Immune system for the detection of intrusions at HTTP protocol level

Efrain Torres Mejia
e-mail:e.torres@javeriana.edu.co
Department of Systems Engineering
Pontificia Javeriana University

Colombia, May 2003

Summary

This paper covers the development of a system for the detection and prevention of
intrusions at an HTTP protocol level, based on previous research work carried out on
computer immune systems and new technologies developed for HIDS and NIDS with the
aim of reducing the limitations of current IDS, increasing their precismmhraconsidering
certain approaches relating to the architecture, design, implementati@moaiiguration of

this type of system.

Key words:
IDS, IPS, HTTP, Elman, artificial neural networks, computer immune systeragdils.

1. Introduction

Intrusion detection systems are generally divided into two types: intrusiontidetec
systems operating at a network level (NIDS) and host level (HIDS). Tisex@ew third

type which has been termed an intrusion detection system at application level or
“Application Firewall”. Unfortunately, these systems continue to base thenatipa on

the recognition of signatures of previously known attacks, which are compared, irsthe ca
of NIDS, with the network traffic captured by an established sensor, or in tleeatas
application firewalls, with the network traffic directed towards a paréicskerver, generally

a Web server.

1.1 Limitations of current IDS

Unfortunately, current IDS base their performance on a static schdrich wakes them
highly inefficient systems when an attacker codifies the input data. The databagack
signatures suffers the same inconveniences as anti-virus systems:atahask is not
updated it is highly likely that the system will be attacked without it beingcted.
Additionally, the time that elapses between the discovery of a new attaglyliication

and its inclusion in the IDS is quite long, considering that the time that elagdesén the
publication of said attack and the improper use on the part of a possible attacker is ver
short.

Application firewalls generally work by covering the application that is t@phEected,

which makes them dependant on the application and the system or architecture on which
the application to be protected resides. This places a great limitation on their
implementation and can give rise to new security problems as it increases¢hefle

complexity of the application to be protected, and thus increases the possibilinethat
security problems will arise.

1.2 Behaviour analysis

Having observed the limitations of current IDS, certain research cesntoesd the world
have begun to analyse behaviour in order to determine the existence of anomalies whic
can be used to identify attacks. Initial behaviour analysis focused on the developime
statistical mechanisms to determine anomalies in the behaviour of usersrtitalpa
system. The great advantage of statistical mechanisms is that thegsiiyeadaptable to
new and changing conditions over time. But that adaptability is susceptible to psogre
programmed changes which enables the inclusion of intrusive activities, thusraythdir
detection [1].

There are two types of behaviour analysis: behaviour analysis for anomabtidatand
behaviour analysis for misuse detection. Anomaly detection can be defined dethpta
to detect intrusions by discovering significant deviations in normal behavioursiwhil
misuse detection corresponds to the current approach which uses signatureksf attac
previously introduced into the detection system, and compares them with activities i
system in order to detect an attack. In the last five years, studies suchasitfiggProgram
Behavior Profiles for Intrusion Detection” [1], have demonstrated the necessity
effectiveness of analysing abnormal program behaviour instead of the apptoeathtly
used.

1.3 Computer immune systems

The immune system of vertebrates is an excellent example of an intrusiaticletgystem
which eliminates many of the problems stated above. It is a multi-levedisysthich is
robust, dynamic, diverse and adaptable. This makes it an excellent basis for #iprot
of computer systems [2] [3] [7]. Additionally, it should be remembered that the immune
system is a system of protection by levels, where the pathogenic elemenpaliyntaces
the skin as the main initial barrier and later confronts the immune systelf) ithose
functional mechanism is based on the recognition of patterns by the lymphocytes. This
recognition does not depend on a permanent and static memory, but rather on an
evolutionary memory, which is inherited and therefore dynamic.

There exist studies in which these immunological concepts have been used t@oreate
intrusion detection model, where patterns of attack in system calls by geddlprocesses
are recognised in a dynamic manner [4] [5] [6] [7]. These studies demtettiee
feasibility of using the recognition of previously learned patterns in systdla to detect
pathogenic agents which represent intrusions to the system.

The problem is that in managing information at this level, we lose highly valuaiole a
specific information which is located at higher levels of abstraction. The optifauehfor

that, since it has not been detected as anomalous (intrusive) behaviour, the prdcess wil
already have infected the system. The same occurs with the systemtlguteyeloped in
behaviour analysis research projects and in existing application firewall8)élzttter
generally manage a special type of barrier which defines valid cteaistics for a
particular request, and if it manages to pass this filter, located at theappfh level, then
the identification process continues. From the immunological perspective, thas init
barrier serves as a “skin” for the system. If the request manages to géhigdsrrier, it

will come up against the immune system which, through an algorithm for detecting
previously learned patterns, will confirm whether this request corresponds t@horm
behaviour and as a result, can be processed. If this is not the case, then the request is
rejected and may optionally pass to an additional stage of classification.

1.4 Web and HTTP protocol

A typical organisation with an Internet presence, “protected” by a fireatbws HTTP or
HTTPS traffic to its Web servers. The World Wide Web (WWW) has become a public
servicepar excellenceln December 2002, the Spanish IT security firm S21SEC carried out
a study of the preceding five months (June-November). In this study, it walslisbied that

of 2,113 vulnerabilities published, 1,320 had their origin in Web applications [8]. This
represents 62.5% of reported vulnerabilities, a percentage that reflects not onlgtthe hi
number of security problems in the applications supporting or managing this type of
service, but also the high degree of risk to which organisations with an Internet-baged W
presence are exposed. A risk which has not really been evaluated, considering ¢haathe
majority of organisations are not aware of the limitations of protection meaharssch as
firewalls. The outlook becomes much more critical if we take into account theiggow
complexity of Web servers, which due to the great quantity of vulnerabilities invoived i
them and the applications they support, have become unauthorised points of access to any
organisation. For this reason, the system developed is aimed directly at theptidtoeol.

Currently, the HTTP protocol is in its 1.1. version. HTTP/1.0 specifies that a sirgie
connection provides a single HTTP message. HTTP/1.1 enables multiple nessaga
single TCP connection [9]. This difference does not affect intrusion detection at the
application level, and therefore the latest version is used as referencesfprdtocol.

2. IDS for HTTP protocol
2.1 Architecture

The great limitations of IDS at network level lie in the level of data actjoisiand the
technology used to obtain this data at this level. Its limitations include the ityatiili

capture and analyse all the traffic that should be monitored. This shortcomingfesises
the actual traffic analysers (sniffers), which are the systemosenghe system has to
manage network problems such as data fragmentation, which requires the use sdipgce
power in the manipulation of data, and therefore reduces the system’s perforamahite
probability of it detecting an attack. In addition, because the data is being taleet i

from the network level, the time factor becomes an anti-IDS technique, sinceediffe
attacks separated by time frames higher than those processable by the&tibe carried

out [10]. The situation is even more bleak if the data at this level is codified witdnén
IDS technique or simply encrypted (HTTPS), in which case the NIDS becomes ettypl
ineffective. Additionally, the sensor must be strategically positioned and mushdbéai
sum total of the traffic to be analysed, something which can be complicatedetwank
involving switches.

Taking into the account the above-mentioned drawbacks, the first problem consists in
defining an architecture which can eliminate the current limitations and adfeitional
advantages. In this way, the created architecture is based on a reverse proxy w
eliminates the problems directly related with the network level for degaiaition, and
allows the totality of the data directed towards the Web servers to be obtained,
automatically discriminating the other protocols, and if this data is encryted at this
point it can be decrypted and analysed before being redirected to the Web serverteprot
in the demilitarised zone (DMZ) or public service zone. Since the data manipulakes t
place at application level, there is no fragmentation of the data and it candtesbef
processed and analysed correctly and decisions can be taken which transfeystéine
into one which prevents intrusions.

What is more, having separated the analysis and detection level in a reversgvpgoxy
eliminate the inherent risk of the additional complexity created by an ajgicfirewall,
and we eliminate the dependence or compatibility problems of the IDS wipeceto the
protected Web servers and their system architectures. Basicalfp$hw&ystem becomes a
generic system for the protection of any type of Web server/application.

The use of a reverse proxy as a security mechanism is not new [11]. Some pesbipyats
use in that it forms a single point of entry to Web servers and, above all, becausedalsonc
internal IP addressing. This is completely incorrect, as hiding the irtaduzesses, as
performed by a NAT, is only functional and effective at a security level whstraquest
coming from an insecure network (Internet) is unable to reach protected hostiedent
with invalid IPs. In a reverse proxy, requests coming from the Internetyalweach the
protected Web servers, even if they have invalid IPs.

The use of a reverse proxy as a single point of entry is only efficieetfiests are
subjected to an analysis or treatment at a security level, and to date, sy
followed the same static and inefficient focus on signatures for the possibldideteic
intruders.

2.2 Multilevel detection system

In IT security, in the same way that 100% protection does not exist, there arelal gl
solutions to current security problems. For this reason, multiple levels of poidave
been created, where each protection level is assigned to carry out its owncstaestis.
This means that each level specialises in its work. In this way, the group ¢idased
protections and specialisations provide higher security “levels”, minimisiegmpact of
an existing security risk. The key to this perspective lies basically in progidisuitable
number of levels or layers, fully balancing or identifying the tasks that eaa must
fulfil (specialisation) [12].

However, academic research on this subject attempts to generate globahsdiot a wide
range of security problems. This is how, for example, a Stack Overflows aa¥ (s
treated in the same way and at the same level for detection as an SQLomjédthough
they both correspond to well-known security vulnerabilities, both work in a very different
way and therefore need different treatment. In an HTTP request that includ€dan S
injection code, it is possible to recognise this type of attack due to the fact ties a well
defined pattern. However, an SoF, due to its characteristics, can be codified in such a
manner that it is very difficult to identify [14]. Consequently, the process of idgngfan
SoF becomes a task equal to or exceeding that of detecting a polymorphic virus.

The system developed at the application level includes two levels. Theefinedt |
corresponds to a filter which, according to the immunological perspectivesftiret'skin”
of the system. This level is responsible for rejecting those requests winagth kxceeds a
predetermined normal limit. The second level receives the requests fromténefibrder
that they can be analysed and any type of attack in them identified.

2.2.1 Filtering level

The IDS must not be approached within any particular paradigm. It must benoafithe
characteristics which other systems have developed. In this way, taking atord¢he
immunological perspective, the multi-level system would have its skin ateafior
anomalous characteristics.

This level is a logical adaptation of the tasks carried out by an applicatiomdikethis type
of IDS monitors the length and basic composition of the requests specificadiynuetd
by a URL, which in theory significantly reduces the risk of a server beingoromised.
One of the most important characteristics of the filter is to limit the efzbe different
permitted HTTP data elements. These data elements include, for example:

Max. recommended size

(chars)
Attribute WWW.eeye.com www.flicks.com
SecurellS Titan
1.2.1
URL 1024 2047

GET Query 1024 2047

Accept-
Language 256
Accept-
Encoding 256
User-Agent 256

Host 256
Connection 256
Cookie 256
If-Modified-

Since 256
If-None-

Match 256

Authorisation 256
Table 1: Attributes vs. Recommended size.

There is no public evidence of any kind relating to the mechanism or bases used to
determine the values recommended by the manufacturers of these and other products.
However, due to the sizes of these limits, it can be understood that this protection
mechanism against stack overflows is directed at protecting the Wedr skrgctly but not
the applications developed on it (e.g. CGIs) [15].

What would happen if the Web server is susceptible to a buffer overflow in the host with
approximately 257 characters and, in addition, a developed CGI uses this same fieid, but
its development was left vulnerable to a buffer overflow of 60 characters? Innnepieng

the application firewall, the Web server would not be vulnerable to the first BoFK¢B
Overflow) but it would be vulnerable to the second.

It is very difficult to determine with exactitude the maximum recommendaddifor the
attributes, the difficulty lying in the fact that each Web server is uniquequmin its users
and unique in the type of applications it provides. Therefore, there is a need for a tool that
allows the appropriate values to be determined for each environment. Thiscabtcsil
reports, in real time, information such as the maximum size of each of the atgibnd its
percentage of use. With this data, it is much more feasible to determine, for exahgil
the size of the Host variable never exceeds 45 characters and thereforddtlve
recommended to set a maximum limit of 45 characters instead of the initiali256. |
addition, the percentage of use of the attributes enables us to know precisely tbsitgece
of permitting only those attributes (e.g. Methods) that are actually beied), lsaving aside
many other options which may contain security problems.

A security problem can occur in any of the attributes managed, regardldestype of
vulnerability (heap overflow, buffer overflow, format bug, etc.). Thereforaithtion of the
use of attributes should not be confined just to certain attributes. All the parsméteh
have their values contained in the URL must be filtered. With the help of statistalysis
of their use and length, it is possible to determine exactly which of the paresmsted to
be permitted for use.

The mechanism of limiting the lengths of parameters and their value®d that allows

the great majority of problems related to SoF to be neutralised. Neverthalesst
application firewalls provide a minimum of protection over these, at the level of the
applications supported on the supposedly protected Web servers. Additionally, in limiting
the lengths of the parameters in a request, based on statistical informegicomed in real

time and adjusted by the system administrator, this level identifies therpre®f common
chains that can identify an attempted attack, for example, “/etc/péisav/repair/sam._".

2.2.2 Detection level

One of the main objectives of this level is to be able to detect previously unknown attacks
In this way, an analysis of a sample of 3,000 security problems reported since 1994 in We
servers, CGls and other related applications [16] showed up, worryingly, theg¢theity
problems in HTTP protocol repeat themselves and basically correspond to:

1- Security problems that have been previously published but present themselves in the
same form in another application or Web server.

2- Variations of a previously published security problem.
3- Groups of various previously published security problems.

In conclusion, there are no radically new techniques in the arsenal of weapons for
exploiting security problems in Web servers, CGls, or any other applicatiorisngawith
HTTP protocol. However, they continue to appear.

Taking this into account, the detection of unknown attacks is based on making the name,
type of application or vulnerable parameter independent from the vulnerabiétiy its
Additionally, a mechanism that is able to generalise based on basic previeaisigd

attack patterns can generalise in order to detect new ones. This type of metisanis
offered by artificial neural networks.

In 1990, in his work “Finding Structure in Time” [17], Dr. Jeffrey L. Elman developed a
neural network based on previous work carried out by Jordan (1986). The main objective
was to find a solution with respect to the use of neural networks in environments where
time was a relevant aspect in addition to inputs. By taking time into consideration, an
architecture was developed which manages the context of the input patterns wayhes

pattern depends on the previous one, and so on. Accordingly, time is no longer represented
as an explicit part of the input, but rather it is now represented by the effect ihtihe
processing. This means giving the processing system dynamic pespidit answer to
temporary sequences, basically, a memory.

The architecture of an Elman artificial neural network allows the uskisfmhemory to be
considered for a variety of problems in which input processing is involved, these inputs
naturally being presented in a sequence. An Elman artificial neural nets/tnk principal
core of the detection level.

Input layer Hidden layer Output layer
Context layer
Figure 1: Elman artificial neural Network.

The decision about the type of neural network to be used was based on previous studies [1]
[18] [19], which demonstrated their effectiveness for the detection of attatdrpain a

collection of data (system calls) and their use in recognising pattetasguage [17]. We

need to remember that a communication protocol, such as HTTP/1.1 is an adopted language
in itself. Additionally, the EIman neural network manages a memory level égtnivhich

takes previous inputs into account when processing a new input.

The inputs come directly from the filtering level and are processed byltharEneural
network to identify an attack in the request.

2.3 Detection, identification and classification of attacks

Identifying an attack within a given classification is just as importaneven more
important, than detecting the attack itself. Being able to identify aclattathin a
classification provides additional information to the people responsible for sgouah
organisation, allowing them to make appropriate additional decisions accordimg tigpe
of attack occurring. Detection is implicit in the classification, and thishy the neural
network developed classifies attacks.

The main problem that presented itself was that of determining a systenssification

that would be effective, simple, clear and restricted by well defined linmteevising

multiple attack classifications presented in similar studies, we wWaesta establish that

the classifications used in the great majority of cases do not have weleddimits [2]

[21], which means that an attack can be included in two or more categories at the same
time. And considering that this classification corresponds to the output data afa ne
network, it can cause problems not only in the identification of attacks, but also in the net
training process. The great majority of research bases its ataggihs on the direct effects
of the vulnerability, which is completely erroneous. For example, a claagdit which
manages Denial of Service (DoS), Command Execution and BoF complicates the
identification of the latter, since, if it fails, it may generate a Dog.(everwrite the return
address with an arbitrary value), and if it is effective, it can execygesn commands or
execute its own more complex program specified in its shellcode. Maybe thisftype o
classification arises from the common classification that is givenrtaicevulnerabilities
when they are published on specialised mail lists.

Furthermore, considering the observations made previously (see 2.2.2) about thg securi
problems in HTTP protocol, by reanalysing the sample and logs with normt tiafs
feasible to create a clear, simple and effective classificationaifrig problems, based on
their cause and not their effects. This gives rise to the following claatign:

1. Cross Site Scripting (XSS).
2. Command Injection.

3. SQL Injection.

4. Stack Overflows (SoF).

5. PATH manipulation.

6. NORMAL

There is a special case, which corresponds to applications with vulnerab#itsample as,
for example,

Prueba.cgi?file=/etc/passwd

In reality, this application does not have a vulnerability in itself as the citenatics of the
inputs (file) are not being modified in order to modify the behaviour of the CGI. This
example CGl is in practice implemented in order to provide the file. It would be
counterproductive to train a neural network with this type of pattern, as we would be
associating a vulnerability with a filename. Problems of this kind are mahaigie
filtering level, where the occurrence of chains such as “/etc/passwolyithe presence of
an attack but not a type of associated vulnerability.

2.4 Design and training of the ElIman neural network

The generation of datasets was carried out using the samples of published vulnesabili
and databases supplied by scanners of available vulnerabilities.

The first approximation for the development of the neural network was that of nrapagi
inputs of variable dimensions for the training stage. This approximation involved many
difficulties and was not very effective, and therefore it was decided to use inputgiof s
dimensions in the training stage and to manage a sliding window for the presentation of
requests (URL) when it came to normal operation.

With regard to the presentation of the data, in each pattern, represented bgetehehain
of fixed size, each character was codified to a value between [0,1] transetg
character to its full ASCII value and normalising the vector by dividindheasdue by 255.
This type of codification impeded the learning process, due to the fact that thesvalu
generated by the codification operation were so close to each other that it fiadtdibr
the neural network to differentiate between them [22] (Figure 1).

Figure 2: Training codification ASCII/255.

Moreover, the datasets with this codification were generated on the basis of biasepa
obtained from the initial sample. Each base pattern was processed to geevdtaining
patterns including random alphabetical chains. This in turn generated trainasggtiat
which were very large and not very effective.

Subsequently, a codification was developed which allowed a pattern to be represented in
binary values. This codification was based on the binary representation of the ¥8@3|

of each character, converting the inputs to the neural network into a matrix halangta

of (8 x Length_window), which generates a very large neural network that isudifto

process and consumes a large amount of computer resources. Having said thatahe neur
network still behaved much better than the first models, as can be seen in Figure 2.

Figure 3: Training codification
8bits.

In order to reduce the size of the neural network, the inputs were processed atfa high
level, a value of 255 being assigned to each alphanumeric chain, leaving asicaprogr
extensions, if they exist, and special characters, which are in the end thodettratine
the presence of an attack. In this way, a URL is processed and condensed indo a bas
structure. For example:

Chain:
nombre.exe?paraml=..\..\archivo
Type of attack:
PATH manipulation
Codification:
(255)(46)(101)(120)(101)(63)(255)
(61) (46)(46)(92)(46)(46)(92)(255)

8-bit Matrix:
11111111
00101110
01100101

11111111
The decision to maintain the application extensions is due to the fact that many
vulnerabilities, whilst not depending on the application itself, do depend on the type of
application, which is specified by the extension in most cases. (e.g. manipulatios of t
PATH of library location in PHP). This codification made it possible to elimirth&e
dependency on program names and to focus training on generic patterns of atsk. |
reduced the size of the neural network, as well as the size of the trainingtdatalsieh are

now composed basically of codified generic patterns, thus achieving shortengréimie
(Figure 3).

Example of training dataset (without codification to 8 bits, ‘@’ = 255):

<Classification>;<pattern>
COMMAND_INJECTION;
@@ /@/@|
COMMAND_INJECTION;
@ /@/e|?@
COMMAND_INJECTION;

Figure 4: Training codification: 8-bit normalised and condensed.

3. Results

It is important to bear in mind that the tests undertaken were carried out using scanner
which perform real attacks and do not simply verify the existence of aditg CGI) that is
potentially vulnerable. This type of verification is not an attack; rather, iarsied out via a
normal request and is therefore identified as normal traffic. Assogi#tie existence of an
applicative with a vulnerability that it is commonly related with is the meause of false
positives. At present, the Elman neural network at detection level has obtained the
following results:

Detection Percentage:
94.3%
Identification Percentage:
90.1%
False Positives:
4.7%
False Negatives:
0.9%

The identification percentage increases as the quality of the datasets/espand the
datasets currently comprise approximately 740 basic patterns.

In order to determine the quality of the results, the same tests weredccaut on the NIDS

Snort version 2.0Kttp://www.snort.oryso that the resulting detection percentages could

be compared. It should be mentioned that although Snort is designed to detect attacks in
additional protocols other than HTTP, the attacks were only carried out using the same
tools (nikto v1.23, nessus v2.0.5) in the same conditions in which the tests on the prototype
were generated, in order to guarantee coherent and realistic resultstlbenemphasised

that the identification percentages are not compared because each IDS has its ow
classification system. The results for the Snort NIDS were the following:

Detection Percentage:
Nessus 59.4%
Nikto 74.9%

The following graph illustrates these results more clearly:

Figure 5: Detection Percentages
Prototype vs. Snort.

4. Conclusions
Research perspectives into IDS development must be restructured so thaetb&eetive

[9] Network Working Group, “Hypertext Transfer Protocol - HTTP/1.1", RFC
2616.http://www.w3.org/Protocols/rfc2616/rfc2616.html

[10] LOWNOISE, “Wmap v1.4 web scannettittp://pwp.007mundo.com/etorres1/

[11] Art Stricek, “A Reverse Proxy Is A Proxy By Any Other Name”, 2002,
http://www.sans.org/rr/web/reverse_proxy.php

[12] Dorene L. Kewley, John Lowry, “Observations on the effects of defense in depth on
adversary behavior in cyber warfare”, Proceedings of the 2001 IEEE, Workshop on
Information Assurance and Security, United States Military Academyst\Weint, NY,

June, 2001.

[13] Fermin J. Serna, “ Polymorphic Shellcodes vs. Application IDSs, Next Géorera
Security Technologiesittp://www.ngsec.com

[14] FozZy, « Advanced Shellcodes”, Defcon X, Las Vegas,USA, 2002.

[15] Eeye SECUREIIS v 1.2.1 USER MANUALttp://www.eeye.com

[16] Bugtraq, SecurityFocugitp://www.securityfocus.com

[17] Elman, Jeffrey. "Finding Structure in Time". Cognitive Science, 14. 179-211 1990.

[18] Lippman, R. Conningham, R. "Improving Intrusion Detection Performance Using
Keyword Selection and Neural Networks". MIT Lincoln Laboratory, 2000

[19] Draelos, T. Collins, Michael. "Experiments on Adaptive Techniques for Hose®a
Intrusion Detection” Sandia National Laboratory, SAND2001- 3065, 2001

[20] Kumar, S. and Spafford, E., "A Pattern Matching Model for Misuse Intrusion
Detection," Proceedings of the Seventeenth National Computer Security Gueepg.
11--21 (Oct. 1994)http://citeseer.nj.nec.com/kumar94pattern.html

[21] Husmousa, “Neural Net based Host/Application Anomaly detection
systems’http://www.securityfocus.com/archive/96/257986/2002-02-17/2002-02-23/1

[22] Farkas, Jennifer. “Document Classification and Recurrent Neural Netlydmkisistry
Canada, Centre for Information Technology Innovation.

6. Author

Efrain Torres is a student of Systems Engineering at the Pontificiaidagddniversity in
Bogoté4, Colombia. For the last nine years, he has been involved in the area ofififysec
mainly in the publication and exploitation of vulnerabilities in different systeans the
development of tools for infiltration tests and methodologies. He is one of the teamrof ma

contributors to the OSSTMM (Open Source Security Testing Methodology Manual —

ISECOM, http://isecom.oryy and is currently developing the subject of this paper as part of
his graduate thesis.

E-mail: e.torres@javeriana.edu.co
et@cyberspace.org

