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1. Introduction 
 
From a computer science perspective the immune system is a complex, self organizing and 
highly distributed system which has no centralized control and which uses learning and 
memory when solving particular tasks. The learning process does not require negative 
examples and the acquired knowledge is represented in explicit form. These features attract 
computer scientists offering new paradigm for information processing. Particularly, Jerne’s 
idea of the immune network, [7], has been used to develop new tools for data analysis. The 
first paper devoted to this subject was that of Hunt and Cooke, [6], where the idea of the 
immune network with cells represented by the binary strings has been applied to the 
recognizing promoters in DNA sequences. Next this idea was refined by Timmis, [10], who 
proposed an interesting algorithm for unsupervised learning, data analysis and data 
visualization. Here instead of binary representation of antigens and antibodies (see Section 2 
for explanation of these terms) real vectors were used. De Castro and von Zuben, [3] 
developed another algorithm for data analysis and data reduction that refers to the meta-
dynamics typical for the so-called second generation immune networks, [11]. Watkins, [12], 
applied these ideas to the supervised learning. Although interesting, these solutions are not 
free from disadvantages. The approach presented in [3] is an exciting data reduction technique 
offering a compact representation of the training data. To extract clusters in the resulting set, 
the authors use a mixture of standard clustering techniques however. On the other hand the 
system presented by Timmis in [10] is unstable in the sense that it is hard to keep network 
size within reasonable boundaries through all the iterations.  
 
In this paper an improved immune algorithm is presented which admits two useful properties: 
(i) the network size does not exceed the size of the training set in all the iterations, (ii) stable 
clusters are formed. Before presenting new algorithm (Section 3) we briefly review the main 



immune system properties (Section 2). Next numerical experiments are reported (Section 4) 
and main features of the algorithm are stressed (section 5). 
 
2. Basic facts from immunology 
 
The aim of this section is brief presentation of the main mechanisms used by the immune 
system. A reader interested in a deeper review of natural immune system from a mathematical 
perspective is referred to [9] while computer-oriented treatment of the problem can be found 
in [2] or [13].   
 
The basic building blocks of the immune system are white blood cells, or lymphocytes. There 
are two major classes of lymphocytes: B-cells, produced in the bone marrow in the course of 
so-called clonal selection (described later), and T-cells, processed in the thymus. In the 
artificial immune systems designed for data analysis problems, the B-cell is the fundamental 
object for machine learning. Hence, in the sequel we will focus on the properties and 
mechanisms that govern B-cell populations.  
 
B-cells synthesize and carry on their surfaces molecules called antibodies which act like 
detectors. The specialized portion of the antibody molecule used for identifying other 
molecules is called paratope. Being a 3-D structure with uneven surface the paratope have a 
unique shape which is referred to as the specificity. The regions on any molecule that the 
paratopes can attach to are called epitopes. If the two colliding molecules have 
complementary specificities, they bind to each other and the strength of the bond (called 
affinity) depends on the degree of complementarity. A molecule bound by an antibody is 
referred to as the antigen1. A crucial role of the immune system is the binding of antibodies 
with antigens which serves to tag them for destruction by other cells. This process is termed 
antigen recognition. To treat formally the recognition problem, Perelson [8] introduced the 
notion of the shape space. Namely, if there are m features influencing the interaction between 
the molecules (i.e. the length, height, width, charge distribution, etc.) and Di, i = 1, …, m is 
the domain of i-th feature then a point in m-dimensional space S = D1 × … × Dm is the 
generalized shape of a molecule. Typically S is a subset of m-dimensional Hamming space, or 
m-dimensional Euclidean space. 
 
When a B-cell recognizes an antigen, it may be stimulated to clone (i.e. producing identical 
copies of itself) as well as to secrete free antibodies. This process of amplifying only those 
cells that produce a useful antibody type is called clonal selection. The number of clones 
produced by a lymphocyte is proportional to its stimulation level. Clones are not perfect, but 
they are subjected to somatic mutation (characterized by high mutation rate) that result with 
children having slightly different antibodies than the parent. These new B-cells can also bind 
to antigens and if they have a high affinity to the antigens they in turn will be activated and 
cloned. The rate of cloning a cell is proportional to its “fitness” to the problem: fittest cells 
replicate the most. The somatic mutation guarantees sufficient variation of the set of clones, 
while selection is provided by competition for pathogens. The whole process of (in fact 
Darwinian) selection and differentiation of B-cell receptors leading to the evolution of B-cell 
populations better adapted to recognize specific epitopes is said to be affinity maturation.  
 
Besides somatic mutation the immune system uses a number of other mechanism to maintain 
sufficient diversity and plasticity. Particularly about five percent of the B-cells are replaced 

                                                           
1 Antigen means a molecule that causes antibodies generation. 



every day by new lymphocytes generated in the bone marrow. This process is termed 
apoptosis.   
 
The immune system possesses two types of response: primary and secondary. The primary 
response occurs when the immune system encounters the antigen for the first time and reacts 
against it. To learn the structure of the antigen epitopes, affinity maturation is used. The 
primary response can take some time (usually about 3 weeks) to destroy the antigen. If the 
body is reinfected with a previously encountered antigen, it will have an adapted 
subpopulation of B-cells to provide a very specific and rapid secondary response. Usually it is 
very fast and efficient. From a computer science perspective the primary response 
corresponds to the identification of clusters in the training data, while the secondary response 
– to the pattern recognition problem, i.e. the assignment of a new data into one of existing  
clusters. Interestingly, the secondary response is not only triggered by the re-introduction of 
the same antigens, but also by infection with new antigens that are similar to previously seen 
antigens. That is why we say that the immune memory is associative. 
 
The final immune system principle that plays a useful role in designing artificial immune 
system is that of immune network theory formulated by Jerne, [7], and further developed by 
Perelson, [8]. According to this theory (called also Jerne’s hypothesis) the immune response 
is based not only on the interaction of B-cells and antigens but also on the interactions of B-
cells with other B-cells. These cells provide both a stimulation and suppression effect on one 
another and it is partially through this interaction that the memory is retained in the immune 
system.  
 
The immune system is in permanent flux. The whole network is subjected structural 
perturbations through appearance and disappearance of some cell species. The introduction of 
new species is caused by somatic mutation, apoptosis, or combinatorial diversity (e.g. genetic 
operations). A crucial issue is the fact that the network as such, and not the environment, 
exerts the greatest pressure in the selection of the new species to be integrated in the network.  
Thus, the immune network is self-organizing, since it determines the survival of newly 
created clones, and it determines its own size. This is referred to as the meta-dynamics of the 
system, [11].  
 
The model of immune memory proposed by Jerne resembles the models of hypercycles or 
autocatalytic sets considered in the context of prebiotic chemical evolution – cf. [1] or [4].  It 
seems that careful examination of these models may be of value in constructing effective data 
analysis algorithms.  
 
3. The algorithm 
 
The algorithm used in the experiments and depicted on Figure 1 resembles Timmis’ algorithm 
presented in [10]. Some of its steps are implemented differently, however.   
 
In the algorithm we use a stylised version of the immune system. In the natural system each 
B-cell has about 105 antibodies attached to its surface. Since all these antibodies have 
identical paratopes, in artificial immune systems we identify each cell with its antibody which 
is represented by an m-dimensional real vector. To compare degrees of affinity between 
different antibodies and antigens it is assumed that the vectors representing these molecules 
are normalized, i.e. both Ag (the set of antigens) and Ab (the set of antibodies) are actually  
subset of m-dimensional unit cube [0, 1]m. The elements of Ag are normalized during the first 



presentations of the antigens to the system (step 1 of the algorithm). While in [10] each 
element of the training set was assigned randomly (with equal probability) to the set Ag or Ab, 
in our approach the set Ag is identical with the training set, and the set of antibodies is 
initiated randomly.  
  

1. Present antigens set, Ag. Let n = |Ag| 
2. Generate randomly antibodies set, Ab, of size n. 
3. Find an initial value of the NAT scalar.  
4. loop 

4.1. Find stimulation level 
4.2. Purge worst cells 
4.3. Rebuild network 
4.4. Recalculate NAT scalar 
4.5. Clone and mutate cells 

5. until (termination-condition) 
 

Figure 1. The algorithm for an immune network generation 
 
The affinity between two cells abj, abk ∈ Ab, j ≠ k, is expressed as the Euclidean distance djk 
= d(abj, abk). If the distance is not greater than a pre-specified threshold value, called the 
network affinity threshold or NAT, then a link is created between the two cells. The NAT is a 
very important parameter as it determine the granularity of the network and its overall 
connectivity. In [10] an initial value of the NAT was defined as the average distance between 
all the cells in Ag. However such a procedure overestimates the actual threshold value what 
results in collapsing the network into a single cluster as the number of iterations increases. In 
our approach the NAT scalar is computed in step 3 as the average distance between n⋅κ lowest 
distances between the antigens. Here κ is a parameter and in all our experiments κ = 1. (Note 
that when κ = n, we obtain the original definition used in [10]). In step 4.4 the threshold value 
is computed as the average length of the n⋅κ shortest links.  
 
Stimulation level, sl(abj), is the second very important factor. In [10] it was computed in 
accordance with Jerne’s hypothesis as the sum of three subfactors: (i) affinity among a given 
antibody and all the antigens, (ii) the degree of stimulation of the antibody by other antibodies 
from the networks, and (iii) the degree of suppression of the antibody by other antibodies. 
Since antigens and antibodies are points in the [0, 1]m, the computation of the subfactors (ii) 
and (iii) seems to be slightly artificial since we do not distinguish between paratopes and 
epitopes. Thus the stimulation level is defined in terms of its affinity to the set of antigens 
only. That is given djk = d(abj, agk) the set of distances between j-th antibody and k-th antigen 
we find the minimal distance dj⋅ = min{ djk| k = 1, …, n}. Now sl(abj) = 1 – dj⋅ if dj⋅ ≤ NAT and 
sl(abj) = 0 otherwise.  Such a strategy reasonably differentiates the antibody cells contrary to 
the Timmis’ approach.  
 
An antibody with stimulation level sl(abj) produces c⋅sl(abj) clones, where c is a constant 
(maximal number of clones). Each clone y = (y1, y2, …, ym) is subjected mutation according to 
the equation  
 
 yi = yi + r⋅∆, i = 1, …, m 
 
where r is a random number from the unit interval and ∆ = 1 – yi or ∆ = –yi where the decision 
which value to choose is made randomly. 



 
4. Experiments 
 
Three training data sets were analysed – see figures (2a), (3a) and (4a). The corresponding 
immune networks are presented at figures (2b), (3b) and (4b).  
 
Interestingly, to classify correctly presented antigens, only few iterations suffice. Figures (2c), 
(3c) and (4c) show evolution of the fraction of correctly recognized cells as well as the 
evolution of the network sizes in subsequent iterations. Typically, after 10 iterations all the 
antigens are properly classified and the network size tends to the size of the antigens set. This 
is in contrast with Timmis’ approach, where the network size increases with iterations. 
 
Another interested feature of the model is the adaptive tuning of the NAT scalar – see figures 
(2d), (3d) and (4d). The initial NAT value is usually small  
 

 
Fig.2 a) Antigens set 

 
Fig. 2b) Final immune network 

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80

 
Fig. 2c) Number of correctly recognized cells and 
the network size 
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Fig. 2d) Evolution of the NAT scalar 

 
 



 
3a) Antigens set 

 
3b) Final immune network 
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Fig. 3c) Number of correctly recognized cells and 
the network size 
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Fig. 3d) Evolution of the NAT scalar 

 

 
Fig. 4c) Antigens set 

 
Fig. 4b) Final immune network 



Fig. 4c) Number of correctly recognized cells  
and network size 
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Fig. 4d) Evolution of the NAT scalar 
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