
Immune system for the detection of intrusions at HTTP protocol level

Efraín Torres Mejía
e-mail: e.torres@javeriana.edu.co

Department of Systems Engineering
Pontificia Javeriana University

Colombia, May 2003

Summary

This paper covers the development of a system for the detection and prevention of
intrusions at an HTTP protocol level, based on previous research work carried out on
computer immune systems and new technologies developed for HIDS and NIDS with the
aim of reducing the limitations of current IDS, increasing their precision and reconsidering
certain approaches relating to the architecture, design, implementation and configuration of
this type of system.

Key words:
IDS, IPS, HTTP, Elman, artificial neural networks, computer immune systems, firewalls.

1. Introduction

Intrusion detection systems are generally divided into two types: intrusion detection
systems operating at a network level (NIDS) and host level (HIDS). There is a new third
type which has been termed an intrusion detection system at application level or
“Application Firewall”. Unfortunately, these systems continue to base their operation on
the recognition of signatures of previously known attacks, which are compared, in the case
of NIDS, with the network traffic captured by an established sensor, or in the case of
application firewalls, with the network traffic directed towards a particular server, generally
a Web server.

1.1 Limitations of current IDS

Unfortunately, current IDS base their performance on a static schema which makes them
highly inefficient systems when an attacker codifies the input data. The database of attack
signatures suffers the same inconveniences as anti-virus systems: if the database is not
updated it is highly likely that the system will be attacked without it being detected.
Additionally, the time that elapses between the discovery of a new attack, its publication
and its inclusion in the IDS is quite long, considering that the time that elapses between the
publication of said attack and the improper use on the part of a possible attacker is very
short.

Application firewalls generally work by covering the application that is to be protected,
which makes them dependant on the application and the system or architecture on which
the application to be protected resides. This places a great limitation on their
implementation and can give rise to new security problems as it increases the level of

complexity of the application to be protected, and thus increases the possibility that new
security problems will arise.

1.2 Behaviour analysis

Having observed the limitations of current IDS, certain research centres around the world
have begun to analyse behaviour in order to determine the existence of anomalies which
can be used to identify attacks. Initial behaviour analysis focused on the development of
statistical mechanisms to determine anomalies in the behaviour of users of a particular
system. The great advantage of statistical mechanisms is that they are easily adaptable to
new and changing conditions over time. But that adaptability is susceptible to progressive
programmed changes which enables the inclusion of intrusive activities, thus avoiding their
detection [1].

There are two types of behaviour analysis: behaviour analysis for anomaly detection and
behaviour analysis for misuse detection. Anomaly detection can be defined as the attempt
to detect intrusions by discovering significant deviations in normal behaviour, whilst
misuse detection corresponds to the current approach which uses signatures of attacks
previously introduced into the detection system, and compares them with activities in the
system in order to detect an attack. In the last five years, studies such as “Learning Program
Behavior Profiles for Intrusion Detection” [1], have demonstrated the necessity and
effectiveness of analysing abnormal program behaviour instead of the approach currently
used.

1.3 Computer immune systems

The immune system of vertebrates is an excellent example of an intrusion detection system
which eliminates many of the problems stated above. It is a multi-level system, which is
robust, dynamic, diverse and adaptable. This makes it an excellent basis for the protection
of computer systems [2] [3] [7]. Additionally, it should be remembered that the immune
system is a system of protection by levels, where the pathogenic element principally faces
the skin as the main initial barrier and later confronts the immune system itself, whose
functional mechanism is based on the recognition of patterns by the lymphocytes. This
recognition does not depend on a permanent and static memory, but rather on an
evolutionary memory, which is inherited and therefore dynamic.

There exist studies in which these immunological concepts have been used to create an
intrusion detection model, where patterns of attack in system calls by privileged processes
are recognised in a dynamic manner [4] [5] [6] [7]. These studies demonstrated the
feasibility of using the recognition of previously learned patterns in system calls to detect
pathogenic agents which represent intrusions to the system.

The problem is that in managing information at this level, we lose highly valuable and
specific information which is located at higher levels of abstraction. The optimum level for

that, since it has not been detected as anomalous (intrusive) behaviour, the process will
already have infected the system. The same occurs with the systems currently developed in
behaviour analysis research projects and in existing application firewalls, but the latter
generally manage a special type of barrier which defines valid characteristics for a
particular request, and if it manages to pass this filter, located at the application level, then
the identification process continues. From the immunological perspective, this initial
barrier serves as a “skin” for the system. If the request manages to get past this barrier, it
will come up against the immune system which, through an algorithm for detecting
previously learned patterns, will confirm whether this request corresponds to normal
behaviour and as a result, can be processed. If this is not the case, then the request is
rejected and may optionally pass to an additional stage of classification.

1.4 Web and HTTP protocol

A typical organisation with an Internet presence, “protected” by a firewall, allows HTTP or
HTTPS traffic to its Web servers. The World Wide Web (WWW) has become a public
service par excellence. In December 2002, the Spanish IT security firm S21SEC carried out
a study of the preceding five months (June-November). In this study, it was established that
of 2,113 vulnerabilities published, 1,320 had their origin in Web applications [8]. This
represents 62.5% of reported vulnerabilities, a percentage that reflects not only the high
number of security problems in the applications supporting or managing this type of
service, but also the high degree of risk to which organisations with an Internet-based Web
presence are exposed. A risk which has not really been evaluated, considering that the great
majority of organisations are not aware of the limitations of protection mechanisms such as
firewalls. The outlook becomes much more critical if we take into account the growing
complexity of Web servers, which due to the great quantity of vulnerabilities involved in
them and the applications they support, have become unauthorised points of access to any
organisation. For this reason, the system developed is aimed directly at the HTTP protocol.

Currently, the HTTP protocol is in its 1.1. version. HTTP/1.0 specifies that a single TCP
connection provides a single HTTP message. HTTP/1.1 enables multiple messages over a
single TCP connection [9]. This difference does not affect intrusion detection at the
application level, and therefore the latest version is used as reference for this protocol.

2. IDS for HTTP protocol

2.1 Architecture

The great limitations of IDS at network level lie in the level of data acquisition and the
technology used to obtain this data at this level. Its limitations include the inability to
capture and analyse all the traffic that should be monitored. This shortcoming arises from
the actual traffic analysers (sniffers), which are the system sensors. The system has to
manage network problems such as data fragmentation, which requires the use of processing
power in the manipulation of data, and therefore reduces the system’s performance and the
probability of it detecting an attack. In addition, because the data is being taken directly
from the network level, the time factor becomes an anti-IDS technique, since different
attacks separated by time frames higher than those processable by the NIDS can be carried

out [10]. The situation is even more bleak if the data at this level is codified with an anti-
IDS technique or simply encrypted (HTTPS), in which case the NIDS becomes completely
ineffective. Additionally, the sensor must be strategically positioned and must obtain the
sum total of the traffic to be analysed, something which can be complicated in a network
involving switches.

Taking into the account the above-mentioned drawbacks, the first problem consists in
defining an architecture which can eliminate the current limitations and offer additional
advantages. In this way, the created architecture is based on a reverse proxy which
eliminates the problems directly related with the network level for data acquisition, and
allows the totality of the data directed towards the Web servers to be obtained,
automatically discriminating the other protocols, and if this data is encrypted, then at this
point it can be decrypted and analysed before being redirected to the Web servers protected
in the demilitarised zone (DMZ) or public service zone. Since the data manipulation takes
place at application level, there is no fragmentation of the data and it can therefore be
processed and analysed correctly and decisions can be taken which transform the system
into one which prevents intrusions.

What is more, having separated the analysis and detection level in a reverse proxy, we
eliminate the inherent risk of the additional complexity created by an application firewall,
and we eliminate the dependence or compatibility problems of the IDS with respect to the
protected Web servers and their system architectures. Basically, the IDS system becomes a
generic system for the protection of any type of Web server/application.

The use of a reverse proxy as a security mechanism is not new [11]. Some people justify its
use in that it forms a single point of entry to Web servers and, above all, because it conceals
internal IP addressing. This is completely incorrect, as hiding the internal addresses, as
performed by a NAT, is only functional and effective at a security level when any request
coming from an insecure network (Internet) is unable to reach protected hosts identified
with invalid IPs. In a reverse proxy, requests coming from the Internet always reach the
protected Web servers, even if they have invalid IPs.

The use of a reverse proxy as a single point of entry is only efficient if requests are
subjected to an analysis or treatment at a security level, and to date, this has simply
followed the same static and inefficient focus on signatures for the possible detection of
intruders.

2.2 Multilevel detection system

In IT security, in the same way that 100% protection does not exist, there are no global
solutions to current security problems. For this reason, multiple levels of protection have
been created, where each protection level is assigned to carry out its own specific tasks.
This means that each level specialises in its work. In this way, the group of level-based
protections and specialisations provide higher security “levels”, minimising the impact of
an existing security risk. The key to this perspective lies basically in providing a suitable
number of levels or layers, fully balancing or identifying the tasks that each level must
fulfil (specialisation) [12].

However, academic research on this subject attempts to generate global solutions for a wide
range of security problems. This is how, for example, a Stack Overflows attack (SoF) is
treated in the same way and at the same level for detection as an SQL injection. Although
they both correspond to well-known security vulnerabilities, both work in a very different
way and therefore need different treatment. In an HTTP request that includes an SQL
injection code, it is possible to recognise this type of attack due to the fact that it has a well
defined pattern. However, an SoF, due to its characteristics, can be codified in such a
manner that it is very difficult to identify [14]. Consequently, the process of identifying an
SoF becomes a task equal to or exceeding that of detecting a polymorphic virus.

The system developed at the application level includes two levels. The first level
corresponds to a filter which, according to the immunological perspective, forms the “skin”
of the system. This level is responsible for rejecting those requests whose length exceeds a
predetermined normal limit. The second level receives the requests from the filter in order
that they can be analysed and any type of attack in them identified.

2.2.1 Filtering level

The IDS must not be approached within any particular paradigm. It must benefit from the
characteristics which other systems have developed. In this way, taking into account the
immunological perspective, the multi-level system would have its skin as a filter for
anomalous characteristics.

This level is a logical adaptation of the tasks carried out by an application firewall; this type
of IDS monitors the length and basic composition of the requests specifically determined
by a URL, which in theory significantly reduces the risk of a server being compromised.

One of the most important characteristics of the filter is to limit the size of the different
permitted HTTP data elements. These data elements include, for example:

Max. recommended size
(chars)

Attribute www.eeye.com www.flicks.com
SecureIIS Titan
1.2.1

URL 1024 2047
GET Query 1024 2047

Accept-
Language 256
Accept-
Encoding 256
User-Agent 256
Host 256
Connection 256
Cookie 256
If-Modified-
Since 256
If-None-
Match 256
Authorisation 256

Table 1: Attributes vs. Recommended size.

There is no public evidence of any kind relating to the mechanism or bases used to
determine the values recommended by the manufacturers of these and other products.
However, due to the sizes of these limits, it can be understood that this protection
mechanism against stack overflows is directed at protecting the Web server directly but not
the applications developed on it (e.g. CGIs) [15].

What would happen if the Web server is susceptible to a buffer overflow in the host with
approximately 257 characters and, in addition, a developed CGI uses this same field, but in
its development was left vulnerable to a buffer overflow of 60 characters? In implementing
the application firewall, the Web server would not be vulnerable to the first BoF (Buffer
Overflow) but it would be vulnerable to the second.

It is very difficult to determine with exactitude the maximum recommended limits for the
attributes, the difficulty lying in the fact that each Web server is unique. Unique in its users
and unique in the type of applications it provides. Therefore, there is a need for a tool that
allows the appropriate values to be determined for each environment. This statistical tool
reports, in real time, information such as the maximum size of each of the attributes and its
percentage of use. With this data, it is much more feasible to determine, for example, that
the size of the Host variable never exceeds 45 characters and therefore it would be
recommended to set a maximum limit of 45 characters instead of the initial 256. In
addition, the percentage of use of the attributes enables us to know precisely the necessity
of permitting only those attributes (e.g. Methods) that are actually being used, leaving aside
many other options which may contain security problems.

A security problem can occur in any of the attributes managed, regardless of the type of
vulnerability (heap overflow, buffer overflow, format bug, etc.). Therefore, limitation of the
use of attributes should not be confined just to certain attributes. All the parameters which
have their values contained in the URL must be filtered. With the help of statistical analysis
of their use and length, it is possible to determine exactly which of the parameters need to
be permitted for use.

The mechanism of limiting the lengths of parameters and their values is a tool that allows
the great majority of problems related to SoF to be neutralised. Nevertheless, current
application firewalls provide a minimum of protection over these, at the level of the
applications supported on the supposedly protected Web servers. Additionally, in limiting
the lengths of the parameters in a request, based on statistical information captured in real
time and adjusted by the system administrator, this level identifies the presence of common
chains that can identify an attempted attack, for example, “/etc/passwd” or “/repair/sam._”.

2.2.2 Detection level

One of the main objectives of this level is to be able to detect previously unknown attacks.
In this way, an analysis of a sample of 3,000 security problems reported since 1994 in Web
servers, CGIs and other related applications [16] showed up, worryingly, that the security
problems in HTTP protocol repeat themselves and basically correspond to:

1- Security problems that have been previously published but present themselves in the
same form in another application or Web server.

2- Variations of a previously published security problem.

3- Groups of various previously published security problems.

In conclusion, there are no radically new techniques in the arsenal of weapons for
exploiting security problems in Web servers, CGIs, or any other applications working with
HTTP protocol. However, they continue to appear.

Taking this into account, the detection of unknown attacks is based on making the name,
type of application or vulnerable parameter independent from the vulnerability itself.
Additionally, a mechanism that is able to generalise based on basic previously learned
attack patterns can generalise in order to detect new ones. This type of mechanism is
offered by artificial neural networks.

In 1990, in his work “Finding Structure in Time” [17], Dr. Jeffrey L. Elman developed a
neural network based on previous work carried out by Jordan (1986). The main objective
was to find a solution with respect to the use of neural networks in environments where
time was a relevant aspect in addition to inputs. By taking time into consideration, an
architecture was developed which manages the context of the input patterns. In this way, a
pattern depends on the previous one, and so on. Accordingly, time is no longer represented
as an explicit part of the input, but rather it is now represented by the effect it has in the
processing. This means giving the processing system dynamic properties that answer to
temporary sequences, basically, a memory.

The architecture of an Elman artificial neural network allows the use of this memory to be
considered for a variety of problems in which input processing is involved, these inputs
naturally being presented in a sequence. An Elman artificial neural network is the principal
core of the detection level.

Input layer Hidden layer Output layer

Context layer

Figure 1: Elman artificial neural Network.

The decision about the type of neural network to be used was based on previous studies [1]
[18] [19], which demonstrated their effectiveness for the detection of attack patterns in a
collection of data (system calls) and their use in recognising patterns in language [17]. We
need to remember that a communication protocol, such as HTTP/1.1 is an adopted language
in itself. Additionally, the Elman neural network manages a memory level (context) which
takes previous inputs into account when processing a new input.

The inputs come directly from the filtering level and are processed by the Elman neural
network to identify an attack in the request.

2.3 Detection, identification and classification of attacks

Identifying an attack within a given classification is just as important, or even more
important, than detecting the attack itself. Being able to identify an attack within a
classification provides additional information to the people responsible for security in an
organisation, allowing them to make appropriate additional decisions according to the type
of attack occurring. Detection is implicit in the classification, and this is why the neural
network developed classifies attacks.

The main problem that presented itself was that of determining a system of classification
that would be effective, simple, clear and restricted by well defined limits. In revising
multiple attack classifications presented in similar studies, we were able to establish that
the classifications used in the great majority of cases do not have well defined limits [2]
[21], which means that an attack can be included in two or more categories at the same
time. And considering that this classification corresponds to the output data of a neural
network, it can cause problems not only in the identification of attacks, but also in the net
training process. The great majority of research bases its classifications on the direct effects
of the vulnerability, which is completely erroneous. For example, a classification which
manages Denial of Service (DoS), Command Execution and BoF complicates the
identification of the latter, since, if it fails, it may generate a DoS (e.g. overwrite the return
address with an arbitrary value), and if it is effective, it can execute system commands or
execute its own more complex program specified in its shellcode. Maybe this type of
classification arises from the common classification that is given to certain vulnerabilities
when they are published on specialised mail lists.

Furthermore, considering the observations made previously (see 2.2.2) about the security
problems in HTTP protocol, by reanalysing the sample and logs with normal traffic, it is
feasible to create a clear, simple and effective classification of security problems, based on
their cause and not their effects. This gives rise to the following classification:

1. Cross Site Scripting (XSS).
2. Command Injection.
3. SQL Injection.
4. Stack Overflows (SoF).
5. PATH manipulation.
6. NORMAL

There is a special case, which corresponds to applications with vulnerabilities as simple as,
for example,

Prueba.cgi?file=/etc/passwd

In reality, this application does not have a vulnerability in itself as the characteristics of the
inputs (file) are not being modified in order to modify the behaviour of the CGI. This
example CGI is in practice implemented in order to provide the file. It would be
counterproductive to train a neural network with this type of pattern, as we would be
associating a vulnerability with a filename. Problems of this kind are managed at the
filtering level, where the occurrence of chains such as “/etc/passwd” imply the presence of
an attack but not a type of associated vulnerability.

2.4 Design and training of the Elman neural network

The generation of datasets was carried out using the samples of published vulnerabilities
and databases supplied by scanners of available vulnerabilities.

The first approximation for the development of the neural network was that of managing
inputs of variable dimensions for the training stage. This approximation involved many
difficulties and was not very effective, and therefore it was decided to use inputs of static
dimensions in the training stage and to manage a sliding window for the presentation of
requests (URL) when it came to normal operation.

With regard to the presentation of the data, in each pattern, represented by a character chain
of fixed size, each character was codified to a value between [0,1] translating each
character to its full ASCII value and normalising the vector by dividing each value by 255.
This type of codification impeded the learning process, due to the fact that the values
generated by the codification operation were so close to each other that it was difficult for
the neural network to differentiate between them [22] (Figure 1).

Figure 2: Training codification ASCII/255.

Moreover, the datasets with this codification were generated on the basis of base patterns
obtained from the initial sample. Each base pattern was processed to generate new training
patterns including random alphabetical chains. This in turn generated training datasets
which were very large and not very effective.

Subsequently, a codification was developed which allowed a pattern to be represented in
binary values. This codification was based on the binary representation of the ASCII value

of each character, converting the inputs to the neural network into a matrix having a length
of (8 x Length_window), which generates a very large neural network that is difficult to
process and consumes a large amount of computer resources. Having said that, the neural
network still behaved much better than the first models, as can be seen in Figure 2.

Figure 3: Training codification
8bits.

In order to reduce the size of the neural network, the inputs were processed at a higher
level, a value of 255 being assigned to each alphanumeric chain, leaving aside program
extensions, if they exist, and special characters, which are in the end those that determine
the presence of an attack. In this way, a URL is processed and condensed into a base
structure. For example:

Chain:
nombre.exe?param1=..\..\archivo

Type of attack:
PATH manipulation

Codification:
 (255)(46)(101)(120)(101)(63)(255)
 (61) (46)(46)(92)(46)(46)(92)(255)

8-bit Matrix:
11111111
00101110
01100101
 ….
11111111

The decision to maintain the application extensions is due to the fact that many
vulnerabilities, whilst not depending on the application itself, do depend on the type of
application, which is specified by the extension in most cases. (e.g. manipulation of the
PATH of library location in PHP). This codification made it possible to eliminate the
dependency on program names and to focus training on generic patterns of attack. It also
reduced the size of the neural network, as well as the size of the training datasets, which are
now composed basically of codified generic patterns, thus achieving shorter training time
(Figure 3).

Example of training dataset (without codification to 8 bits, ‘@’ = 255):

<Classification>;<pattern>
COMMAND_INJECTION;
/@;@ /@/@|
COMMAND_INJECTION;
;@ /@/@|?@
COMMAND_INJECTION;

Figure 4: Training codification: 8-bit normalised and condensed.

3. Results

It is important to bear in mind that the tests undertaken were carried out using scanners
which perform real attacks and do not simply verify the existence of a file (e.g. CGI) that is
potentially vulnerable. This type of verification is not an attack; rather, it is carried out via a
normal request and is therefore identified as normal traffic. Associating the existence of an
applicative with a vulnerability that it is commonly related with is the main cause of false
positives. At present, the Elman neural network at detection level has obtained the
following results:

Detection Percentage:
94.3%

Identification Percentage:
90.1%

False Positives:
4.7%

False Negatives:
0.9%

The identification percentage increases as the quality of the datasets improves, and the
datasets currently comprise approximately 740 basic patterns.

In order to determine the quality of the results, the same tests were carried out on the NIDS
Snort version 2.0 (http://www.snort.org) so that the resulting detection percentages could
be compared. It should be mentioned that although Snort is designed to detect attacks in
additional protocols other than HTTP, the attacks were only carried out using the same
tools (nikto v1.23, nessus v2.0.5) in the same conditions in which the tests on the prototype
were generated, in order to guarantee coherent and realistic results. It must be emphasised
that the identification percentages are not compared because each IDS has its own
classification system. The results for the Snort NIDS were the following:

Detection Percentage:
Nessus 59.4%
Nikto 74.9%

The following graph illustrates these results more clearly:

Figure 5: Detection Percentages
Prototype vs. Snort.

4. Conclusions
Research perspectives into IDS development must be restructured so that they are effective

[9] Network Working Group, “Hypertext Transfer Protocol - HTTP/1.1”, RFC
2616. http://www.w3.org/Protocols/rfc2616/rfc2616.html

[10] LoWNOISE, “Wmap v1.4 web scanner”, http://pwp.007mundo.com/etorres1/

[11] Art Stricek, “A Reverse Proxy Is A Proxy By Any Other Name”, 2002,
http://www.sans.org/rr/web/reverse_proxy.php

[12] Dorene L. Kewley, John Lowry, “Observations on the effects of defense in depth on
adversary behavior in cyber warfare”, Proceedings of the 2001 IEEE, Workshop on
Information Assurance and Security, United States Military Academy, West Point, NY,
June, 2001.

[13] Fermín J. Serna, “ Polymorphic Shellcodes vs. Application IDSs, Next Generation
Security Technologies, http://www.ngsec.com

[14] FozZy, « Advanced Shellcodes”, Defcon X, Las Vegas,USA, 2002.

[15] Eeye SECUREIIS v 1.2.1 USER MANUAL http://www.eeye.com

[16] Bugtraq, SecurityFocus, http://www.securityfocus.com

[17] Elman, Jeffrey. "Finding Structure in Time". Cognitive Science, 14. 179-211 1990.

[18] Lippman, R. Conningham, R. "Improving Intrusion Detection Performance Using
Keyword Selection and Neural Networks". MIT Lincoln Laboratory, 2000

[19] Draelos, T. Collins, Michael. "Experiments on Adaptive Techniques for Host-Based
Intrusion Detection" Sandia National Laboratory, SAND2001- 3065, 2001

[20] Kumar, S. and Spafford, E., "A Pattern Matching Model for Misuse Intrusion
Detection," Proceedings of the Seventeenth National Computer Security Conference, pp.
11--21 (Oct. 1994). http://citeseer.nj.nec.com/kumar94pattern.html

[21] Husmousa, “Neural Net based Host/Application Anomaly detection
systems” http://www.securityfocus.com/archive/96/257986/2002-02-17/2002-02-23/1

[22] Farkas, Jennifer. “Document Classification and Recurrent Neural Networks”, Industry
Canada, Centre for Information Technology Innovation.

6. Author

Efraín Torres is a student of Systems Engineering at the Pontificia Javeriana University in
Bogotá, Colombia. For the last nine years, he has been involved in the area of IT security,
mainly in the publication and exploitation of vulnerabilities in different systems, and the
development of tools for infiltration tests and methodologies. He is one of the team of main

contributors to the OSSTMM (Open Source Security Testing Methodology Manual –
ISECOM, http://isecom.org), and is currently developing the subject of this paper as part of
his graduate thesis.

E-mail: e.torres@javeriana.edu.co
et@cyberspace.org

