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Abstract 
This paper describes the adaptability of communication 
software through a biologically-inspired policy negotiation. 
Many research efforts have developed adaptable systems 
that allow various applications to meet their specific 
requirements by configuring different design and 
optimization policies. Navigating through many policies 
manually, however, is tedious and error-prone. Our 
negotiation engine, named iNexus, provides an autonomous 
and decentralized policy management. iNexus is a 
foundation part of  OpenWebServer, which is both a web 
server and an object-oriented framework for building 
Internet versatile servers. Its design is inspired by the 
natural immune system, particularly immune network, a truly 
autonomous and decentralized system. iNexus manages a 
wide range of policies, even inter-dependent instead of 
orthogonal ones, and determines the most appropriate set 
of policies for a given system condition by relaxing 
constraints between them. The policy negotiation process 
is performed through decentralized interactions among 
policies without a single point of control, as the natural 
immune system does. This paper discusses a 
communication system can evolve continuously with the 
biological concepts and mechanisms, adapting itself to 
ever-changing environment. 
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1. Introduction 
The communication software like web servers and 
middleware has emerged as an important architectural 
component in building the electronic commerce. However, 
the design of communication software is still hard. It  
contains both inherent complexities, such as fault detection 
and recovery, and accidental complexities, such as the 
continuous rediscovery and re -invention of key concepts 
and components. It also has a remarkably rich set of 
options, or policies, when designing, optimizing and 
configuring a communication endsystem, e.g. web server. 

No single policy fits different kinds of endsystems or their 
workloads [1, 2]. Therefore, it is essential to develop open-
ended and adaptive framework that allows building 
optimally configured network systems [3]. 

The existence of all the feasible policies ensures that 
endsystems can be tailored to their users’ or applications’ 
requirements. Navigating through many design and 
optimization policies, however, is tedious and error-prone. 
Developers face the significant efforts of engineering an 
endsystem from the ground up, resulting in ad-hoc 
solutions. Such systems are often hard to maintain, 
customize and tune, since much of the engineering tasks are 
spent just for trying to get the system operational. It has 
not been addressed in the literature at large, unfortunately, 
how to navigate and coordinate policies consistently 
throughout the system’s lifetime. 

This paper describes our policy negotiation facility, 
named iNexus, which manages and coordinates policies in 
the autonomous manner. Its core engine is designed with 
the metaphors in the natural immune system. iNexus 
dynamically determines the most appropriate set of policies 
from a policy pool for a given system condition by relaxing 
constraints between policies. Our biologically-inspired 
negotiation process is performed through decentralized 
interactions among policies without a single point of 
control, as the natural immune system does. 

iNexus is deployed on a web server, called 
OpenWebServer [4], so that it evolve the server in a 
changing environment by re-configuring the system 
components based on policies suited to the current system 
condition. OpenWebServer is both an adaptive web server 
and an object-oriented framework for developing an Internet 
versatile server (see Figure 1). It abstracts various policies 
for concurrency, I/O event dispatching, protocol parsing, 
connection management, caching, logging and service 
redundancy, etc. 

This paper is organized as follows; Section 2 overviews 
related work. Section 3 overviews the natural immune 
system to explain why our work uses its metaphors. Section 
4 describes the architecture and mechanism of iNexus policy 
negotiation engine and its learning capability. Section 5 
illustrates some empirical simulation results. In Sections 6 
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Figure 1: OpenWebServer/iNexus architecture 

and 7, we conclude with a note on the current status of our 
project and present future work. 

2. Related Work 
Software adaptation has been studied by various research 
efforts such as reflection, open implementation, adaptive 
programming, aspect-oriented programming, component 
composition, and collaboration-based design, as well as 
quality of service (QoS) policy management in the 
networking community. In every approach, there is an entity 
representing a policy. For example, it is called metaobject in 
the context of reflection, concern in the principle of 
separation of concern, component or plug-in in component 
composition, and aspect  in aspect-oriented programming. 
Applications can adapt to a given requirement by adding, 
customizing or replacing the entities.  

Policies tend to become fine-grained in highly adaptable 
systems; thereby the number of them increases. However, 
the greater the number of policies, the more complexity and 
difficulty in maintaining and coordinating them. Fine-
grained policies are not orthogonal with each other in many 
cases, but have complex constraints. Most of the above 
research efforts have not addressed the autonomous policy 
negotiation, i.e. the process for inspecting the every 
dependency between policies and then resolving co-
use/conflict constraints to produce an optimized 
combination from feasible policies. 

The simplest coordination strategy is writing a long 
sequence of hard-written if/case statements in a program. 
Another strategy is using the multiple inheritance in a class-
based object-oriented language. Both suffer from 
combination explosion, and cost lots of labor for 

configuring if/case statements or inheritance relationships. 
They are also fragile for changing policy specifications. 

Our work contributes to propose an autonomous policy 
negotiation in a communication system. The negotiation 
process is performed through decentralized interactions 
among competitive and sometimes conflicting policies , so 
that outcomes emerge with a context and dependencies 
between policies. This “coordination without coordinator” 
principle increases the flexibility and scalability of policy 
management. iNexus allows any policy to be introduced, 
altered and removed dynamically. 

In terms of the network QoS research, our work is 
categorized in the application-level QoS policy management 
within a communication endsystem. We do not discuss QoS 
enforcement. The level of our policy guarantee is currently 
best-effort. In terms of reflection and aspect-oriented 
programming, our work addresses  the mechanisms of 
autonomous metaobject composition and aspect weaving, 
respectively. 

3. Natural Immune System and Immune 
Network 

The structure and behavior of iNexus is designed with the 
metaphors in the natural immune system, particularly 
immune network. This section describes their primary 
mechanism. 

Immune System 
The natural immune system is a subject of great research 
interests because it provides powerful and flexible 
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Figure 2: Interactions in the immune network. The immune 
response to an antigen results in the formation of anti-
idiotype antibodies specific to the individual idiotope of 
the primary antibody (antibody 1). These anti-idiotype 
antibodies (antibody 2 and 3) in turn induce the formation 
of anti-anti-idiotype antibodies. 



  

information processing capability as a decentralized 
intelligent system. It has some important computational 
aspects such as self/non-self discrimination, learning, 
memory, retrieval, pattern matching and emergent behavior. 
The immune system provides an excellent model of adaptive 
operation at the local level and of emergent behavior at the 
global level. There exists several theories to explain 
immunological phenomena and software models to simulate 
various components in the immune system.  

The basic components of the immune system are 
macrophages, antibodies and lymphocytes. B-lymphocytes 
are the cells maturing in the bone marrow. Roughly  107  

distinct types of B-lymphocytes are contained in a human 
body, each of which has a distinct molecular structure and 
produces antibodies from its surface. The antibody 
recognizes and eliminates  a specific type of antigens, e.g. 
viruses, which are the foreign substances invading a human 
body. The key portion of antigen that is recognized by the 
antibody is called epitope , which is the antigen determinant 
(see Figure 1). Paratope is the portion of antibody that 
corresponds to a specific type of antigens. Once an 
antibody combines an antigen via their epitope and 
paratope, the antibody start to eliminate the antigen. Recent 
studies in immunology have clarified that each type of 
antibody also has its own antigenic determinant, called an 
idiotope . This means an antibody is recognized as an 
antigen by another antibody. 

Immune Network 
Based on this fact, Jerne proposed the concept of the 
immune network , or idiotypic network  [5], which states 
that antibodies and lymphocytes are not isolated, but they 
are communicating with each other (Figure 1). The idiotope 
of an antibody is recognized by another antibody as an 
antigen. This network is formed on the basis of idiotope 
recognition with the stimulation and suppression chains 
among antibodies. Thus, the immune response eliminating 
foreign antigens is offered by the entire immune system (or, 
at least, more than one antibody) in a collective manner, 
although the dominant role may be played by a single 
antibody whose paratope fits best with the epitope of the 
specific invading antigen. The immune network also helps 
to keep the quantitative balance of antibodies. Through 
stimulation/suppression interactions, the populations of 

specific antibodies increase very rapidly following the 
recognition of any foreign antigen and, after eliminating the 
antigen, decrease again. Performed based on this self-
regulating mechanism, the immune response has an 
emergent property through many local interactions. 

The network structure is not fixed, but varies 
continuously according to dynamic changes of 
environment. This flexible self-organizing function is 
realized mainly by incorporating newly generated cells 
and/or removing useless ones. The new cells are generated 
by both gene recombination in bone marrow and mutation 
in the proliferation process of activated cells. Although 
many new cells are generated every day, most of them have 
no effect on the existing network and soon die away 
without any stimulation. Due to such enormous loss, the 
immune system maintains an appropriate set of cells so that 
the system can adapt to environmental changes in the 
piecemeal way.  

4. iNexus Policy Negotiation Engine  
This section presents the architecture and mechanism of 
iNexus policy negotiation engine. They are modeled based 
on the work by Farmer et al. [6, 7] and Ishiguro et al. [8]. 
iNexus is developed with iNet [25], which is a framework for 
building artificial immune networks (see Figure 1). iNet has 
been open for public use at Keio University since 1999, and 
will be released for researchers simulating the immune 
network mechanisms and exploring the design space of 
artificial immune networks. It has served as an infrastructure 
in our several research projects building biologically 
inspired multi-agent systems, where artificial immune 
networks optimize agents ’ strategies in a pursuit  game and 
Robocup soccer game simulation. The architecture and 
design of iNet are described in [9]. 

iNexus Immune Network Model 
iNexus specifies a system's current conditions as antigens, 
e.g. the number of simultaneous network connections, 
average size of requested files, types of operating systems, 
the number of available processors, and supported types of 
protocols (see Table 1). Policies are regarded as antibodies 
(see Table 1), e.g. concurrency policies (thread-per-request, 
active/passive thread pool, thread-per-connection, etc.) and 
I/O event dispatching policies (synchronous and 
asynchronous). Policies are linked with each other based on 
the stimu lation and suppression relationships. This 
relationship is weighted according to constraints between 
policies.  

Figure 3 shows the antibody structure. The paratope 
represents  a precondition under which a certain policy is 
selected. The iNexus immune network begins immune 
response when an antigen and an antibody’s paratope are 
matched. The idiotope represents the references to other 
stimulating antibodies with degrees of the stimuli (or 
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Figure 3: The antibody structure in iNexus immune 



  

affinities). Sample immune network is depicted in Figure X. 
iNexus selects a set of antibodies by calculating every 
antibody’s current population through their interactions. 

The goal of iNexus policy negotiation is that (1) it 
controls the system’s configuration dynamically and 
continuously in a changing environment, and (2) its 
negotiation process is performed in the bottom-up, or 
emergent, manner through the decentralized local 
interactions between policies without any single point of 
control, as the natural immune network does  

Policy Negotiation 
Figure 4 shows a generalized view of an antibody within in 
an immune network. The i-th antibody stimulates M 
antibodies and suppresses  N antibodies. mji and mik denote 
affinities between antibody j and i, and between antibody i 
and k, respectively. The affinity means the degree of 
stimulation or suppression. mi is an affinity between an 
antigen and antibody i. All affinities are supposed to be 
defined a priori in this paper (see also Section 6). 

The antibody population is represented by the concept 
of concentration. The concentration of the i-th antibody, 
denoted by ai, is calculated with the following equations.  

 
In the first equation, the first and second term of the right 

hand side denote the stimulation and suppression from 
other antibodies. mji and mik are positive values between 0 
and 1. The third term, mi, is 1 when antibody i is stimulated 
directly by an antigen, otherwise 0. The forth term, k , 
denotes the dissipation factor representing the antibody’s 
natural death. This value is 0.1. The initial concentration 
value for every antibody, i.e. ai(0), is 0.01. The second 
equation is the function that is used to squash the 
parameter Ai(t), calculated by the first equation, between 0 
and 1.  

Every antibody’s concentration is calculated 30 times 
repeatedly. If no antibody exceeds the predefined threshold 
(0.7) during the 30 calculation steps, the antibody of the 
highest concentration is selected, i.e. winner-tales-all 
strategy. If an antibody’s concentration exceeds the 
threshold, an antibody is selected based on the probability 
proportional to the current concentrations, i.e. roulette-
wheel selection strategy. An antibody whose concentration 
is below 0.1 is never selected. 

System Adaptation through Learning  

In the previous iNexus immune network, the 
stimulation/suppression relationships are fixed with static 
affinity values [3]. This means the policy negotiation 
process is exactly performed as an immune network 
designer expected at the design time. However, this network 
does not provide a true dynamic feature described in 
Section 3. Defining static affinity values is time-consuming 
task. We have chose a conservative strategy for building an 
artificial immune network in traditional versions of iNexus, 
because the “trial and error”-style negotiation can result in 
fatal errors due to delivering a disallowed combination of 
policies. 

For OpenWebServer to evolve effectively in an ever-
changing environment, iNexus can re-arrange the immune 
network structure at run-time by changing affinity values.  

They are modified with the reword and penalty 
reinforcement signals as shown in the equation 3 and 4, 
either when concentrations of two arbitrary antibodies 
exceed the predefined threshold (0.7) during the 30 
calculation steps described in the previous section, or when 
one or more antigens stimulate two antibodies 
simultaneously. This means iNexus immune network learns 
from results of its own behaviors. Note that this learning 
mechanism can even work under the situation where the 
immune network is not structured, i.e. the idiotope of every 
antibody is  initially blank. We expect iNexus to provide the 
emergence of the knowledge of policy combination. 

paratope policy

Antibody i



  

5. Biologically-inspired Policy Negotiation in 
OpenWebServer/iNexus  

This section presents policies supported in 
OpenWebServer/iNexus and describes our policy 
negotiation mechanism augmented by an artificial immune 
network. Then, we illustrates some empirical simulation 
results. 

OpenWebServer Policies  
OpenWebServer/iNexus supports the policies listed in 
Table 1. 
We can produce high-throughput, highly available, fault 
tolerant or minimum footprint servers by tuning the 
combination of these policies dynamically or statically [10].  

The key determinants  of web server throughput are 
concurrency, I/O event dispatching, and file access policies. 
For example, a single-threaded reactive server 1  [11] is 
efficient when (1) it runs on a uni-processor platform, (2) the 
average size of requested files is relatively small, and (3) the 
hit rate from simultaneous connections is relatively low. As 
the hit rate increases, however, the multiple thread 
strategies such as thread-per-request, thread pool and 
thread-per-connection are better choices only if the 
underlying operating system supports threads. They can 
scale well in a multi-processor platform. A constraint of 
using the thread-per-connection policy is that the server 
operates the HTTP version 1.1. As the size of requested 
files grows, the asynchronous I/O event dispatching 2 
outperforms the synchronous concurrency models using 
BSD standard socket functions. A restriction of using 
                                                                 
1 Typically implemented by calling select() for simultaneous 

connections in a polling loop. 
2 e.g., Windows NT provides asynchronous I/O system calls such 

as WSA*() and TransmitFile(), though it can be simulated 
with user-level library. 

asynchronous I/O is that all the operating systems do not 
support it. A thread pool can be designed in the active or 
passive manner. A passive thread pool implemented with a 
kernel-level asynchronous I/O and simultaneous 
accept() calls 3 is much more efficient than other pools, 
though it is not a portable solution.  

Figure 5 shows how flexible nature of the 
OpenWebServer/iNexus enables it to adapt from its baseline 
performance to stable high-throughput performance. It 
demonstrates it is possible to improve server performance 
through superior server design. A flexible server framework 
like OpenWebServer need necessarily not perform poorly, 
while a hard-coded server can provide excellent 
performance. We achieved this performance through 
systematic benchmarking of different configurations of 
OpenWebServer under different server load conditions. We 
then selected the combination of features that yielded the 
best overall performance. Our benchmark is conducted with 
WebStone 2.5, running Sun’s Java 1.2 VM on a Windows 
NT Server 4.0 SP5 (400Mhz 256 MB RAM) with idle 10Mbps 
Ethernet connection. 

iNexus Policy Negotiation 
iNexus provides OpenWebServer an autonomous policy 
negotiation continuously that provides an optimized 
combination of policies as described in the previous 
section. We built an artificial immune network incorporating 
11 policies listed in Table 1. It defines 39 
stimulation/suppression relationships.   

Figure 4 shows a simple subset of our immune network. 
This network is used to determine the best-suited 
concurrency policy according to a current system 
condition. It contains four antibodies representing three 
kinds of policies; single-threaded reactive, thread pool and 
                                                                 
3 Multiple idle threads can call accept() to a single socket with 

this mechanism. 

Paratope major ID Paratope minor ID Policy major ID Policy minor ID 

FILE_SIZE L, M, S CONCURRENCY REACTIVE 

NO_OF_CONNECTION M, A, F  THREAD_PER_REQUEST 

NO_OF_CPU M, S  ACTIVE_THREAD_POOL 

OS_THREAD_SUPPORT  T, F   PASSIVE_THREAD_POOL 

OS_ASYNC_IO_SUPPORT  T, F   THREAD_PER_CONNECTION 

AVAILABLE_THREADS M, A, F IO SYNCH 

SUPPORTED_PROTOCOL HTTP10, HTTP11  ASYNCH 

  CACHE LRU 

   FIFO 

  PROTOCOL HTTP10 

   HTTP11 

 
Table 1: A list of supported kinds of paratope and policies 



  

thread-per-connection. Antibody 1 represents that the 
single-threaded reactive policy is activated when the 
average of requested files is relatively small. However, the 
thread pool policy is activated if the number of HTTP 
simultaneous connections grows, because antibody 1 
stimulates antibody 3. Inversely, the reactive policy is 
suppressed by the thread pool policy, if the server has to 
handle many connections even when the average file size is 
small.  
Now, suppose that OpenWebServer  (1) transfers relatively 
small size of files, (2) handles relatively many connections, 
and (3) supports the HTTP version 1.1. In this situation, 
these three antigens stimulate antibodies 1, 2 and 4 
simultaneously. Then, the populations of the antibodies 
increase. However, each population varies through the 
stimulating/suppres sing interactions indicated by arrows 
between antibodies. As a result, the population of the 
antibody 2, i.e. thread-per-connection, would increase, and 
then it would be selected by the immune network. In the 
case where OpenWebServer (1) transfers relatively small 
size of files, (2) does not have to handle many connections, 
and (3) supports the HTTP version 1.1, antibody 1, i.e. the 
reactive policy, would be selected in the same way.  

Figure 5 shows a continuous performance transition of 
OpenWebServer/iNexus using an artificial immune network. 
It receives HTTP requests from 30 simultaneous 
connections during 30 minutes, and then from 60 
connections after that. In this change of system condition, 
OpenWebServer/iNexus dynamically re-configures the 
concurrency policy from single -threaded reactive to thread 
pool. This autonomous policy decision allows the server to 
increase its throughput from 30% to 90%. 

6. Future Work 
This paper focuses on the policy coordination of a critical 
determinant to the HTTP server performance: concurrency. 
We are testing our artificial immune network with more 
complex experiments using greater number of antibodies. 
Our latest immune network includes new 12 policies 
regarding sever redundancy, application-level service 

support (e.g. CGI, Servlet and Java Server Pages), logging, 
and protocol pipeline-parsing.  

As for a mathematical model to simulate the phenomena 
of the natural immune network, there exist several models 
such as liner networks, cyclic networks, Cayley-tree-like 
network and generalized shape-space model, which are 
proposed by theoretical immunologists [12]. Our 
coordination facility uses  a cyclic network model proposed 
by Farmer et al. [17, 18]. We plan to evaluate other network 
models in more detail. Also, we plan to incorporate some 
additional immunological concept, e.g. tolerance and 
immune memory. 

7. Conclusion 
This paper describes our policy negotiation facility for 
communication software augmented by an artificial immune 
network. It defines each policy as an antibody, and selects 
the most appropriate set of policies through the 
decentralized interactions among antibodies. We believe 
our work provides a blue print showing an autonomous and 
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Figure 5: Comparative performance for OpenWebServer 
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Figure 4: A sample immune network 
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Figure 5: OpenWebServer/iNexus performance 



  

decentralized coordination mechanism as a next logical 
extension to existing adaptive and QoS-enabled systems.  
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