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Abstract. Evolutionary algorithms and cellular automata are two computational 
approaches to model complex adaptive systems. Here is described an immune system 
simulator that uses a cellular automaton to model the physical environment along with 
an evolutionary genetic algorithm to attain adaptation and selection. Agent genetic 
coding comprised within the genotype is a set of rules which expresses behavior. 
Moreover, an agent includes a collection of operators which use the genetic code in 
order to interact with other agents and physical sites. We also depict the system’s 
methodology as well as some of the obtained results. 
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1 Introduction 

 Immune systems, ecological systems as well as many others, are difficult to control or 
describe using traditional computational methods. Two main difficulties are ensued when 
modeling such a system.  The first problem arises from nonlinear interactions among system 
components. The second is issued when system’s agents can evolve, or change their 
specification, over time. Systems with these properties are sometimes called Complex 
Adaptive Systems (CAS), and comprise the following [34]: 

1. A collection of primitive components which will stand for the artificial entities, called 
‘agents.’ 

2. Interactions among agents and between agents and their environment. 
3. Unanticipated global properties often result from the interactions. 
4. Agents adapt their behavior to other agents and environmental constraints. 
5. System behavior evolves over time, as a consequence of the previous properties. 
 Creating a model of a CAS is complex for several reasons. First, both nonlinearities 

and the changing behavior of the system restrain predictive mathematical models. Second, to 
model detailed simulations, computational problems exist, since expressing every detail is 
virtually impossible. For example, the vertebrate immune system can express, at a given 
time, over 107 receptors. Modeling such level of detail is computationally overwhelming. 
Therefore, in every large complicated system, precise computational modeling is virtually 
impossible, not only due to the former issue, but also because nonlinear system are highly 
dependent on small inaccuracies. To solve this problem, removing all the possible detail 
from the model, retaining only the essential interactions is a possibility. The goal is then to 
develop models whose behavior is sound with respect to the details of the interactions, and 
which produces the desired behavior classes. The major drawback with this approach is that 
such models will very seldom make precise quantitative predictions. Then, what are the ex-
pectations of a model that does not correspond directly to any real system? Patterns of 
behavior can be studied, such as how agents interact and cooperate under given 
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circumstances, which can be difficult to obtain in real systems. On the other hand, it is much 
easier to run what-if experiments than to conduct real system experiments. With a well 
designed model, theoretical reasoning can be built about evolution dynamics, such as agent 
dependencies and interactions. 

 In silico simulations are becoming powerful research tools through the definition of 
biological system models, namely immune system models, since a better understanding of 
important immunological phenomena is required to withhold the rising threat provoked by 
the offspring of new viruses and the contagious property of others, such as the HIV-I [17, 
19].  

This paper presents an Artificial Immune System (AIS) constructed using an hybrid 
approach that supports the evolving of an heterogeneous population of agents over an 
artificial environment. A genetic approach is used to model the agents while the underlying 
layer is supported by an object oriented cellular automaton. Genotypes are formed by tagged 
rules which express an agent’s behavior, upon the interpretation of an operator. The immune 
responses comprised in the development of Acquired Immuno-Deficiency Syndrome 
(AIDS), provoked by HIV-I, are simulated using this AIS. 

 The structure of this paper is the following: in section 2 is presented some other 
work related with  this system, namely some work on artificial life and on artificial immune 
systems. Section 3 discusses the methodology of the proposed system. Section 4 starts with 
an overview of the human immune system and the HIV-I virus. Follows the model used in 
the artificial immune system simulation. This section ends with the results obtained with this 
simulator. Finally, section 5 outlines some conclusions and future work. 

2. Related Work 

2.1 Cellular Automata 

Although cellular automata (CA) have been used to model ecological systems, they offer 
a number of limitations when used per se.  

The first comes from the fact that each CA site is static in space and can only change its 
state according to a set of local rules, not being able to stand for an autonomous agent. 
Another problem is related to spatial and temporal scaling. While CA models usually assume 
each place to be sized for one individual, this assumption proves inappropriate when 
modeling several ecological environments. Nevertheless, cellular automata are adequate to 
model some classes of environments. In [27] is presented a CA model for the study of 
competition between grass species. [26] addresses the effects of fire and dispersal on spatial 
patterns in forests. Various aspects related to the use of CA in the study of emergent 
behavior and Artificial Life in general, are addressed in [28]. 

When used along with other computational approaches, the cellular automata model 
proves best. An example is the Object-Oriented Cellular Automaton (OOCA) [23]. The 
OOCA uses a conventional CA as its lowest layer, where a set of agents, or devices, may 
interact with its sites, modifying or using their current state to decide what action to perform. 
Moreover, communication through message-passing mechanisms, resulting from object 
independence, allows actions to be directly performed over other devices. Thus, an OOCA 
model is easily extendible through the definition of new devices that  possess different action 
rules. The modeling and simulation of biological systems which are prone to frequent 
changes, is one of the applications where the OOCA may be used to model the artificial 
environment. The Cellular Device Machine (CDM), presented in [5], is a system that 
comprises this approach. It includes a development environment that uses SLANG, a 



dedicated object-based programming language, to express space and time relationships in 
large complex adaptive systems. 

There are many examples of the use of the CA model that include genetic processing. In 
fact, all the systems described in the next subsection fall into this category.  

2.2 Artificial Life 

Genetic Algorithms (GA) are computational models of evolution which play a central 
role in many artificial life models. Fitness functions can be implicit, expressing the 
performance of an agent bounded by its environment, in the same way as natural selection. 
Moreover, genetic mechanisms can be easily modeled by way of genetic operators, and 
population dynamics can be simulated without complex mathematical models, as the set of 
simple local rules within a GA is usually sufficient. Consequently, it’s not surprising that 
most evolving Artificial Life applications use the GA as a basis [33]. Several examples are 
described next. 

A model for an ecological system simulation is proposed in Echo [30], [31], [32], [34]. 
In this system, a population of agents inhabits an heterogeneous lattice, where each site can 
be shared. The lattice serves also as a resources repository of different types. Agents can 
interact through mating, trading and fighting. A set of rules define the interaction among 
agents. Likewise, a set of attributes, corresponding  to its external “appearance”, is encoded 
in the string that forms its genotype. The fitness function is endogenous, and reproduction is 
made by cloning, with low mutation probability. Genetic material is exchanged between 
agents by mating. 

In [2] is addressed the simulation of bean and weevil  population, emphasizing  the role 
of contest and scramble competitions on its evolution. The system uses a diploid GA, coding 
all life parameters in a bit string. 

The evolution of a size-structured predator-prey community is studied in [24]. 
Organisms are grouped accordingly to their size: those of the smallest class are autotrophs; 
all the others are heterotrophs which can kill organisms of smaller classes. The attributes of 
an organism are coded on a bit string, and their surrounding environment consists of a lattice 
through which the organisms move in random directions depending on the organism size. 

Game theory is used to model evolution and interaction between species in food webs 
that result from explicit resource flow [25]. The fitness of a species - which constitutes its 
rate of reproduction - is proportional to the amount of accumulated energy. The latter is 
distributed among the organisms taking into account their score in the game. The main part 
of a genome is the strategy gene which defines an organism’s behavior. Genomes are subject 
to three kinds of mutation: single bit mutation, gene duplication and split mutation. While 
gene duplication increases agent memory, split mutation performs the opposite by dividing 
the genome  into two parts and randomly choosing one of them to be kept. 

Several other Artificial Life articles focus on other important issues, such as the impact 
of environmental topologies in artificial ecological systems. Topology impact in various 
kinds of communities formed by two interactive species is studied in [1]. Among the 
conclusions, are the role of an homogenous topology: fully connected graphs which promote 
rapid growth and higher population levels than local and random-graph topologies. It is sug-
gested that while local topologies, such as the nearest neighbor, offer special interaction 
restrictions, homogeneous ones offer no barrier for the individuals inhabiting the same place. 

A survey on the role of Genetic Algorithms in Artificial Life can be found in [33]. 

2.3 Artificial Immune Systems 

Some important work is being developed at the University of California at San Diego 
and at Santa-Fe Institute on Artificial Immune System models, including HIV-I simulation. 



 4

The previously referred CDM is the platform of research at the University of California 
at San Diego. In [4], is presented a Cellular-Device Machine simulation of the HIV infection 
in an artificial immune system, where the state machines which depict model behavior are 
described. A detailed analysis of the results is presented as concentration progresses for both 
immune system cell agents as well as for soluble substances. When compared to the data 
obtained in vivo, the results were surprisingly accurate. Observed responses include: 
systemic patterns, like the predominance of the macrophage reservoir; increased IL-2 
responsiveness on CD4 T cells; higher productions of both IL-1 and γ-IFN when matched 
with IL-2 and IL-5. 

 The hu-SCID (Severe Condition Immuno Deficiency) mouse lymph node 
simulation is publicly available at [23], and also uses the CDM. Its set of devices comprises 
T lymphocytes, macrophages, and stoma cells of the lymphatic tissue. The SCID mouse 
presents initial immuno-deficiency and xenografts of human cells are used to complement 
the immune system. It is observed the lymph node’s response to virus infection, and results 
have already been obtained for HIV-I. Some of them helped to conclude about the role of 
macrophage-tropic HIV-I in AIDS development [7]. 

 Another Artificial Immune System is being developed at the Santa-Fe Institute. It 
uses a set of differential equations whose parameters are adapted by a neural network. Like 
the human nervous system, the immune system performs pattern recognition tasks, where 
antigen presentation to the neural net induces system learning. Some issues of this work are 
presented in [29].  

3. Methodology 

 Our system addresses two different questions: how to model artificial independent 
individuals; and how to set up an artificial environment, able to provide feedback and 
support interaction. 

 Individuals are modeled by way of self-ruling devices, called agents, which can 
interact with the system as well as with other agents. Comprised within each, lies every 
mechanism required to express its internal behavior and to respond to system feedback. 
Since each agent is an independent and closed device, heterogeneous agent populations are 
directly considered. Communication can be either the result of direct agent interaction, or 
indirect, using the underlying environment as platform. Each entity has a particular set of 
rules which determines its external interaction mechanisms, or behavior. These rules are 
encoded within each gene of the agent’s chromosome. Hence, a gene is a partial state 
controller, where if-then or other type of rules may specify the behavior. Each gene can keep 
a different format rule, along with other data, such as the conditions under which the rule is 
to be applied. Therefore, the agent’s genotype is the fusion of all the current genes within the 
chromosome.  

 Behavior relies in a set of operators which decode specific genetic information and 
act accordingly. This operators use no explicit fitness function, instead they use environment 
and genetic information to guide the agent. Thus, global behavior is obtained through each 
local operator’s evaluation of the genetic rules comprised within each agent. Moreover, each 
agent can present the environment and other agents with a set of external features, which 
may be also encoded in the genetic code. On the other hand, the number of genes and 
operators is not fixed, allowing dynamics during the agent’s evolution. With this approach, 
each agent comes as an autonomous device, where its behavior is given through a function of 
the current set of rules, environment feedback and external information presented in other 
agents. Furthermore, genetic rules are mapped into a variable length chromosome, which can 
hold an arbitrary number of autonomous genes at each instant. This proves to be an attractive 
feature, especially in the modeling of immune systems where genetic code modification 
exists. 
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Fig. 1. Agent internal structure and inter-agent relationships. Particular  genes, included in the agent, 
may be visible to the surrounding environment, acting as receptors. Operators can interfere with other 
agents using  message-passing mechanisms, while receptors may serve as input devices. 

The agent population is distributed over a set of sites comprised in the lattice, which, 
along with the corresponding spatial relationships, can be expressed through an object-
oriented cellular automaton. This allows a detachment between each physical location and 
the lattice that comprises them. Moreover, agents and environment will also become 
separated. Since each lattice site can be different from all others, it enables the construction 
of heterogeneous site worlds. 

A further extension to the usual OOCA container location allows each site to be active 
rather than to simply hold data. This is accomplished by assigning a local processing 
function to each site, which is used to decide what local action to take upon its current 
information, providing a measure of locality within each site. Many agents can cohabit at the 
same site, and, since each location has a degree of activity, it can interact with the devices it 
currently comprises. This allows a twofold mechanism between devices and the artificial 
environment, providing the means to model environmental hazards or other features. 

 

Fig. 2. Each site is self-contained and can hold several agents simultaneously. The measure of locality 
is provided through a local processor which can interact with the agents comprised within (a); interact 
with the local resources (b); and interact with other independent sites (c). 

The outcome of binding both mechanisms above described resulted in an hybrid 
architecture which has, on the one hand, the advantages of outlining each entity through a 
genetic approach, and on the other, the usefulness of having an autonomous layer controlling 
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and providing mechanisms to simulate artificial world interactions. The genetic approach 
allows natural selection to be achieved through an endogenous fitness mechanism, emerging 
from the actions and interactions with the system as a whole. 

 
Artificial life simulations can be accomplished with this methodology through the 

definition of rules which depict behavior. Likewise, the creation of an heterogeneous 
artificial world is straightforward, for each site’s local ‘behavior’ can be expressed through 
the outlining of a local response function. 

The cellular automaton layer uses a synchronous update policy to express the 
simultaneous transitions that would exist in a biological environment if observed as a 
discrete system.  

Every cycle the population is prompted to interact with the system. A notification is then 
sent to every agent, which has the external result of mapping the genotype into the 
phenotype through its set of operators. First, recall that every entity is self-contained and 
each chromosome may vary in the number and type of genes. Therefore, behavior results as 
function of the device’s operators over the required genetic code included in the entity’s 
chromosome. With this approach, every entity can hold several operators along with 
variable-length chromosomes, as formerly stated.  

The sequence of events in each simulation cycle consists of the following: 
1. Every agent located at each site is prompted to evaluate the current environment 

along with the visible features of other agents. This will update the agent’s set of 
triggering conditions. 

2. Every operator executes the rules contained in the corresponding genes, using 
the current conditions’ state, set in the previous step. In this way, agent-agent 
and agent-environment interactions take place and external features are 
presented. 

3. The environment interacts with the agents upon site local data and specific rules. 
4. Environment-environment interaction. Site resources are modified upon local 

rules. 
5. ‘Dead’ agents are removed from the lattice. 

 
As an example, suppose the simulation of a system where two different agent classes 

were comprised (Fig. 3). Each entity moves conformably with a specific pattern. Crossover 
can be performed by entities of different sexes, and is followed by a gene mutation in the 
offspring. The artificial world is composed of two types of locations: L1, where substances 
spread to same class sites where its amount is scarcer; in L2 locations substances do not 
spread but dissolve locally at a certain rate.  

To simulate this artificial world one needs to define two different features: first, define 
the behavior of each one of the agents. This is  accomplished through the definition of the 
genetic rules and operators which hold its behavior. An agent is then able to autonomously 
perform the task subdued to its set of rules; second, define the underlying environment. This 
is done by creating the local rules for each independent site.  
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Fig. 3. An example of an artificial world. Each entity’s chromosome holds  the current behavior rules. 
Interaction among agents can take place directly using message-passing mechanisms, though the 
cellular automata’s locations enable indirect interaction  through resources. Any resource or agent 
within a site is bound to its local behavior rules, enabling resource local handling and environment-
agent communication. 

4. The Artificial Immune System 

4.1 Human Immunology 

The human body is repeatedly attacked by several infectious intruders present in the 
surrounding environment. Although these intruders can cause disease and eventually lead to 
death, just a few engender injury to the human body, since the immune system is able to deal 
with numerous microorganisms. The human immune system consists of a series of  layers, 
from the most external one, the skin, to the internal immune system. The latter comprises a 
large group of cells whose primary function is to eliminate infectious agents and to minimize 
the damage they might cause. 

 An immune system response involves, in the first place, recognizing a pathogen and 
secondly triggering a reaction in order to eliminate it. These reactions or immune responses 
fall into two categories: innate (or non-adaptive) and adaptive responses. The innate 
responses can successfully destroy many pathogens on first encounter using substances 
present in the blood stream such as complement. However, this is not enough to provide pro-
tection against all infections, as the rapid evolving of the pathogenic agents provides 
mechanisms able to evade the innate immune defense. To counteract, most vertebrates 
including man, are able to respond to any foreign substance even if it has never been faced  
before. The adaptive immune system involves two main features: the specificity, leading to a 
highly precise response for a particular pathogen; and the memory, causing a response 
improvement when dealing with the same infectious agent once again.  

After a pathogenic agent successfully breaks through the external defense layers, 
peptides called antigens make possible its recognition and later eradication. Each immune 
system cell is able to recognize a single specific antigen, and only the system as a whole can 
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detect thousands of it. Yet, upon antigen recognition, a rapid proliferation of these cells is 
induced to render an adequate immune response, the so called clonal selection. 

 Immune responses are produced by leukocytes, of which  there are several types. 
One group is the phagocyte cells, such as the macrophages. These cells bind to the foreign 
substances, internalize and then destroy them. Since they use non-specific antigen 
recognition they all produce innate responses and act as the first line of defense against 
infectious agents. Another group of leukocyte cells are the lymphocytes. Broadly, they fall 
into two categories: the T cells and the B cells. 

 The B cells, after recognizing a particular antigen, rapidly divide and differentiate 
into plasma cells, which can produce large amount of specific antibody. This substance binds 
to the target antigen that initially made the B cells active. Other B cells remain in a so called 
memory state for they retain immunological memory for a particular antigen. Memory cells 
provide the means for a lasting immunity to a pathogen, and the basis for vaccine deve-
lopment. Hence, the aim of vaccination is to modify a specific pathogen in such a way that 
they become innocuous without losing their antigen presentation. This is possible because 
antibodies and T cells recognize antigen and not the pathogenic organism as a whole. In 
other words, vaccination is a method that increases the immunological response against a 
pathogenic substance, by taking full advantage of the specificity and memory of the adaptive 
immune system. 

 The second lymphocyte group, the T cells, are involved in a larger set of activities. 
The T cells bearing the CD4 marker, also named T helpers, further influence the response of 
T and B cells and induce the immune system’s cytotoxic function. The CD8 T lymphocytes, 
also called T killer lymphocytes, eliminate cells that display antigen on their surface. This is 
accomplished by releasing cytotoxic substances that will rupture the cell’s cytoplasm leading 
to its destruction. 

When a pathogenic substance is internalized in a cell, it releases non-self peptides 
which are presented through specific proteins called the major histocompatibility complex 
(MHC). These molecules are divided into two classes, named MHC-I and MHC-II, being the 
former found in almost all types of the body cells. However, the latter appears only in cells 
related with the immune response. It is the presence of foreign peptides in the MHC that tells 
the immune system whether a cell is infected, since in a healthy cell all the peptides come 
from self proteins. The foreign peptides in this way presented can be then recognized by T 
cells, namely CD8 cells. 

The two classes of MHC molecules present peptides that arise from different places 
within the cell. Class I molecules bind and present proteins resulting from the continuous 
peptide processing and renewal that takes place inside a cell. These proteins are then carried 
to the cell’s surface, where they can be later recognized by CD8 cells. If the peptide 
presented is non-self, say from a virus infection, the CD8 cell releases cytotoxic elements 
that will destroy the host cell. This response is the only effective way to prevent the creation 
of more viruses by the infected cells and hence avoid the infection’s outspread. 

On the other hand, MHC class II have the ability to seize any peptides they find inside 
the cell and then deliver it to the cell’s surface, unlike class I molecules, which are limited to 
the non-nuclear compartment and can only bind to a specific peptide after a molecular 
reorganization. The peptide presented can only be recognized by T cells which have the CD4 
marker. Therefore, the identification of an infected cell through the MHC-II complex does 
not lead to the cell annihilation, rather, CD4 cells activate those which have displayed the 
foreign peptide. For example, a  CD4 cell can stimulate a macrophage to destroy the 
pathogenic elements contained in its structure. Also, the helper T cells after identifying a 
non-self peptide on the cell’s surface, produce cytokines, namely interleukins, involved in 
cell differentiation and division. 

 A large diversity of molecules is present at the onset and throughout the 
development of immune responses,  including complement, a key substance in the non-adap-
tive response, and other soluble mediators of immunity such as the cytokines and the 
antibody. 



 The cytokines hold  a wide variety of molecules which are bound in cell signaling 
and triggering during immune responses. Although there is high diversity in this group of 
molecules, they fall into a number of categories. 

 Interferons (IFN) are proteins that are characterized as strong immune regulators 
and growth factors. They fall into three classes: IFNα, the largest variant, produced by 
leukocytes; IFNβ made by fibroblast in response to viruses or nucleic acids and IFNγ. IFN is 
produced by activated T cells as the outcome of immune activation. Therefore, this substance 
leads to an increase of the antigen presenting cell (APC) function, and will further activate 
other T cells and macrophages as well. IFNγ  is responsible for regulating the APC function 
of many cell types, and an excessive production of this substance is a factor of the auto-
immunity induction [35].  

Interleukins are in majority molecules made by leukocytes which act on leukocytes, 
mainly T and B cells, represented by the abbreviations IL-1 through IL-11. 

 IL-1 or catabolin, is made by many cells, including B cells, but in its majority is 
produced by macrophages. It stimulates T and B cells providing a means to perform 
immuno-regulation, and induces inflammatory responses and fever. Virtually every cell in 
the human body can respond to this molecule. 

 Another interleukin, IL-2, previously known as T cell growth factor, is produced by 
T cells, mostly by CD4 cells. Its range of response is limited to T cells where it acts as a 
powerful growth factor and activator (e.g. enabling the T cells to release IFNγ). It also acts 
on B cells, inducing growth and differentiation, and further activates macrophages.  

 IL-6, also known as B cell differentiation factor, is produced by T and B cells, 
macrophages and other cells. It induces B cell differentiation, which will cause antibody-
forming cells (AFCs) to be produced. 

 Colony-stimulating factors (CSF) are involved in the division and differentiation of 
stem cells. The balance of these cells determines the proportions of the different cell types to 
be produced. Tumor necrosis factors (TNF) and transforming growth factors (TGF) are 
particularly  important in mediating inflammation and cytotoxic reactions. 

The interaction between T cells and the antigen-presenting cells (APCs) is the most 
important issue in immunological response. Only if CD4 cells are in sufficient number and 
are successfully triggered, the activation and subsequent response of B cells will follow. 
Otherwise no immunological response will take place. 

Both T and B cells are activated upon a successful bind to an antigen. B cells can bind 
to free antigen but generally need T cell’s help to become activated, whereas T cells can only 
bind to antigen presented in MHC molecules. After the interaction with the cell’s specific 
antigen, a number of internal biochemical reactions will modify the cell’s DNA. At the same 
time, the cell develops the ability to respond to specific cytokines, such as IL-2, by produc-
ing receptors on its surface. The response to those cytokines will cause cell proliferation and 
maturation.  

Clonal selection is an aftermath of the offspring of specific cells, able to recognize a 
specific antigen. In this procedure, called primary response, some cells develop into effectors 
or activated cells while some others become memory cells. The second  type of cells, the 
memory cells, will home to certain areas of the lymphoid tissues where they remain ready to 
respond to the same antigen if it comes across again – the secondary response. Therefore, the 
secondary response against a specific type of pathogen will prove to be more effective as it 
develops an immune response more rapidly. 

4.2 The HIV Virus 

Viruses are the smallest known organisms, and yet they constitute one of the greatest 
threats to human health. However, they hold a minimal design: a protein capsule, holding 
RNA or DNA, where the genetic code for the virus survival and offspring remains. Thus, the 



 10 

success of a virus depends on infecting and then modifying a cell’s genetic code in order to 
produce more viruses. 

Certain virus, such as the HIV-I, can have a peculiar property: it can take both active 
and latent forms. During the active phase, the virus interferes with the cell’s normal 
metabolism, causing the symptoms associated with the disease. When in the latent phase, the 
virus remains in quiescent state in the infected host cell, although the host is a symptom-free 
carrier of the disease. The latter state can endure for several years. 

The Human Immunodeficiency Virus (HIV-I), also known as Human T-Lymphotropic 
Virus-III (HTLV-III), usually enters the serum or blood stream within a foreign macrophage 
or helper T cell. These foreign cells are correctly recognized as non-self particles and are 
encapsulated by the body macrophages. The virus remains unaffected inside the carrier cell 
until it pierces the host cell’s membrane and waits for the antigen to be presented on the 
macrophage surface. When the host’s  helper cell binds to the antigen, the virus will infect it. 
This cell-type specific attack is unique among retrovirus. 

The HIV-I virus may also stay inside the original macrophage, where it may reproduce 
and bud into vacuoles which are kept within the macrophage’s cell membrane. In this 
manner, the virus will not be detected or recognized by the body defense mechanisms as it is 
still encapsulated within a body cell. This allows amplification of the virus without the body 
becoming aware of its presence.  

Fig. 4. HIV-I retrovirus replication cycle 

Usually, IL-1 is released by a macrophage that has seized a non-self particle. An 
infected macrophage demonstrates a reduction in chemotaxis and releases a substance that 
disables the activation message from getting to T cells, preventing the immune response 
cascade. The infected macrophage or helper cell will eventually home to a lymph node. Here 
the virus will proliferate, transfer and infect other macrophages and helper cells, and even-
tually collapse the lymph node, decreasing the total circulating lymphocytes. 

The normal infection cycle involves the cycling through the macrophage, positioning 
itself on the macrophage surface and infecting the helper cell. The last is entered through 
endocytosis and injected with the HIV provirus. The viral RNA is then converted by reverse 
transcription into DNA which then inserts itself into the original DNA of the host cell. Here 
it may remain latent for several years, or become active.  

The HIV attack is specific to the CD4 and related inducer cells. These cells normally 
compound 60-80% of the circulating T cells. After a successful infection, this number can be 
reduced to such a degree that it is impossible to detect their presence. As the active virus 

 



multiplies, it pierces the membrane of the CD4 cells, killing them. Infected  cells also secrete 
a toxin which is fatal to other non-infected CD4 cells, but which does not kill those already 
infected. 

The HIV virus not only reduces the cell population, but also modifies their function. 
Each CD4 cell usually produces about 1.000 clones when properly stimulated. An infected 
cell can produce as about 10. This loss of reproductive ability eventually collapses the helper 
T cell population except for the few HIV infected cells, following the disruption of the 
immune system. 

For several reasons the HIV virus is especially complex for the body to attack. First, 
the virus undergoes rapid enveloping protein mutations. This means that the antibodies 
produced to restrain the recognized antigen will try to bind to a virus that no longer exists. 
For the same reason, multiple strains of the virus will coexist within the body, each carrying 
a different protein coat, turning the virus  immune to the original antibody. Secondly, the 
HIV  virus will incorporate into its protein envelope, part of the host cell membrane as it 
ruptures and kills its host. This membrane makes it nearly impossible for the body defenses 
to recognize it as non-self. On the other hand, the virus blocks the binding of molecules to 
MHC-II in helper T cells. The MHC-II will not bind, immuno-reactions will decline and the 
level of IL-2 will fall, decreasing the global immune response level. This means that the 
helper T cells are not going to be activated against an antigen, which in turn stops the T cell 
immune system coordinator response. No helper, killer or B cell multiplication and no 
antibody production. The damage done to the immune system as a whole is permanent and 
irreversible. The effect of all this devastation removes all immune system protection from 
the body. Hence, any pathogenic invasions normally present within the body are no longer 
held in check. The body would be wide open to any external attack.  

It should be pointed out that in all cases the immune system will mount an immune 
system response. It usually even goes so far as to produce effective antibodies against the 
virus. Unfortunately, when the response comes it is already too late. 

4.3 AIS Simulation Model 

Artificial immune system simulations aim two broad areas: hypothesis generation and 
experiment prototyping. Since every complex system comprises a large parameter space and 
a variable set of emergent behaviors, a computer simulation provides guidance in order to 
identify the system’s dynamics from the basic immunologic data. Modeling hypothesis in 
disease processes and therapeutic intervention is a natural outcome. On the other hand, 
laboratory experiments are not able to uphold the parameter settings necessary to fully 
resolve the problem considered. Therefore, in parallel with the in vivo investigation, in silico 
experiments can be used to bound the parameters that will most likely yield interesting 
laboratory resultsband to classify the global behaviors found in the whole parameter domain. 

To simulate the immune system, specific agents and an adequate underlying 
environment were first identified and later modeled. Several behavior rules were then tested  
in order to obtain a set of results which related to those from a real system.  

The artificial immune system agents here considered may be separated into two main 
classes. The first one contains the immune system cells, namely four types of leukocytes: B 
lymphocytes, CD4 T lymphocytes, CD8 T lymphocytes and macrophages. The other class is 
a set of pathogenic agents, specifically  the HIV-I and two other theoretical viruses, RB and 
V*, whose function is to present the system with a series of situations, allowing the study of 
different immune system responses. The RB virus simply releases specific antigen, leaving 
the immune system cells unscathed, while V* infects TH cells and remains latent for a 
random period. When activated it kills its host cell.  

A subset of immune system soluble mediators is included in this model, 
comprehending Interleukin-1, Interleukin-2, Interleukin-6, γ-Interferon and cytotoxic agents 
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produced by T killer cells. Antibody and antigen is produced or secreted accordingly to the 
pathogen’s type.  
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Fig. 5. Initial genotypes and operator sets of the AIS agents 

Agent operators are guided by their host’s genotype. To model the artificial immune 
system, several types of genes were considered, each one including a specific part of genetic 
code: 
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Fig. 6. HIV infection mechanism. Virus infection is accomplished through the injection in the host cell 
of a pathogenic operator, which remains in latent state. Following activation, the operator modifies the 
genetic data of the cell using the virus’ essential behavior rules. The cell’s phenotype, which is the 
interpretation of the genetic data using the current operator set, will then include the virus’ behavior. 
Throughout this process, the cell remains unaware of the pathogenic agent. 

 



1. Reproduction or division genes. Contain the condition code, triggering probability 
and data about the new cell. 

2. Substance secretion genes. Keep the condition code along with the release 
probability for a specific soluble mediator. 

3. Receptor presentation genes. Contain the condition code and presentation factor of a 
specific receptor. 

The agent’s operators verify the state of the condition’s codes in the genes they use to 
perform their specific action. Healthy cells of the immune system start with a set of four 
operators:  

1. Reproduction operator. This operator creates new agents using the information 
within the Reproduction genes. 

2. Substance secretion operator. This operator releases the substances expressed in the 
Substance genes. 

3. Receptor operator. Presents proteins expressed in the Receptor genes to the 
environment 

4. Movement operator. Models cell movement, but as every agent rely on fluid 
movements to perform this action, this operator needs no director genetic code.  

 
Each pathogenic agent holds a specific Infection operator, which may append an extra 

operator to the cell when a virus agent infects a cell. In the specific case of the HIV-I, this 
operator, the Latent operator, remains idle until virus activation conditions apply. This model 
considers that HIV-I is activated upon an immune response of the host cell. Once activated, 
this operator modifies the host cell’s genotype. This is attained by adding two extra rules: 
HIV-I antigen secretion and HIV-I virion reproduction. The cell behavior will then comprise 
the virus’ rules, every time the genotype is interpreted. Additionally, the MHC-I receptor 
condition is set, once the foreign genetic material is detected. Initial operators and genotypes 
for every agent are shown in Fig. 5. In Figure 8 is the resultant behavior for each modeled 
agent. Finally, the model for HIV-I infection mechanisms is depicted in Fig. 6. 

The artificial environment is modeled using a toroidal manifold lattice, since the 
environments here considered are closed. The soluble mediators are spread using a con-
centration ratio basis, flowing to where they are less clustered. Substance dissolution results 
from decreasing each one a fixed value each simulation cycle.  

The computational application developed to support the artificial immune system 
simulator comprehends a set of features: 

• User-defined graphics can be constructed from all the substances and agents 
comprised in the simulation. Scale adjustment is possible. 

• Graphical data file output complies with CSV (Comma Separated Values) format, 
which can be used in common spreadsheets.  

• Simulation parameters can be adjusted, enabling dynamic settings. This includes 
environment settings and agent parameters. 

• System configuration and parameter settings may be stored and later retrieved. 
• A view of the environment is available where the agents comprised in the system can 

be observed. Moreover, a graphical notation is used in order to follow the agents’ 
status, enabling the trace of agent’s distribution patterns. 

• Substances and agents in any state can be added to the system through a syringe tool. 
• Events related with user interference are traced into a log, which can be stored, and 

later be used to identify specific system responses in previously obtained graphics. 
• Simulation temporal control, step and breakpoint conditions can be controlled by the 

user. 
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5. Results 

 Facing the simulator with a set of typical situations, a strong resemblance was found 
between the obtained results and those from a real immune systems, validated through 
several sources [3, 4, 7, 23, 35]. 

 The system was firstly submitted to a series of tests in order to verify the role of the 
modeled soluble mediators in the regulation of immune activities. The first test aimed 
Interleukin-1 and Interleukin-5, and the obtained results are in Fig. 7. In point A,  T helper 
cells were introduced in an otherwise empty system. The system was challenged with 
antigen upon the addition of RB virus, in instant B.  No immune response was observed, for 
T helper cells are not able to recognize antigen in free form, only MHC-II/antigen pairs, thus 
requiring the help of antigen presenting cells. APC cells, namely B cells, were  introduced in 
instant C. T helper response was still unobserved, since IL-1 is  required to attain a 
successful activation, and is produced by macrophages, which were not considered in this 
system. On the other hand, B cells only react in presence of IL-5, which in turn is secreted 
by activated T CD4 cells. To overcome this deadlock, IL-1 was injected in instant D, which 
led to the chain of the immune response. As an aftermath, the pathogenic agents were 
successfully eliminated. 
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Fig. 7. IL-1and IL-5 as regulators of the immune system. IL-1 was presented in instant D, 

resulting in IL-5 production. A typical immune response followed. The importance of cell 
cooperation and immune mediators was asserted. 

 

Fig. 8. AIS rule induced state transition diagrams, expressing device behavior. In  a, b, c, and d is 
shown behavior for T Killer, T helper cells, Macrophage and B cells. In e is shown HIV activity in the 
immune system. 



 The second experiment evaluated the role of IL-2, and was parted in two. In the first 
case-study (Fig. 9),  the system comprehended no cells at the onset. In A, a number of HIV 
infected macrophages were added. The addition of T killer cells followed in B, which led to 
a progressive destruction of the infected macrophage population. The second part of the test 
is depicted in Fig. 10, where the former process was followed, apart of Interleukin-2 being 
injected in instant C. IL-2 acted as a growth factor, increasing the number of T CD8 cells. 
The outcome: a more rapid destruction of infected macrophages. 
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The obtained response is shown in Fig. 15: the resultant T helper immune response and 
V* production are almost periodic and their pattern resembles the one found in predator-prey 
communities.  

After V* infection and later activation, its production is enabled and the infection 
spreads. This comes as consequence of TH cell response, since an increase in helper cell 
population will expand the V* number, resulting on a major infection in the TH 
compartment. On the other hand, V* production also leads to a decrease in TH population, 
which in turn causes a progressive diminishing in the V* population. However, the V* virus 
will continue to activate the immune system cells, including the T helper cells, leading to 
another cycle. 

The system is also used in a more serious simulation of the immune system [37], 
where the behavior and type of immune responses currently believed to be the result of 
cross regulation of CD4+ T lymphocyte populations are investigated. Many debates have 
arisen concerning the way the immune system is able to provide an immune response and 
tolerate self simultaneously. Classical theories try to explain these phenomena through the 
specificity of T cell receptors. Nevertheless, observations showed us that the specificity of 
the immune system cells can be quite degenerated, providing a different scope on the 
understanding of the immune system’s balance. 

We proposed and implemented in this simulation system a computational model for 
the dynamics of Th1 and Th2 CD4+ T lymphocyte sub-populations. The aim is the study of 
diversity and multiple responses. Using this model we are able to identify some 
experimental observations which are poorly understood. Some of the results showed us 
that the immune system’s balance can be related to a measure of locality, helping to 
explain the paradigm of concomitant responses and tolerance. The model enabled both 
TCR and MHC/peptide diversity considering different matching coefficients with the 
same antigen, which makes it suitable for simulations concerning in vitro and in vivo test 
protocols. Moreover, the ontogeny and the dynamics of Th lymphocytes appear to be one 
of the major regulatory mechanisms that upholds the tolerance and rejection of the 
immune system. We note that the establishment and maintenance of local equilibrium 
states, a process in which cytokines appear to have a decisive role, may help to understand 
one of the many important phenomena in the immune system. The proposed model gives 
interesting clues on the learning process the immune system is submitted during its 
ontogeny and on how a population that presents a very degenerated specificity can 
recognize both self and allogeneic antigen. These results somewhat contradict the more 
orthodox theories which put exclusive specificity as the main factor for immune regulation 
and immunity. 

6. Conclusions and Future Directions 

 Summarizing, the system presents an hybrid architecture that allows the modeling 
of systems involving multiple heterogeneous agents, physically distributed on a lattice made 
up of dissimilar elements. Agents are autonomous devices, containing a chromosome whose 
length may dynamically change, and a set of operators that express behavior based on a set 
of rules encapsulated throughout the gene structure. A collection of operators interpret the 
genetic rules and may also use external information, whether seized from external 
information presented by the environment or by other agents.  

 
Interaction is not limited to the usual agent-agent and agent-environment, since each 

environment site is an active entity. Thereupon, a site can also interact with the agents 
comprised within it. In addition, environment-environment interaction is made possible since 
the site lattice is an active network, where each location has a local processing engine. Thus, 
the system architecture consists of three main layers, with the physical lattice forming the 



lowest level. At the second level, the network of active sites keeps local data and uses the 
processing engine either to interact with the data or to modify it. Finally, at the highest level, 
is the multiple agent population. 

Artificial immune system simulators aim the domain of  hypothesis generation and 
experiment prototyping. This class of systems can help to design rational therapeutic 
intervention as well as understanding the process of disease. Moreover, the system’s large 
parameter set can be constructed upon what-if hypothesis, otherwise difficult to attain in 
laboratory. The resulting data, obtained from in silico simulations, can support clinical trials 
and diagnosis and further bound in vivo laboratory tests to a set of experiments which will 
probably lead to attractive outcomes. 

The system’s complex parameters may be optimized through a Evolutionary Genetic 
Algorithm, whose fitness function equates both the current output and the data from real 
immune systems. The resulting data the parameter chromosome holds, can be used in a 
twofold manner. On the one hand, it comprehends the settings for a suitable model, 
according to the given data. On the other, the resulting parameters can be used to formulate 
theoretical assumptions on how the settings induce the system’s behavior. 

Besides the HIV-I simulation, other viruses, can be simulated  with respect to the class 
of macroscopic responses here modeled. To attain this task, one first requires to identify and 
outline the pathogenic agent’s behavior, and then construct a set of rules which model the 
virus. 

The results showed how the complex and emergent behavior can be the result of the 
interactions among immune system agents. It was asserted that the model possesses antigen 
memory, one of the main features of a real immune system. The system was also submitted 
to HIV-I infection which developed into AIDS, with similar patterns to those observed in 
real conditions. Likewise, it was tested the effect of the soluble immune mediators in several 
events. 

 
Simulation of other artificial systems,  with heterogeneous physical environments and 

populations, are possible through the object-oriented support layer. This is accomplished by 
the redefinition of the specific genes and operators. Moreover, since twofold agent-
environment interaction is possible, it can be used to simulate physical phenomena effects. 
Such flexibility is already demonstrated in the simulation with success of the immune 
response of the CD4+ T Lymphocyte Sub-Populations as described in [37]. 

 
The underlying physical medium can also be modeled as a complex adaptive system, 

enabling the simulation of detailed environment features, such as lymph nodes.  
 
A possible extension to the current system, would aim one current drawback: the 

runtime redefinition of new models for both agents and environment. To offset this, a 
special-purpose language script containing agent rules and site local processing, among other 
settings, could be used, using a similar approach to that proposed in [5].  
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Fig. 16. Screen dump from an AIS simulation. Here we can see the environment lattice and 
the agents within it, where some of their partial state is shown. Some quantitative graphics 
are also available along with other information. 
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