm for network intrusion detection is analysed in
detail .

The main problem of the negative selection algorithm
is a severe scaling problem. Unlike previous work using

                                                          
2 Since it took, on average, 72 seconds to generate each detector, 72000
seconds were needed to produce 1000 detectors. 72000 seconds are 20
hours.

Table 3 The mean and variance values of intrusion and self detection rates when detector set size varies
The means values are followed by the variances in the parentheses.

Num. Of
Detectors

Intrusion1

(%)

Intrusion 2

(%)

Intrusion 3

(%)

Intrusion 4

(%)

Intrusion 5

(%)

Test Self Set

(%)

100 9.45(2.11) 10.11(8.50) 11.14(9.44) 10.62(4.03) 0.48(0.012) 7.89(17.31)

200 11.72(5.37) 11.58(13.71) 12.98(11.52) 12.89(10.43) 0.88(0.092) 9.47(36.70)

300 12.53(4.25) 11.89(13.24) 13.73(9.48) 13.63(9.15) 1(0.12) 10(29.08)

400 13.33(2.79) 12.32(11.30) 14.58(10.18) 14.36(6.87) 1.28(0.112) 10.53(31.16)

500 13.55(3.15) 12.74(13.63) 14.89(10.40) 14.51(7.35) 1.36(0.068) 11.05(25.62)

600 13.77(3.80) 13.16(11.91) 15.07(10.24) 14.65(8.12) 1.68(0.412) 11.58(29.78)

700 13.77(3.80) 13.16(11.91) 15.26(9.46) 14.65(8.12) 2.04(0.388) 11.58(29.78)

800 13.92(4.09) 13.26(11.27) 15.45(10.09) 14.80(8.22) 2.04(0.388) 11.58(29.78)

900 14.14(4.13) 13.47(10.47) 15.67(9.69) 15.02(8.52) 2.08(0.352) 12.63(46.40)

1000 14.21(4.32) 14.08(11.52) 15.90(8.71) 15.09(8.68) 2.28(0.312) 12.63(46.40)



the negative selection algorithm for anomaly detection,
here we apply a much larger “self” set to the negative
selection algorithm. The definition of larger “self” set was
essential to cover diverse types of network intrusions. For
instance, (Hofmeyr 1999; Hofmeyr and Forrest, 2000)
defines “self” as a set of normal pairwise connections
between computers. These include connections between
two computers in the LAN and between one computer in
the LAN and external computers. The connection between
computers is defined by “data-path-triple”: (the source IP
address, the destination IP address, the port called for this
connection). This self definition is chosen based on the
work by (Heberlein, et al, 1990). However, as other IDS
literature pointed out (Lee, 1999), this self definition is
very limited in order to detect various types of network
intrusions and it will certainly be impossible to detect
some intrusions that occur within a single normal
connection such as unauthorised access from a remote
machine.

However, as observed in section 4, when the self
definition widens, a binary string to encode a detector
lengthens. As the result of long length of binary detectors,
an appropriate number of detectors to gain an acceptable
false negative error becomes huge and thus requires an
unacceptably long computation time. Our previous
experiment results clearly show this problem.

It should be noted that Hofmeyr (1999) developed a
refined theory and multiple secondary representations and
these help to reduce the number of trials to generate
detectors on structured self as much as three orders
magnitude less. These methods made the distribution of a
self set clump and it resulted in the reduction of the
number of detector generation trials. However, the refined
theory and secondary representations add extra space and
computing time. More importantly, all of the suggested
secondary representations, such as pure permutation,
imperfect hashing and substring hashing, are matching
rules which check matching only on genotypes.
Unfortunately, matching rules that operate only at the
genotype level have a weakness to be applied for a
network intrusion detection problem. This deficiency can
be explained by unravelli ng the problem of r-contiguous
matching function.

We used the r-contiguous rule to check the match
between a given detector and antigen. The main purpose
of using it was in order to employ the formula to
approximate an appropriate number of detectors to gain a
certain non-self detection rate. However, the r-contiguous
matching rule is too simple to determine the matching
between rather complicated and high-dimensional
patterns. It has been already known that most rules to
represent intrusion signatures describe correlation among
significant network connection events and temporal co-
occurrences of events (Lee, 1999; Porras, 1998). Since the
r-contiguous bit matching only measures the contiguous
bits of genotypes of given two strings, it is hard to
guarantee that the r-contiguous bit matching can catch this
kind of correlation from given self and non-self patterns.
The wider range of self definition shown in section 4 is

also suggested in order to extract this type of correlation
from given self and non-self network traffic examples.

But, if any new matching function is employed,
D’haeseleer’s (1997) formula is no longer valid. There is
no way to tune the right number of detectors for negative
selection. Therefore, this diff iculty may force the negative
selection algorithm to adopt an arbitrary number of
detectors and this may cause an unexpectedly low
detection accuracy or ineff icient computation by
generating more than suff icient number of detectors. In
addition, D’haeseleer’s (1997) new detector generation
algorithms using a linear-time algorithm and a greedy
algorithm that guarantees a liner time of detector
generation is also not applicable when a different
matching function is used.

In summary, it is necessary to use a more sophisticated
matching function to determine the degree of correlation
among significant network connection events and
temporal co-occurrences of events. This requires deriving
a new way to tune an appropriate number of detectors,
which can be used for more sophisticated matching
function.

These drawbacks of the negative selection algorithm
made the AIS struggle to monitor vast amount of a
network self set despite its other important features3.
Consequently, the initial results of our experiments
motivated us to re-define the role of negative selection
stage within an overall network-based IDS and design a
more applicable negative selection algorithm, which
follows a newly defined role. As much of the other
immunology literature (Tizard, 1995) addresses that the
antigen detection powers of human antibodies rise from
the evolution of antibodies via a clonal selection stage.
While the negative selection algorithm allows the AIS to
be an invaluable anomaly detector, its infeasibili ty to be
applied on a real network environment is caused from
allocating a rather overambitious task to it. To be more
precise, the job of a negative selection stage should be
restricted to tackle a more modest task that is closer to the
role of negative selection of human immune system. That
is simply filtering the harmful antibodies rather than
generating competent ones. This view has been
corroborated by further work (Kim and Bentley, 2001)
which has recently shown how succesful the use of clonal
selection with a negative selection operator can be for this
type of problem.

                                                          
3 Hofmeyr and Forrest (2000)’s final system employs some other
extensions to support the operation of AIS under a real network
environment. Among them, affinity maturation and memory cell
generation follow the clonal selection concept and these provide
a kind of evolution of a detector set distributed on monitored
hosts. However, it still uses only the negative selection
algorithm to generate an initial detector set. Even though it may
conform to human immune systems more closely, this approach
could require excessive computation time to generate the initial
detector set, if a broader definition of self is used. In addition,
the usefulness of initial detectors is not proven before they are
distributed to other hosts. This may also cause a waste of other
computing resources.




