

Building an Artificial Immune Network for Decentralized Policy Negotiation
in a Communication Endsystem: OpenWebServer/iNexus Study

Junichi Suzuki (suzuki@yy.cs.keio.ac.jp)
Department of Computer Science, Graduate School of Science and Technology,

Keio University
Yokohama City, 223-8522, Japan

and

Yoshikazu Yamamoto (yama@ics.keio.ac.jp)
Department of Computer and Information Science, Faculty of Science and Technology,

Keio University
Yokohama City, 223-8522, Japan

Abstract
This paper describes the adaptability of communication
software through a biologically-inspired policy negotiation.
Many research efforts have developed adaptable systems
that allow various applications to meet their specific
requirements by configuring different design and
optimization policies. Navigating through many policies
manually, however, is tedious and error-prone. Our
negotiation engine, named iNexus, provides an autonomous
and decentralized policy management. iNexus is a
foundation part of OpenWebServer, which is both a web
server and an object-oriented framework for building
Internet versatile servers. Its design is inspired by the
natural immune system, particularly immune network, a truly
autonomous and decentralized system. iNexus manages a
wide range of policies, even inter-dependent instead of
orthogonal ones, and determines the most appropriate set
of policies for a given system condition by relaxing
constraints between them. The policy negotiation process
is performed through decentralized interactions among
policies without a single point of control, as the natural
immune system does. This paper discusses a
communication system can evolve continuously with the
biological concepts and mechanisms, adapting itself to
ever-changing environment.

Keywords
system adaptation, system evolution, artificial immune
system, policy management, policy negotiation, web server

1. Introduction
The communication software like web servers and
middleware has emerged as an important architectural
component in building the electronic commerce. However,
the design of communication software is still hard. It
contains both inherent complexities, such as fault detection
and recovery, and accidental complexities, such as the
continuous rediscovery and re -invention of key concepts
and components. It also has a remarkably rich set of
options, or policies, when designing, optimizing and
configuring a communication endsystem, e.g. web server.

No single policy fits different kinds of endsystems or their
workloads [1, 2]. Therefore, it is essential to develop open-
ended and adaptive framework that allows building
optimally configured network systems [3].

The existence of all the feasible policies ensures that
endsystems can be tailored to their users’ or applications’
requirements. Navigating through many design and
optimization policies, however, is tedious and error-prone.
Developers face the significant efforts of engineering an
endsystem from the ground up, resulting in ad-hoc
solutions. Such systems are often hard to maintain,
customize and tune, since much of the engineering tasks are
spent just for trying to get the system operational. It has
not been addressed in the literature at large, unfortunately,
how to navigate and coordinate policies consistently
throughout the system’s lifetime.

This paper describes our policy negotiation facility,
named iNexus, which manages and coordinates policies in
the autonomous manner. Its core engine is designed with
the metaphors in the natural immune system. iNexus
dynamically determines the most appropriate set of policies
from a policy pool for a given system condition by relaxing
constraints between policies. Our biologically-inspired
negotiation process is performed through decentralized
interactions among policies without a single point of
control, as the natural immune system does.

iNexus is deployed on a web server, called
OpenWebServer [4], so that it evolve the server in a
changing environment by re-configuring the system
components based on policies suited to the current system
condition. OpenWebServer is both an adaptive web server
and an object-oriented framework for developing an Internet
versatile server (see Figure 1). It abstracts various policies
for concurrency, I/O event dispatching, protocol parsing,
connection management, caching, logging and service
redundancy, etc.

This paper is organized as follows; Section 2 overviews
related work. Section 3 overviews the natural immune
system to explain why our work uses its metaphors. Section
4 describes the architecture and mechanism of iNexus policy
negotiation engine and its learning capability. Section 5
illustrates some empirical simulation results. In Sections 6

OpenWebServer

I/O Event Dispatcher

Request Handler

Protocol Manager

Protocol Msg. Parser

Cache/Redundancy Mgr. iNexus

iNet Framework

artificial immune network(s)

Web Server

Communication Protocol

OpenWebServer

I/O Event Dispatcher

Request Handler

Protocol Manager

Protocol Msg. Parser

Cache/Redundancy Mgr. iNexus

iNet Framework

artificial immune network(s)

Web Server

Communication Protocol

Figure 1: OpenWebServer/iNexus architecture

and 7, we conclude with a note on the current status of our
project and present future work.

2. Related Work
Software adaptation has been studied by various research
efforts such as reflection, open implementation, adaptive
programming, aspect-oriented programming, component
composition, and collaboration-based design, as well as
quality of service (QoS) policy management in the
networking community. In every approach, there is an entity
representing a policy. For example, it is called metaobject in
the context of reflection, concern in the principle of
separation of concern, component or plug-in in component
composition, and aspect in aspect-oriented programming.
Applications can adapt to a given requirement by adding,
customizing or replacing the entities.

Policies tend to become fine-grained in highly adaptable
systems; thereby the number of them increases. However,
the greater the number of policies, the more complexity and
difficulty in maintaining and coordinating them. Fine-
grained policies are not orthogonal with each other in many
cases, but have complex constraints. Most of the above
research efforts have not addressed the autonomous policy
negotiation, i.e. the process for inspecting the every
dependency between policies and then resolving co-
use/conflict constraints to produce an optimized
combination from feasible policies.

The simplest coordination strategy is writing a long
sequence of hard-written if/case statements in a program.
Another strategy is using the multiple inheritance in a class-
based object-oriented language. Both suffer from
combination explosion, and cost lots of labor for

configuring if/case statements or inheritance relationships.
They are also fragile for changing policy specifications.

Our work contributes to propose an autonomous policy
negotiation in a communication system. The negotiation
process is performed through decentralized interactions
among competitive and sometimes conflicting policies , so
that outcomes emerge with a context and dependencies
between policies. This “coordination without coordinator”
principle increases the flexibility and scalability of policy
management. iNexus allows any policy to be introduced,
altered and removed dynamically.

In terms of the network QoS research, our work is
categorized in the application-level QoS policy management
within a communication endsystem. We do not discuss QoS
enforcement. The level of our policy guarantee is currently
best-effort. In terms of reflection and aspect-oriented
programming, our work addresses the mechanisms of
autonomous metaobject composition and aspect weaving,
respectively.

3. Natural Immune System and Immune
Network

The structure and behavior of iNexus is designed with the
metaphors in the natural immune system, particularly
immune network. This section describes their primary
mechanism.

Immune System
The natural immune system is a subject of great research
interests because it provides powerful and flexible

epitope

antigen

antibody 2
(anti-idiotype to paratope)

antibody 3
(anti-idiotype to idiotope)

antibody 1

idiotope

paratope

suppression

stimulation

epitope

antigen

antibody 2
(anti-idiotype to paratope)

antibody 3
(anti-idiotype to idiotope)

antibody 1

idiotope

paratope

suppression

stimulation

suppression

stimulation

Figure 2: Interactions in the immune network. The immune
response to an antigen results in the formation of anti-
idiotype antibodies specific to the individual idiotope of
the primary antibody (antibody 1). These anti-idiotype
antibodies (antibody 2 and 3) in turn induce the formation
of anti-anti-idiotype antibodies.

information processing capability as a decentralized
intelligent system. It has some important computational
aspects such as self/non-self discrimination, learning,
memory, retrieval, pattern matching and emergent behavior.
The immune system provides an excellent model of adaptive
operation at the local level and of emergent behavior at the
global level. There exists several theories to explain
immunological phenomena and software models to simulate
various components in the immune system.

The basic components of the immune system are
macrophages, antibodies and lymphocytes. B-lymphocytes
are the cells maturing in the bone marrow. Roughly 107

distinct types of B-lymphocytes are contained in a human
body, each of which has a distinct molecular structure and
produces antibodies from its surface. The antibody
recognizes and eliminates a specific type of antigens, e.g.
viruses, which are the foreign substances invading a human
body. The key portion of antigen that is recognized by the
antibody is called epitope , which is the antigen determinant
(see Figure 1). Paratope is the portion of antibody that
corresponds to a specific type of antigens. Once an
antibody combines an antigen via their epitope and
paratope, the antibody start to eliminate the antigen. Recent
studies in immunology have clarified that each type of
antibody also has its own antigenic determinant, called an
idiotope . This means an antibody is recognized as an
antigen by another antibody.

Immune Network
Based on this fact, Jerne proposed the concept of the
immune network , or idiotypic network [5], which states
that antibodies and lymphocytes are not isolated, but they
are communicating with each other (Figure 1). The idiotope
of an antibody is recognized by another antibody as an
antigen. This network is formed on the basis of idiotope
recognition with the stimulation and suppression chains
among antibodies. Thus, the immune response eliminating
foreign antigens is offered by the entire immune system (or,
at least, more than one antibody) in a collective manner,
although the dominant role may be played by a single
antibody whose paratope fits best with the epitope of the
specific invading antigen. The immune network also helps
to keep the quantitative balance of antibodies. Through
stimulation/suppression interactions, the populations of

specific antibodies increase very rapidly following the
recognition of any foreign antigen and, after eliminating the
antigen, decrease again. Performed based on this self-
regulating mechanism, the immune response has an
emergent property through many local interactions.

The network structure is not fixed, but varies
continuously according to dynamic changes of
environment. This flexible self-organizing function is
realized mainly by incorporating newly generated cells
and/or removing useless ones. The new cells are generated
by both gene recombination in bone marrow and mutation
in the proliferation process of activated cells. Although
many new cells are generated every day, most of them have
no effect on the existing network and soon die away
without any stimulation. Due to such enormous loss, the
immune system maintains an appropriate set of cells so that
the system can adapt to environmental changes in the
piecemeal way.

4. iNexus Policy Negotiation Engine
This section presents the architecture and mechanism of
iNexus policy negotiation engine. They are modeled based
on the work by Farmer et al. [6, 7] and Ishiguro et al. [8].
iNexus is developed with iNet [25], which is a framework for
building artificial immune networks (see Figure 1). iNet has
been open for public use at Keio University since 1999, and
will be released for researchers simulating the immune
network mechanisms and exploring the design space of
artificial immune networks. It has served as an infrastructure
in our several research projects building biologically
inspired multi-agent systems, where artificial immune
networks optimize agents ’ strategies in a pursuit game and
Robocup soccer game simulation. The architecture and
design of iNet are described in [9].

iNexus Immune Network Model
iNexus specifies a system's current conditions as antigens,
e.g. the number of simultaneous network connections,
average size of requested files, types of operating systems,
the number of available processors, and supported types of
protocols (see Table 1). Policies are regarded as antibodies
(see Table 1), e.g. concurrency policies (thread-per-request,
active/passive thread pool, thread-per-connection, etc.) and
I/O event dispatching policies (synchronous and
asynchronous). Policies are linked with each other based on
the stimu lation and suppression relationships. This
relationship is weighted according to constraints between
policies.

Figure 3 shows the antibody structure. The paratope
represents a precondition under which a certain policy is
selected. The iNexus immune network begins immune
response when an antigen and an antibody’s paratope are
matched. The idiotope represents the references to other
stimulating antibodies with degrees of the stimuli (or

antibody

Precondition under
which this policy
is selected

policy

paratope

references to stimulating
antibodies and degrees of
the stimuli

idiotope

antibody

Precondition under
which this policy
is selected

policy

paratope

references to stimulating
antibodies and degrees of
the stimuli

idiotope

Figure 3: The antibody structure in iNexus immune

affinities). Sample immune network is depicted in Figure X.
iNexus selects a set of antibodies by calculating every
antibody’s current population through their interactions.

The goal of iNexus policy negotiation is that (1) it
controls the system’s configuration dynamically and
continuously in a changing environment, and (2) its
negotiation process is performed in the bottom-up, or
emergent, manner through the decentralized local
interactions between policies without any single point of
control, as the natural immune network does

Policy Negotiation
Figure 4 shows a generalized view of an antibody within in
an immune network. The i-th antibody stimulates M
antibodies and suppresses N antibodies. mji and mik denote
affinities between antibody j and i, and between antibody i
and k, respectively. The affinity means the degree of
stimulation or suppression. mi is an affinity between an
antigen and antibody i. All affinities are supposed to be
defined a priori in this paper (see also Section 6).

The antibody population is represented by the concept
of concentration. The concentration of the i-th antibody,
denoted by ai, is calculated with the following equations.

In the first equation, the first and second term of the right

hand side denote the stimulation and suppression from
other antibodies. mji and mik are positive values between 0
and 1. The third term, mi, is 1 when antibody i is stimulated
directly by an antigen, otherwise 0. The forth term, k ,
denotes the dissipation factor representing the antibody’s
natural death. This value is 0.1. The initial concentration
value for every antibody, i.e. ai(0), is 0.01. The second
equation is the function that is used to squash the
parameter Ai(t), calculated by the first equation, between 0
and 1.

Every antibody’s concentration is calculated 30 times
repeatedly. If no antibody exceeds the predefined threshold
(0.7) during the 30 calculation steps, the antibody of the
highest concentration is selected, i.e. winner-tales-all
strategy. If an antibody’s concentration exceeds the
threshold, an antibody is selected based on the probability
proportional to the current concentrations, i.e. roulette-
wheel selection strategy. An antibody whose concentration
is below 0.1 is never selected.

System Adaptation through Learning

In the previous iNexus immune network, the
stimulation/suppression relationships are fixed with static
affinity values [3]. This means the policy negotiation
process is exactly performed as an immune network
designer expected at the design time. However, this network
does not provide a true dynamic feature described in
Section 3. Defining static affinity values is time-consuming
task. We have chose a conservative strategy for building an
artificial immune network in traditional versions of iNexus,
because the “trial and error”-style negotiation can result in
fatal errors due to delivering a disallowed combination of
policies.

For OpenWebServer to evolve effectively in an ever-
changing environment, iNexus can re-arrange the immune
network structure at run-time by changing affinity values.

They are modified with the reword and penalty
reinforcement signals as shown in the equation 3 and 4,
either when concentrations of two arbitrary antibodies
exceed the predefined threshold (0.7) during the 30
calculation steps described in the previous section, or when
one or more antigens stimulate two antibodies
simultaneously. This means iNexus immune network learns
from results of its own behaviors. Note that this learning
mechanism can even work under the situation where the
immune network is not structured, i.e. the idiotope of every
antibody is initially blank. We expect iNexus to provide the
emergence of the knowledge of policy combination.

paratope policy

Antibody i

5. Biologically-inspired Policy Negotiation in
OpenWebServer/iNexus

This section presents policies supported in
OpenWebServer/iNexus and describes our policy
negotiation mechanism augmented by an artificial immune
network. Then, we illustrates some empirical simulation
results.

OpenWebServer Policies
OpenWebServer/iNexus supports the policies listed in
Table 1.
We can produce high-throughput, highly available, fault
tolerant or minimum footprint servers by tuning the
combination of these policies dynamically or statically [10].

The key determinants of web server throughput are
concurrency, I/O event dispatching, and file access policies.
For example, a single-threaded reactive server 1 [11] is
efficient when (1) it runs on a uni-processor platform, (2) the
average size of requested files is relatively small, and (3) the
hit rate from simultaneous connections is relatively low. As
the hit rate increases, however, the multiple thread
strategies such as thread-per-request, thread pool and
thread-per-connection are better choices only if the
underlying operating system supports threads. They can
scale well in a multi-processor platform. A constraint of
using the thread-per-connection policy is that the server
operates the HTTP version 1.1. As the size of requested
files grows, the asynchronous I/O event dispatching 2
outperforms the synchronous concurrency models using
BSD standard socket functions. A restriction of using

1 Typically implemented by calling select() for simultaneous

connections in a polling loop.
2 e.g., Windows NT provides asynchronous I/O system calls such

as WSA*() and TransmitFile(), though it can be simulated
with user-level library.

asynchronous I/O is that all the operating systems do not
support it. A thread pool can be designed in the active or
passive manner. A passive thread pool implemented with a
kernel-level asynchronous I/O and simultaneous
accept() calls 3 is much more efficient than other pools,
though it is not a portable solution.

Figure 5 shows how flexible nature of the
OpenWebServer/iNexus enables it to adapt from its baseline
performance to stable high-throughput performance. It
demonstrates it is possible to improve server performance
through superior server design. A flexible server framework
like OpenWebServer need necessarily not perform poorly,
while a hard-coded server can provide excellent
performance. We achieved this performance through
systematic benchmarking of different configurations of
OpenWebServer under different server load conditions. We
then selected the combination of features that yielded the
best overall performance. Our benchmark is conducted with
WebStone 2.5, running Sun’s Java 1.2 VM on a Windows
NT Server 4.0 SP5 (400Mhz 256 MB RAM) with idle 10Mbps
Ethernet connection.

iNexus Policy Negotiation
iNexus provides OpenWebServer an autonomous policy
negotiation continuously that provides an optimized
combination of policies as described in the previous
section. We built an artificial immune network incorporating
11 policies listed in Table 1. It defines 39
stimulation/suppression relationships.

Figure 4 shows a simple subset of our immune network.
This network is used to determine the best-suited
concurrency policy according to a current system
condition. It contains four antibodies representing three
kinds of policies; single-threaded reactive, thread pool and

3 Multiple idle threads can call accept() to a single socket with

this mechanism.

Paratope major ID Paratope minor ID Policy major ID Policy minor ID

FILE_SIZE L, M, S CONCURRENCY REACTIVE

NO_OF_CONNECTION M, A, F THREAD_PER_REQUEST

NO_OF_CPU M, S ACTIVE_THREAD_POOL

OS_THREAD_SUPPORT T, F PASSIVE_THREAD_POOL

OS_ASYNC_IO_SUPPORT T, F THREAD_PER_CONNECTION

AVAILABLE_THREADS M, A, F IO SYNCH

SUPPORTED_PROTOCOL HTTP10, HTTP11 ASYNCH

 CACHE LRU

 FIFO

 PROTOCOL HTTP10

 HTTP11

Table 1: A list of supported kinds of paratope and policies

thread-per-connection. Antibody 1 represents that the
single-threaded reactive policy is activated when the
average of requested files is relatively small. However, the
thread pool policy is activated if the number of HTTP
simultaneous connections grows, because antibody 1
stimulates antibody 3. Inversely, the reactive policy is
suppressed by the thread pool policy, if the server has to
handle many connections even when the average file size is
small.
Now, suppose that OpenWebServer (1) transfers relatively
small size of files, (2) handles relatively many connections,
and (3) supports the HTTP version 1.1. In this situation,
these three antigens stimulate antibodies 1, 2 and 4
simultaneously. Then, the populations of the antibodies
increase. However, each population varies through the
stimulating/suppres sing interactions indicated by arrows
between antibodies. As a result, the population of the
antibody 2, i.e. thread-per-connection, would increase, and
then it would be selected by the immune network. In the
case where OpenWebServer (1) transfers relatively small
size of files, (2) does not have to handle many connections,
and (3) supports the HTTP version 1.1, antibody 1, i.e. the
reactive policy, would be selected in the same way.

Figure 5 shows a continuous performance transition of
OpenWebServer/iNexus using an artificial immune network.
It receives HTTP requests from 30 simultaneous
connections during 30 minutes, and then from 60
connections after that. In this change of system condition,
OpenWebServer/iNexus dynamically re-configures the
concurrency policy from single -threaded reactive to thread
pool. This autonomous policy decision allows the server to
increase its throughput from 30% to 90%.

6. Future Work
This paper focuses on the policy coordination of a critical
determinant to the HTTP server performance: concurrency.
We are testing our artificial immune network with more
complex experiments using greater number of antibodies.
Our latest immune network includes new 12 policies
regarding sever redundancy, application-level service

support (e.g. CGI, Servlet and Java Server Pages), logging,
and protocol pipeline-parsing.

As for a mathematical model to simulate the phenomena
of the natural immune network, there exist several models
such as liner networks, cyclic networks, Cayley-tree-like
network and generalized shape-space model, which are
proposed by theoretical immunologists [12]. Our
coordination facility uses a cyclic network model proposed
by Farmer et al. [17, 18]. We plan to evaluate other network
models in more detail. Also, we plan to incorporate some
additional immunological concept, e.g. tolerance and
immune memory.

7. Conclusion
This paper describes our policy negotiation facility for
communication software augmented by an artificial immune
network. It defines each policy as an antibody, and selects
the most appropriate set of policies through the
decentralized interactions among antibodies. We believe
our work provides a blue print showing an autonomous and

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

0 5 10 15 20 25 30 35 40 45 50

S
er

ve
r

th
ro

ug
hp

ut
 (

M
bi

t/s
ec

)

Simultaneous connections

OpenWebServer/iNexus optimized

OpenWebServer default configuration

Figure 5: Comparative performance for OpenWebServer

Antibody 3

NoOfConn
Few Reactive

FileSize
Small Reactive

Antibody 1

Protocol
HTTP11 TPConn

Antibody 2

NoOfConn
Many TPool

Antibody 4

stimulation suppression

Antibody 3

NoOfConn
Few

NoOfConn
Few ReactiveReactive

FileSize
Small

FileSize
Small ReactiveReactive

Antibody 1

Protocol
HTTP11
Protocol
HTTP11 TPConnTPConn

Antibody 2

NoOfConn
Many

NoOfConn
Many TPoolTPool

Antibody 4

stimulation suppression

Figure 4: A sample immune network

0

2

4

6

8

10

0 10 20 30 40 50 60

S
er

ve
r

th
ro

ug
hp

ut
 (

M
bi

t/s
ec

)

time (minutes)

Server throughput

Figure 5: OpenWebServer/iNexus performance

decentralized coordination mechanism as a next logical
extension to existing adaptive and QoS-enabled systems.

8. References
[1] J. C. Hu, S. Mungee and D. C. Schmidt. Principles for

Developing and Measuring High-Performance Web
Servers over ATM”. In Proceedings of
INFOCOMM’98, 1998.

[2] J. Suzuki and Y. Yamamoto. Building an Adaptive Web
Server with a Meta-architecture: AISF approach . In
Proceedings of SPA’98, March 1998.

[3] J. Suzuki and Y. Yamamoto. Decentralized Policy
Coordination Facility in OpenWebServer. In
Proceedings of SPA’00, March 2000.

[4] J. Suzuki and Y. Yamamoto, OpenWebServer: An
Adaptive Web Server using Software Patterns. In IEEE
Communications, Vol. 37, No. 4, April 1999.

[5] N. K. Jerne, The Immune System, Scientific American,
Vol. 229, No. 1, pp. 52-60, 1973.

[6] J. D. Farmer, N. H. Packard and A. S.Perelson, The
Immune System, Adaptation, and Machine Learning,
Physica, D 22, 184/204, 1986.

[7] J. D. Farmer, S. A. Kauman and N. H. Packard, Adaptive
Dynamic Networks as Models for the Immune System
and Autocatalytic Sets, Technical Report LA -UR-86-
3287, LosAlamos National Laboratory, 1986.

[8] A. Ishiguro, T. Kondo, Y. Watanabe and Y. Uchikawa,
An Immunological Approach to Behavior Arbitration
for Autonomous Mobile Robots, In Proceedings of
International Symposium on Artificial Life and
Robotics , 132/137, 1996.

[9] J. Suzuki and Y. Yamamoto, iNet: An Extensible
Framework for Simulating Immune Network. In
Proceedings of IEEE SMC’00, 2000. to appear.

[10] J. Suzuki and Y. Yamamoto, Dynamic Adaptation in the
Web Server Design Space using OpenWebServer, In
Proceedings of SPA '99, March 1999.

[11] D. C. Schmidt. Reactor - An Object Behavioral Pattern
for Event Demultiplexing and Event Handler
Dispatching. In Proceedings of Pattern Languages of
Programs , 1994.

[12] . Chowdhury, Immune Network: An Example of Complex
Adaptive Systems, In Artificial Immune Systems and
Their Applications, D. Dasgupta (Ed.), pp. 89-104,
Springer, 1999.

